
ZSHZLE(1) General Commands Manual ZSHZLE(1)

NAME
zshzle − zsh command line editor

DESCRIPTION
If the ZLE option is set (which it is by default in interactive shells) and the shell input is attached to the ter-
minal, the user is able to edit command lines.

There are two display modes. The first, multiline mode, is the default. It only works if the TERM parame-
ter is set to a valid terminal type that can move the cursor up. The second, single line mode, is used if
TERM is invalid or incapable of moving the cursor up, or if the SINGLE_LINE_ZLE option is set. This
mode is similar to ksh, and uses no termcap sequences. If TERM is "emacs", the ZLE option will be unset
by default.

The parameters BAUD, COLUMNS, and LINES are also used by the line editor. See Parameters Used By

The Shell in zshparam(1).

The parameter zle_highlight is also used by the line editor; see Character Highlighting below. Highlight-
ing of special characters and the region between the cursor and the mark (as set with set−mark−command
in Emacs mode, or by visual−mode in Vi mode) is enabled by default; consult this reference for more in-
formation. Irascible conservatives will wish to know that all highlighting may be disabled by the following
setting:

zle_highlight=(none)

In many places, references are made to the numeric argument. This can by default be entered in emacs
mode by holding the alt key and typing a number, or pressing escape before each digit, and in vi command
mode by typing the number before entering a command. Generally the numeric argument causes the next
command entered to be repeated the specified number of times, unless otherwise noted below; this is imple-
mented by the digit−argument widget. See also the Arguments subsection of the Widgets section for some
other ways the numeric argument can be modified.

KEYMAPS
A keymap in ZLE contains a set of bindings between key sequences and ZLE commands. The empty key
sequence cannot be bound.

There can be any number of keymaps at any time, and each keymap has one or more names. If all of a
keymap’s names are deleted, it disappears. bindkey can be used to manipulate keymap names.

Initially, there are eight keymaps:

emacs EMACS emulation
viins vi emulation − insert mode
vicmd vi emulation − command mode
viopp vi emulation − operator pending
visual vi emulation − selection active
isearch incremental search mode
command

read a command name
.safe fallback keymap

The ‘.safe’ keymap is special. It can never be altered, and the name can never be removed. However, it can
be linked to other names, which can be removed. In the future other special keymaps may be added; users
should avoid using names beginning with ‘.’ for their own keymaps.

In addition to these names, either ‘emacs’ or ‘viins’ is also linked to the name ‘main’. If one of the VIS-
UAL or EDITOR environment variables contain the string ‘vi’ when the shell starts up then it will be ‘vi-
ins’, otherwise it will be ‘emacs’. bindkey’s −e and −v options provide a convenient way to override this
default choice.

When the editor starts up, it will select the ‘main’ keymap. If that keymap doesn’t exist, it will use ‘.safe’
instead.

In the ‘.safe’ keymap, each single key is bound to self−insert, except for ˆJ (line feed) and ˆM (return)

zsh 5.8 February 14, 2020 1



ZSHZLE(1) General Commands Manual ZSHZLE(1)

which are bound to accept−line. This is deliberately not pleasant to use; if you are using it, it means you
deleted the main keymap, and you should put it back.

Reading Commands
When ZLE is reading a command from the terminal, it may read a sequence that is bound to some com-
mand and is also a prefix of a longer bound string. In this case ZLE will wait a certain time to see if more
characters are typed, and if not (or they don’t match any longer string) it will execute the binding. This
timeout is defined by the KEYTIMEOUT parameter; its default is 0.4 sec. There is no timeout if the pre-
fix string is not itself bound to a command.

The key timeout is also applied when ZLE is reading the bytes from a multibyte character string when it is
in the appropriate mode. (This requires that the shell was compiled with multibyte mode enabled; typically
also the locale has characters with the UTF−8 encoding, although any multibyte encoding known to the op-
erating system is supported.) If the second or a subsequent byte is not read within the timeout period, the
shell acts as if ? were typed and resets the input state.

As well as ZLE commands, key sequences can be bound to other strings, by using ‘bindkey −s’. When
such a sequence is read, the replacement string is pushed back as input, and the command reading process
starts again using these fake keystrokes. This input can itself invoke further replacement strings, but in or-
der to detect loops the process will be stopped if there are twenty such replacements without a real com-
mand being read.

A key sequence typed by the user can be turned into a command name for use in user−defined widgets with
the read−command widget, described in the subsection ‘Miscellaneous’ of the section ‘Standard Widgets’
below.

Local Keymaps
While for normal editing a single keymap is used exclusively, in many modes a local keymap allows for
some keys to be customised. For example, in an incremental search mode, a binding in the isearch keymap
will override a binding in the main keymap but all keys that are not overridden can still be used.

If a key sequence is defined in a local keymap, it will hide a key sequence in the global keymap that is a
prefix of that sequence. An example of this occurs with the binding of iw in viopp as this hides the binding
of i in vicmd. Howev er, a longer sequence in the global keymap that shares the same prefix can still apply
so for example the binding of ˆXa in the global keymap will be unaffected by the binding of ˆXb in the lo-
cal keymap.

ZLE BUILTINS
The ZLE module contains three related builtin commands. The bindkey command manipulates keymaps
and key bindings; the vared command invokes ZLE on the value of a shell parameter; and the zle command
manipulates editing widgets and allows command line access to ZLE commands from within shell func-
tions.

bindkey [ options ] −l [ −L ] [ keymap ... ]
bindkey [ options ] −d
bindkey [ options ] −D keymap ...
bindkey [ options ] −A old−keymap new−keymap

bindkey [ options ] −N new−keymap [ old−keymap ]
bindkey [ options ] −m
bindkey [ options ] −r in−string ...
bindkey [ options ] −s in−string out−string ...
bindkey [ options ] in−string command ...
bindkey [ options ] [ in−string ]

bindkey’s options can be divided into three categories: keymap selection for the current command,
operation selection, and others. The keymap selection options are:

−e Selects keymap ‘emacs’ for any operations by the current command, and also links
‘emacs’ to ‘main’ so that it is selected by default the next time the editor starts.

zsh 5.8 February 14, 2020 2



ZSHZLE(1) General Commands Manual ZSHZLE(1)

−v Selects keymap ‘viins’ for any operations by the current command, and also links ‘viins’
to ‘main’ so that it is selected by default the next time the editor starts.

−a Selects keymap ‘vicmd’ for any operations by the current command.

−M keymap

The keymap specifies a keymap name that is selected for any operations by the current
command.

If a keymap selection is required and none of the options above are used, the ‘main’ keymap is
used. Some operations do not permit a keymap to be selected, namely:

−l List all existing keymap names; if any arguments are given, list just those keymaps.

If the −L option is also used, list in the form of bindkey commands to create or link the
keymaps. ‘bindkey −lL main’ shows which keymap is linked to ‘main’, if any, and
hence if the standard emacs or vi emulation is in effect. This option does not show the
.safe keymap because it cannot be created in that fashion; however, neither is ‘bindkey
−lL .safe’ reported as an error, it simply outputs nothing.

−d Delete all existing keymaps and reset to the default state.

−D keymap ...
Delete the named keymaps.

−A old−keymap new−keymap

Make the new−keymap name an alias for old−keymap, so that both names refer to the
same keymap. The names have equal standing; if either is deleted, the other remains. If
there is already a keymap with the new−keymap name, it is deleted.

−N new−keymap [ old−keymap ]
Create a new keymap, named new−keymap. If a keymap already has that name, it is
deleted. If an old−keymap name is given, the new keymap is initialized to be a duplicate
of it, otherwise the new keymap will be empty.

To use a newly created keymap, it should be linked to main. Hence the sequence of commands to
create and use a new keymap ‘mymap’ initialized from the emacs keymap (which remains un-
changed) is:

bindkey −N mymap emacs
bindkey −A mymap main

Note that while ‘bindkey −A newmap main’ will work when newmap is emacs or viins, it will
not work for vicmd, as switching from vi insert to command mode becomes impossible.

The following operations act on the ‘main’ keymap if no keymap selection option was given:

−m Add the built−in set of meta−key bindings to the selected keymap. Only keys that are un-
bound or bound to self−insert are affected.

−r in−string ...
Unbind the specified in−strings in the selected keymap. This is exactly equivalent to
binding the strings to undefined−key.

When −R is also used, interpret the in−strings as ranges.

When −p is also used, the in−strings specify prefixes. Any binding that has the given
in−string as a prefix, not including the binding for the in−string itself, if any, will be re-
moved. For example,

bindkey −rpM viins ’ˆ[’

will remove all bindings in the vi−insert keymap beginning with an escape character
(probably cursor keys), but leave the binding for the escape character itself (probably
vi−cmd−mode). This is incompatible with the option −R.

zsh 5.8 February 14, 2020 3



ZSHZLE(1) General Commands Manual ZSHZLE(1)

−s in−string out−string ...
Bind each in−string to each out−string. When in−string is typed, out−string will be
pushed back and treated as input to the line editor. When −R is also used, interpret the
in−strings as ranges.

Note that both in−string and out−string are subject to the same form of interpretation, as
described below.

in−string command ...
Bind each in−string to each command. When −R is used, interpret the in−strings as
ranges.

[ in−string ]
List key bindings. If an in−string is specified, the binding of that string in the selected
keymap is displayed. Otherwise, all key bindings in the selected keymap are displayed.
(As a special case, if the −e or −v option is used alone, the keymap is not displayed − the
implicit linking of keymaps is the only thing that happens.)

When the option −p is used, the in−string must be present. The listing shows all bind-
ings which have the given key sequence as a prefix, not including any bindings for the
key sequence itself.

When the −L option is used, the list is in the form of bindkey commands to create the
key bindings.

When the −R option is used as noted above, a valid range consists of two characters, with an op-
tional ‘−’ between them. All characters between the two specified, inclusive, are bound as speci-
fied.

For either in−string or out−string, the following escape sequences are recognised:

\a bell character
\b backspace
\e, \E escape
\f form feed
\n linefeed (newline)
\r carriage return
\t horizontal tab
\v vertical tab
\NNN character code in octal
\xNN character code in hexadecimal
\uNNNN

unicode character code in hexadecimal
\UNNNNNNNN

unicode character code in hexadecimal
\M[−]X character with meta bit set
\C[−]X control character
ˆX control character

In all other cases, ‘\’ escapes the following character. Delete is written as ‘ˆ?’. Note that ‘\Mˆ?’
and ‘ˆ\M?’ are not the same, and that (unlike emacs), the bindings ‘\M−X’ and ‘\eX’ are entirely
distinct, although they are initialized to the same bindings by ‘bindkey −m’.

vared [ −Aacghe ] [ −p prompt ] [ −r rprompt ]
[ −M main−keymap ] [ −m vicmd−keymap ]
[ −i init−widget ] [ −f finish−widget ]
[ −t tty ] name

The value of the parameter name is loaded into the edit buffer, and the line editor is invoked.
When the editor exits, name is set to the string value returned by the editor. When the −c flag is

zsh 5.8 February 14, 2020 4



ZSHZLE(1) General Commands Manual ZSHZLE(1)

given, the parameter is created if it doesn’t already exist. The −a flag may be given with −c to cre-
ate an array parameter, or the −A flag to create an associative array. If the type of an existing pa-
rameter does not match the type to be created, the parameter is unset and recreated. The −g flag
may be given to suppress warnings from the WARN_CREATE_GLOBAL and
WARN_NESTED_VAR options.

If an array or array slice is being edited, separator characters as defined in $IFS will be shown
quoted with a backslash, as will backslashes themselves. Conversely, when the edited text is split
into an array, a backslash quotes an immediately following separator character or backslash; no
other special handling of backslashes, or any handling of quotes, is performed.

Individual elements of existing array or associative array parameters may be edited by using sub-
script syntax on name. New elements are created automatically, even without −c.

If the −p flag is given, the following string will be taken as the prompt to display at the left. If the
−r flag is given, the following string gives the prompt to display at the right. If the −h flag is spec-
ified, the history can be accessed from ZLE. If the −e flag is given, typing ˆD (Control−D) on an
empty line causes vared to exit immediately with a non−zero return value.

The −M option gives a keymap to link to the main keymap during editing, and the −m option
gives a keymap to link to the vicmd keymap during editing. For vi−style editing, this allows a pair
of keymaps to override viins and vicmd. For emacs−style editing, only −M is normally needed
but the −m option may still be used. On exit, the previous keymaps will be restored.

Vared calls the usual ‘zle−line−init’ and ‘zle−line−finish’ hooks before and after it takes control.
Using the −i and −f options, it is possible to replace these with other custom widgets.

If ‘−t tty’ is giv en, tty is the name of a terminal device to be used instead of the default /dev/tty. If
tty does not refer to a terminal an error is reported.

zle
zle −l [ −L | −a ] [ string ... ]
zle −D widget ...
zle −A old−widget new−widget

zle −N widget [ function ]
zle −f flag [ flag... ]
zle −C widget completion−widget function

zle −R [ −c ] [ display−string ] [ string ... ]
zle −M string

zle −U string

zle −K keymap

zle −F [ −L | −w ] [ fd [ handler ] ]
zle −I
zle −T [ tc function | −r tc | −L ]
zle widget [ −n num ] [ −Nw ] [ −K keymap ] args ...

The zle builtin performs a number of different actions concerning ZLE.

With no options and no arguments, only the return status will be set. It is zero if ZLE is currently
active and widgets could be invoked using this builtin command and non−zero otherwise. Note
that even if non−zero status is returned, zle may still be active as part of the completion system;
this does not allow direct calls to ZLE widgets.

Otherwise, which operation it performs depends on its options:

−l [ −L | −a ] [ string ]
List all existing user−defined widgets. If the −L option is used, list in the form of zle
commands to create the widgets.

When combined with the −a option, all widget names are listed, including the builtin
ones. In this case the −L option is ignored.

If at least one string is given, and −a is present or −L is not used, nothing will be printed.

zsh 5.8 February 14, 2020 5



ZSHZLE(1) General Commands Manual ZSHZLE(1)

The return status will be zero if all strings are names of existing widgets and non−zero if
at least one string is not a name of a defined widget. If −a is also present, all widget
names are used for the comparison including builtin widgets, else only user−defined wid-
gets are used.

If at least one string is present and the −L option is used, user−defined widgets matching
any string are listed in the form of zle commands to create the widgets.

−D widget ...
Delete the named widgets.

−A old−widget new−widget

Make the new−widget name an alias for old−widget, so that both names refer to the same
widget. The names have equal standing; if either is deleted, the other remains. If there is
already a widget with the new−widget name, it is deleted.

−N widget [ function ]
Create a user−defined widget. If there is already a widget with the specified name, it is
overwritten. When the new widget is invoked from within the editor, the specified shell
function is called. If no function name is specified, it defaults to the same name as the
widget. For further information, see the section ‘Widgets’ below.

−f flag [ flag... ]
Set various flags on the running widget. Possible values for flag are:

yank for indicating that the widget has yanked text into the buffer. If the widget is wrap-
ping an existing internal widget, no further action is necessary, but if it has inserted the
text manually, then it should also take care to set YANK_START and YANK_END cor-
rectly. yankbefore does the same but is used when the yanked text appears after the cur-
sor.

kill for indicating that text has been killed into the cutbuffer. When repeatedly invoking a
kill widget, text is appended to the cutbuffer instead of replacing it, but when wrapping
such widgets, it is necessary to call ‘zle −f kill’ to retain this effect.

vichange for indicating that the widget represents a vi change that can be repeated as a
whole with ‘vi−repeat−change’. The flag should be set early in the function before in-
specting the value of NUMERIC or invoking other widgets. This has no effect for a wid-
get invoked from insert mode. If insert mode is active when the widget finishes, the
change extends until next returning to command mode.

−C widget completion−widget function

Create a user−defined completion widget named widget. The completion widget will be-
have like the built−in completion−widget whose name is given as completion−widget. To
generate the completions, the shell function function will be called. For further informa-
tion, see zshcompwid(1).

−R [ −c ] [ display−string ] [ string ... ]
Redisplay the command line; this is to be called from within a user−defined widget to al-
low changes to become visible. If a display−string is given and not empty, this is shown
in the status line (immediately below the line being edited).

If the optional strings are given they are listed below the prompt in the same way as com-
pletion lists are printed. If no strings are given but the −c option is used such a list is
cleared.

Note that this option is only useful for widgets that do not exit immediately after using it
because the strings displayed will be erased immediately after return from the widget.

This command can safely be called outside user defined widgets; if zle is active, the dis-
play will be refreshed, while if zle is not active, the command has no effect. In this case
there will usually be no other arguments.

zsh 5.8 February 14, 2020 6



ZSHZLE(1) General Commands Manual ZSHZLE(1)

The status is zero if zle was active, else one.

−M string

As with the −R option, the string will be displayed below the command line; unlike the
−R option, the string will not be put into the status line but will instead be printed nor-
mally below the prompt. This means that the string will still be displayed after the wid-
get returns (until it is overwritten by subsequent commands).

−U string

This pushes the characters in the string onto the input stack of ZLE. After the widget
currently executed finishes ZLE will behave as if the characters in the string were typed
by the user.

As ZLE uses a stack, if this option is used repeatedly the last string pushed onto the stack
will be processed first. However, the characters in each string will be processed in the or-
der in which they appear in the string.

−K keymap

Selects the keymap named keymap. An error message will be displayed if there is no
such keymap.

This keymap selection affects the interpretation of following keystrokes within this invo-
cation of ZLE. Any following invocation (e.g., the next command line) will start as usual
with the ‘main’ keymap selected.

−F [ −L | −w ] [ fd [ handler ] ]
Only available if your system supports one of the ‘poll’ or ‘select’ system calls; most
modern systems do.

Installs handler (the name of a shell function) to handle input from file descriptor fd. In-
stalling a handler for an fd which is already handled causes the existing handler to be re-
placed. Any number of handlers for any number of readable file descriptors may be in-
stalled. Note that zle makes no attempt to check whether this fd is actually readable when
installing the handler. The user must make their own arrangements for handling the file
descriptor when zle is not active.

When zle is attempting to read data, it will examine both the terminal and the list of han-
dled fd’s. If data becomes available on a handled fd, zle calls handler with the fd which
is ready for reading as the first argument. Under normal circumstances this is the only ar-
gument, but if an error was detected, a second argument provides details: ‘hup’ for a dis-
connect, ‘nv al’ for a closed or otherwise invalid descriptor, or ‘err’ for any other condi-
tion. Systems that support only the ‘select’ system call always use ‘err’.

If the option −w is also given, the handler is instead a line editor widget, typically a shell
function made into a widget using ‘zle −N’. In that case handler can use all the facilities
of zle to update the current editing line. Note, however, that as handling fd takes place at
a low lev el changes to the display will not automatically appear; the widget should call
‘zle −R’ to force redisplay. As of this writing, widget handlers only support a single ar-
gument and thus are never passed a string for error state, so widgets must be prepared to
test the descriptor themselves.

If either type of handler produces output to the terminal, it should call ‘zle −I’ before do-
ing so (see below). Handlers should not attempt to read from the terminal.

If no handler is given, but an fd is present, any handler for that fd is removed. If there is
none, an error message is printed and status 1 is returned.

If no arguments are given, or the −L option is supplied, a list of handlers is printed in a
form which can be stored for later execution.

An fd (but not a handler) may optionally be given with the −L option; in this case, the
function will list the handler if any, else silently return status 1.

zsh 5.8 February 14, 2020 7



ZSHZLE(1) General Commands Manual ZSHZLE(1)

Note that this feature should be used with care. Activity on one of the fd’s which is not
properly handled can cause the terminal to become unusable. Removing an fd handler
from within a signal trap may cause unpredictable behavior.

Here is a simple example of using this feature. A connection to a remote TCP port is cre-
ated using the ztcp command; see the description of the zsh/net/tcp module in zshmod-

ules(1). Then a handler is installed which simply prints out any data which arrives on this
connection. Note that ‘select’ will indicate that the file descriptor needs handling if the
remote side has closed the connection; we handle that by testing for a failed read.

if ztcp pwspc 2811; then
tcpfd=$REPLY
handler() {
zle −I
local line
if ! read −r line <&$1; then
# select marks this fd if we reach EOF,
# so handle this specially.
print "[Read on fd $1 failed, removing.]" >&2
zle −F $1
return 1

fi
print −r − $line

}
zle −F $tcpfd handler

fi

−I Unusually, this option is most useful outside ordinary widget functions, though it may be
used within if normal output to the terminal is required. It invalidates the current zle dis-
play in preparation for output; typically this will be from a trap function. It has no effect
if zle is not active. When a trap exits, the shell checks to see if the display needs restor-
ing, hence the following will print output in such a way as not to disturb the line being
edited:

TRAPUSR1() {
# Inv alidate zle display
[[ −o zle ]] && zle −I
# Show output
print Hello

}

In general, the trap function may need to test whether zle is active before using this
method (as shown in the example), since the zsh/zle module may not even be loaded; if it
is not, the command can be skipped.

It is possible to call ‘zle −I’ sev eral times before control is returned to the editor; the dis-
play will only be invalidated the first time to minimise disruption.

Note that there are normally better ways of manipulating the display from within zle wid-
gets; see, for example, ‘zle −R’ above.

The returned status is zero if zle was invalidated, even though this may have been by a
previous call to ‘zle −I’ or by a system notification. To test if a zle widget may be called
at this point, execute zle with no arguments and examine the return status.

−T This is used to add, list or remove internal transformations on the processing performed
by the line editor. It is typically used only for debugging or testing and is therefore of lit-
tle interest to the general user.

‘zle −T transformation func’ specifies that the given transformation (see below) is

zsh 5.8 February 14, 2020 8



ZSHZLE(1) General Commands Manual ZSHZLE(1)

effected by shell function func.

‘zle −Tr transformation’ removes the given transformation if it was present (it is not an
error if none was).

‘zle −TL’ can be used to list all transformations currently in operation.

Currently the only transformation is tc. This is used instead of outputting termcap codes
to the terminal. When the transformation is in operation the shell function is passed the
termcap code that would be output as its first argument; if the operation required a nu-
meric argument, that is passed as a second argument. The function should set the shell
variable REPLY to the transformed termcap code. Typically this is used to produce some
simply formatted version of the code and optional argument for debugging or testing.
Note that this transformation is not applied to other non−printing characters such as car-
riage returns and newlines.

widget [ −n num ] [ −Nw ] [ −K keymap ] args ...
Invoke the specified widget. This can only be done when ZLE is active; normally this
will be within a user−defined widget.

With the options −n and −N, the current numeric argument will be saved and then re-
stored after the call to widget; ‘−n num’ sets the numeric argument temporarily to num,
while ‘−N’ sets it to the default, i.e. as if there were none.

With the option −K, keymap will be used as the current keymap during the execution of
the widget. The previous keymap will be restored when the widget exits.

Normally, calling a widget in this way does not set the special parameter WIDGET and
related parameters, so that the environment appears as if the top−level widget called by
the user were still active. With the option −w, WIDGET and related parameters are set
to reflect the widget being executed by the zle call.

Any further arguments will be passed to the widget; note that as standard argument han-
dling is performed, any general argument list should be preceded by −−. If it is a shell
function, these are passed down as positional parameters; for builtin widgets it is up to
the widget in question what it does with them. Currently arguments are only handled by
the incremental−search commands, the history−search−forward and −backward and
the corresponding functions prefixed by vi−, and by universal−argument. No error is
flagged if the command does not use the arguments, or only uses some of them.

The return status reflects the success or failure of the operation carried out by the widget,
or if it is a user−defined widget the return status of the shell function.

A non−zero return status causes the shell to beep when the widget exits, unless the BEEP
options was unset or the widget was called via the zle command. Thus if a user defined
widget requires an immediate beep, it should call the beep widget directly.

WIDGETS
All actions in the editor are performed by ‘widgets’. A widget’s job is simply to perform some small ac-
tion. The ZLE commands that key sequences in keymaps are bound to are in fact widgets. Widgets can be
user−defined or built in.

The standard widgets built into ZLE are listed in Standard Widgets below. Other built−in widgets can be
defined by other modules (see zshmodules(1)). Each built−in widget has two names: its normal canonical
name, and the same name preceded by a ‘.’. The ‘.’ name is special: it can’t be rebound to a different wid-
get. This makes the widget available even when its usual name has been redefined.

User−defined widgets are defined using ‘zle −N’, and implemented as shell functions. When the widget is
executed, the corresponding shell function is executed, and can perform editing (or other) actions. It is rec-
ommended that user−defined widgets should not have names starting with ‘.’.

zsh 5.8 February 14, 2020 9



ZSHZLE(1) General Commands Manual ZSHZLE(1)

USER−DEFINED WIDGETS
User−defined widgets, being implemented as shell functions, can execute any normal shell command. They
can also run other widgets (whether built−in or user−defined) using the zle builtin command. The standard
input of the function is redirected from /dev/null to prevent external commands from unintentionally block-
ing ZLE by reading from the terminal, but read −k or read −q can be used to read characters. Finally, they
can examine and edit the ZLE buffer being edited by reading and setting the special parameters described
below.

These special parameters are always available in widget functions, but are not in any way special outside
ZLE. If they hav e some normal value outside ZLE, that value is temporarily inaccessible, but will return
when the widget function exits. These special parameters in fact have local scope, like parameters created
in a function using local.

Inside completion widgets and traps called while ZLE is active, these parameters are available read−only.

Note that the parameters appear as local to any ZLE widget in which they appear. Hence if it is desired to
override them this needs to be done within a nested function:

widget−function() {
# $WIDGET here refers to the special variable
# that is local inside widget−function
() {

# This anonymous nested function allows WIDGET
# to be used as a local variable. The −h
# removes the special status of the variable.
local −h WIDGET

}
}

BUFFER (scalar)
The entire contents of the edit buffer. If it is written to, the cursor remains at the same offset, un-
less that would put it outside the buffer.

BUFFERLINES (integer)
The number of screen lines needed for the edit buffer currently displayed on screen (i.e. without
any changes to the preceding parameters done after the last redisplay); read−only.

CONTEXT (scalar)
The context in which zle was called to read a line; read−only. One of the values:

start The start of a command line (at prompt PS1).

cont A continuation to a command line (at prompt PS2).

select In a select loop (at prompt PS3).

vared Editing a variable in vared.

CURSOR (integer)
The offset of the cursor, within the edit buffer. This is in the range 0 to $#BUFFER, and is by
definition equal to $#LBUFFER. Attempts to move the cursor outside the buffer will result in the
cursor being moved to the appropriate end of the buffer.

CUTBUFFER (scalar)
The last item cut using one of the ‘kill−’ commands; the string which the next yank would insert
in the line. Later entries in the kill ring are in the array killring. Note that the command ‘zle
copy−region−as−kill string’ can be used to set the text of the cut buffer from a shell function and
cycle the kill ring in the same way as interactively killing text.

HISTNO (integer)
The current history number. Setting this has the same effect as moving up or down in the history
to the corresponding history line. An attempt to set it is ignored if the line is not stored in the his-
tory. Note this is not the same as the parameter HISTCMD, which always gives the number of

zsh 5.8 February 14, 2020 10



ZSHZLE(1) General Commands Manual ZSHZLE(1)

the history line being added to the main shell’s history. HISTNO refers to the line being retrieved
within zle.

ISEARCHMATCH_ACTIVE (integer)
ISEARCHMATCH_START (integer)
ISEARCHMATCH_END (integer)

ISEARCHMATCH_ACTIVE indicates whether a part of the BUFFER is currently matched by
an incremental search pattern. ISEARCHMATCH_START and ISEARCHMATCH_END give
the location of the matched part and are in the same units as CURSOR. They are only valid for
reading when ISEARCHMATCH_ACTIVE is non−zero.

All parameters are read−only.

KEYMAP (scalar)
The name of the currently selected keymap; read−only.

KEYS (scalar)
The keys typed to invoke this widget, as a literal string; read−only.

KEYS_QUEUED_COUNT (integer)
The number of bytes pushed back to the input queue and therefore available for reading immedi-
ately before any I/O is done; read−only. See also PENDING; the two values are distinct.

killring (array)
The array of previously killed items, with the most recently killed first. This gives the items that
would be retrieved by a yank−pop in the same order. Note, however, that the most recently killed
item is in $CUTBUFFER; $killring shows the array of previous entries.

The default size for the kill ring is eight, however the length may be changed by normal array op-
erations. Any empty string in the kill ring is ignored by the yank−pop command, hence the size
of the array effectively sets the maximum length of the kill ring, while the number of non−zero
strings gives the current length, both as seen by the user at the command line.

LASTABORTEDSEARCH (scalar)
The last search string used by an interactive search that was aborted by the user (status 3 returned
by the search widget).

LASTSEARCH (scalar)
The last search string used by an interactive search; read−only. This is set even if the search failed
(status 0, 1 or 2 returned by the search widget), but not if it was aborted by the user.

LASTWIDGET (scalar)
The name of the last widget that was executed; read−only.

LBUFFER (scalar)
The part of the buffer that lies to the left of the cursor position. If it is assigned to, only that part of
the buffer is replaced, and the cursor remains between the new $LBUFFER and the old
$RBUFFER.

MARK (integer)
Like CURSOR, but for the mark. With vi−mode operators that wait for a movement command to
select a region of text, setting MARK allows the selection to extend in both directions from the
initial cursor position.

NUMERIC (integer)
The numeric argument. If no numeric argument was given, this parameter is unset. When this is
set inside a widget function, builtin widgets called with the zle builtin command will use the value
assigned. If it is unset inside a widget function, builtin widgets called behave as if no numeric ar-
gument was given.

PENDING (integer)
The number of bytes pending for input, i.e. the number of bytes which have already been typed
and can immediately be read. On systems where the shell is not able to get this information, this

zsh 5.8 February 14, 2020 11



ZSHZLE(1) General Commands Manual ZSHZLE(1)

parameter will always have a value of zero. Read−only. See also KEYS_QUEUED_COUNT;
the two values are distinct.

PREBUFFER (scalar)
In a multi−line input at the secondary prompt, this read−only parameter contains the contents of
the lines before the one the cursor is currently in.

PREDISPLAY (scalar)
Te xt to be displayed before the start of the editable text buffer. This does not have to be a com-
plete line; to display a complete line, a newline must be appended explicitly. The text is reset on
each new inv ocation (but not recursive inv ocation) of zle.

POSTDISPLAY (scalar)
Te xt to be displayed after the end of the editable text buffer. This does not have to be a complete
line; to display a complete line, a newline must be prepended explicitly. The text is reset on each
new inv ocation (but not recursive inv ocation) of zle.

RBUFFER (scalar)
The part of the buffer that lies to the right of the cursor position. If it is assigned to, only that part
of the buffer is replaced, and the cursor remains between the old $LBUFFER and the new
$RBUFFER.

REGION_ACTIVE (integer)
Indicates if the region is currently active. It can be assigned 0 or 1 to deactivate and activate the
region respectively. A value of 2 activates the region in line−wise mode with the highlighted text
extending for whole lines only; see Character Highlighting below.

region_highlight (array)
Each element of this array may be set to a string that describes highlighting for an arbitrary region
of the command line that will take effect the next time the command line is redisplayed. High-
lighting of the non−editable parts of the command line in PREDISPLAY and POSTDISPLAY
are possible, but note that the P flag is needed for character indexing to include PREDISPLAY.

Each string consists of the following parts:

• Optionally, a ‘P’ to signify that the start and end offset that follow include any string set
by the PREDISPLAY special parameter; this is needed if the predisplay string itself is to
be highlighted. Whitespace may follow the ‘P’.

• A start offset in the same units as CURSOR, terminated by whitespace.

• An end offset in the same units as CURSOR, terminated by whitespace.

• A highlight specification in the same format as used for contexts in the parameter
zle_highlight, see the section ‘Character Highlighting’ below; for example, standout or
fg=red,bold

For example,

region_highlight=("P0 20 bold")

specifies that the first twenty characters of the text including any predisplay string should be high-
lighted in bold.

Note that the effect of region_highlight is not saved and disappears as soon as the line is accepted.

The final highlighting on the command line depends on both region_highlight and zle_highlight;
see the section CHARACTER HIGHLIGHTING below for details.

registers (associative array)
The contents of each of the vi register buffers. These are typically set using vi−set−buffer fol-
lowed by a delete, change or yank command.

zsh 5.8 February 14, 2020 12



ZSHZLE(1) General Commands Manual ZSHZLE(1)

SUFFIX_ACTIVE (integer)
SUFFIX_START (integer)
SUFFIX_END (integer)

SUFFIX_ACTIVE indicates whether an auto−removable completion suffix is currently active.
SUFFIX_START and SUFFIX_END give the location of the suffix and are in the same units as
CURSOR. They are only valid for reading when SUFFIX_ACTIVE is non−zero.

All parameters are read−only.

UNDO_CHANGE_NO (integer)
A number representing the state of the undo history. The only use of this is passing as an argu-
ment to the undo widget in order to undo back to the recorded point. Read−only.

UNDO_LIMIT_NO (integer)
A number corresponding to an existing change in the undo history; compare
UNDO_CHANGE_NO. If this is set to a value greater than zero, the undo command will not al-
low the line to be undone beyond the given change number. It is still possible to use ‘zle undo
change’ in a widget to undo beyond that point; in that case, it will not be possible to undo at all
until UNDO_LIMIT_NO is reduced. Set to 0 to disable the limit.

A typical use of this variable in a widget function is as follows (note the additional function scope
is required):

() {
local UNDO_LIMIT_NO=$UNDO_CHANGE_NO
# Perform some form of recursive edit.

}

WIDGET (scalar)
The name of the widget currently being executed; read−only.

WIDGETFUNC (scalar)
The name of the shell function that implements a widget defined with either zle −N or zle −C. In
the former case, this is the second argument to the zle −N command that defined the widget, or the
first argument if there was no second argument. In the latter case this is the third argument to the
zle −C command that defined the widget. Read−only.

WIDGETSTYLE (scalar)
Describes the implementation behind the completion widget currently being executed; the second
argument that followed zle −C when the widget was defined. This is the name of a builtin comple-
tion widget. For widgets defined with zle −N this is set to the empty string. Read−only.

YANK_ACTIVE (integer)
YANK_START (integer)
YANK_END (integer)

YANK_ACTIVE indicates whether text has just been yanked (pasted) into the buffer.
YANK_START and YANK_END give the location of the pasted text and are in the same units as
CURSOR. They are only valid for reading when YANK_ACTIVE is non−zero. They can also
be assigned by widgets that insert text in a yank−like fashion, for example wrappers of brack-
eted−paste. See also zle −f.

YANK_ACTIVE is read−only.

ZLE_RECURSIVE (integer)
Usually zero, but incremented inside any instance of recursive−edit. Hence indicates the current
recursion level.

ZLE_RECURSIVE is read−only.

ZLE_STATE (scalar)
Contains a set of space−separated words that describe the current zle state.

Currently, the states shown are the insert mode as set by the overwrite−mode or vi−replace

zsh 5.8 February 14, 2020 13



ZSHZLE(1) General Commands Manual ZSHZLE(1)

widgets and whether history commands will visit imported entries as controlled by the set−lo-
cal−history widget. The string contains ‘insert’ if characters to be inserted on the command line
move existing characters to the right or ‘overwrite’ if characters to be inserted overwrite existing
characters. It contains ‘localhistory’ if only local history commands will be visited or ‘globalhis-
tory’ if imported history commands will also be visited.

The substrings are sorted in alphabetical order so that if you want to test for two specific sub-
strings in a future−proof way, you can do match by doing:

if [[ $ZLE_STATE == *globalhistory*insert* ]]; then ...; fi

Special Widgets
There are a few user−defined widgets which are special to the shell. If they do not exist, no special action
is taken. The environment provided is identical to that for any other editing widget.

zle−isearch−exit
Executed at the end of incremental search at the point where the isearch prompt is removed from
the display. See zle−isearch−update for an example.

zle−isearch−update
Executed within incremental search when the display is about to be redrawn. Additional output
below the incremental search prompt can be generated by using ‘zle −M’ within the widget. For
example,

zle−isearch−update() { zle −M "Line $HISTNO"; }
zle −N zle−isearch−update

Note the line output by ‘zle −M’ is not deleted on exit from incremental search. This can be done
from a zle−isearch−exit widget:

zle−isearch−exit() { zle −M ""; }
zle −N zle−isearch−exit

zle−line−pre−redraw
Executed whenever the input line is about to be redrawn, providing an opportunity to update the
region_highlight array.

zle−line−init
Executed every time the line editor is started to read a new line of input. The following example
puts the line editor into vi command mode when it starts up.

zle−line−init() { zle −K vicmd; }
zle −N zle−line−init

(The command inside the function sets the keymap directly; it is equivalent to zle vi−cmd−mode.)

zle−line−finish
This is similar to zle−line−init but is executed every time the line editor has finished reading a line
of input.

zle−history−line−set
Executed when the history line changes.

zle−keymap−select
Executed every time the keymap changes, i.e. the special parameter KEYMAP is set to a different
value, while the line editor is active. Initialising the keymap when the line editor starts does not
cause the widget to be called.

The value $KEYMAP within the function reflects the new keymap. The old keymap is passed as
the sole argument.

This can be used for detecting switches between the vi command (vicmd) and insert (usually
main) keymaps.

zsh 5.8 February 14, 2020 14



ZSHZLE(1) General Commands Manual ZSHZLE(1)

STANDARD WIDGETS
The following is a list of all the standard widgets, and their default bindings in emacs mode, vi command
mode and vi insert mode (the ‘emacs’, ‘vicmd’ and ‘viins’ keymaps, respectively).

Note that cursor keys are bound to movement keys in all three keymaps; the shell assumes that the cursor
keys send the key sequences reported by the terminal−handling library (termcap or terminfo). The key se-
quences shown in the list are those based on the VT100, common on many modern terminals, but in fact
these are not necessarily bound. In the case of the viins keymap, the initial escape character of the se-
quences serves also to return to the vicmd keymap: whether this happens is determined by the KEYTIME-
OUT parameter, see zshparam(1).

Movement
vi−backward−blank−word (unbound) (B) (unbound)

Move backward one word, where a word is defined as a series of non−blank characters.

vi−backward−blank−word−end (unbound) (gE) (unbound)
Move to the end of the previous word, where a word is defined as a series of non−blank characters.

backward−char (ˆB ESC−[D) (unbound) (unbound)
Move backward one character.

vi−backward−char (unbound) (ˆH h ˆ?) (ESC−[D)
Move backward one character, without changing lines.

backward−word (ESC−B ESC−b) (unbound) (unbound)
Move to the beginning of the previous word.

emacs−backward−word
Move to the beginning of the previous word.

vi−backward−word (unbound) (b) (unbound)
Move to the beginning of the previous word, vi−style.

vi−backward−word−end (unbound) (ge) (unbound)
Move to the end of the previous word, vi−style.

beginning−of−line (ˆA) (unbound) (unbound)
Move to the beginning of the line. If already at the beginning of the line, move to the beginning of
the previous line, if any.

vi−beginning−of−line
Move to the beginning of the line, without changing lines.

down−line (unbound) (unbound) (unbound)
Move down a line in the buffer.

end−of−line (ˆE) (unbound) (unbound)
Move to the end of the line. If already at the end of the line, move to the end of the next line, if
any.

vi−end−of−line (unbound) ($) (unbound)
Move to the end of the line. If an argument is given to this command, the cursor will be moved to
the end of the line (argument − 1) lines down.

vi−forward−blank−word (unbound) (W) (unbound)
Move forward one word, where a word is defined as a series of non−blank characters.

vi−forward−blank−word−end (unbound) (E) (unbound)
Move to the end of the current word, or, if at the end of the current word, to the end of the next
word, where a word is defined as a series of non−blank characters.

forward−char (ˆF ESC−[C) (unbound) (unbound)
Move forward one character.

zsh 5.8 February 14, 2020 15



ZSHZLE(1) General Commands Manual ZSHZLE(1)

vi−forward−char (unbound) (space l) (ESC−[C)
Move forward one character.

vi−find−next−char (ˆXˆF) (f) (unbound)
Read a character from the keyboard, and move to the next occurrence of it in the line.

vi−find−next−char−skip (unbound) (t) (unbound)
Read a character from the keyboard, and move to the position just before the next occurrence of it
in the line.

vi−find−prev−char (unbound) (F) (unbound)
Read a character from the keyboard, and move to the previous occurrence of it in the line.

vi−find−prev−char−skip (unbound) (T) (unbound)
Read a character from the keyboard, and move to the position just after the previous occurrence of
it in the line.

vi−first−non−blank (unbound) (ˆ) (unbound)
Move to the first non−blank character in the line.

vi−forward−word (unbound) (w) (unbound)
Move forward one word, vi−style.

forward−word (ESC−F ESC−f) (unbound) (unbound)
Move to the beginning of the next word. The editor’s idea of a word is specified with the WORD-
CHARS parameter.

emacs−forward−word
Move to the end of the next word.

vi−forward−word−end (unbound) (e) (unbound)
Move to the end of the next word.

vi−goto−column (ESC−|) (|) (unbound)
Move to the column specified by the numeric argument.

vi−goto−mark (unbound) (‘) (unbound)
Move to the specified mark.

vi−goto−mark−line (unbound) (’) (unbound)
Move to beginning of the line containing the specified mark.

vi−repeat−find (unbound) (;) (unbound)
Repeat the last vi−find command.

vi−rev−repeat−find (unbound) (,) (unbound)
Repeat the last vi−find command in the opposite direction.

up−line (unbound) (unbound) (unbound)
Move up a line in the buffer.

History Control
beginning−of−buffer−or−history (ESC−<) (gg) (unbound)

Move to the beginning of the buffer, or if already there, move to the first event in the history list.

beginning−of−line−hist
Move to the beginning of the line. If already at the beginning of the buffer, move to the previous
history line.

beginning−of−history
Move to the first event in the history list.

down−line−or−history (ˆN ESC−[B) (j) (ESC−[B)
Move down a line in the buffer, or if already at the bottom line, move to the next event in the his-
tory list.

zsh 5.8 February 14, 2020 16



ZSHZLE(1) General Commands Manual ZSHZLE(1)

vi−down−line−or−history (unbound) (+) (unbound)
Move down a line in the buffer, or if already at the bottom line, move to the next event in the his-
tory list. Then move to the first non−blank character on the line.

down−line−or−search
Move down a line in the buffer, or if already at the bottom line, search forward in the history for a
line beginning with the first word in the buffer.

If called from a function by the zle command with arguments, the first argument is taken as the
string for which to search, rather than the first word in the buffer.

down−history (unbound) (ˆN) (unbound)
Move to the next event in the history list.

history−beginning−search−backward
Search backward in the history for a line beginning with the current line up to the cursor. This
leaves the cursor in its original position.

end−of−buffer−or−history (ESC−>) (unbound) (unbound)
Move to the end of the buffer, or if already there, move to the last event in the history list.

end−of−line−hist
Move to the end of the line. If already at the end of the buffer, move to the next history line.

end−of−history
Move to the last event in the history list.

vi−fetch−history (unbound) (G) (unbound)
Fetch the history line specified by the numeric argument. This defaults to the current history line
(i.e. the one that isn’t history yet).

history−incremental−search−backward (ˆR ˆXr) (unbound) (unbound)
Search backward incrementally for a specified string. The search is case−insensitive if the search
string does not have uppercase letters and no numeric argument was given. The string may begin
with ‘ˆ’ to anchor the search to the beginning of the line. When called from a user−defined func-
tion returns the following statuses: 0, if the search succeeded; 1, if the search failed; 2, if the
search term was a bad pattern; 3, if the search was aborted by the send−break command.

A restricted set of editing functions is available in the mini−buffer. Keys are looked up in the spe-
cial isearch keymap, and if not found there in the main keymap (note that by default the isearch
keymap is empty). An interrupt signal, as defined by the stty setting, will stop the search and go
back to the original line. An undefined key will have the same effect. Note that the following al-
ways perform the same task within incremental searches and cannot be replaced by user defined
widgets, nor can the set of functions be extended. The supported functions are:

accept−and−hold
accept−and−infer−next−history
accept−line
accept−line−and−down−history

Perform the usual function after exiting incremental search. The command line displayed
is executed.

backward−delete−char
vi−backward−delete−char

Back up one place in the search history. If the search has been repeated this does not im-
mediately erase a character in the minibuffer.

accept−search
Exit incremental search, retaining the command line but performing no further action.
Note that this function is not bound by default and has no effect outside incremental
search.

zsh 5.8 February 14, 2020 17



ZSHZLE(1) General Commands Manual ZSHZLE(1)

backward−delete−word
backward−kill−word
vi−backward−kill−word

Back up one character in the minibuffer; if multiple searches have been performed since
the character was inserted the search history is rewound to the point just before the char-
acter was entered. Hence this has the effect of repeating backward−delete−char.

clear−screen
Clear the screen, remaining in incremental search mode.

history−incremental−search−backward
Find the next occurrence of the contents of the mini−buffer. If the mini−buffer is empty,
the most recent previously used search string is reinstated.

history−incremental−search−forward
Invert the sense of the search.

magic−space
Inserts a non−magical space.

quoted−insert
vi−quoted−insert

Quote the character to insert into the minibuffer.

redisplay
Redisplay the command line, remaining in incremental search mode.

vi−cmd−mode
Select the ‘vicmd’ keymap; the ‘main’ keymap (insert mode) will be selected initially.

In addition, the modifications that were made while in vi insert mode are merged to form
a single undo event.

vi−repeat−search
vi−rev−repeat−search

Repeat the search. The direction of the search is indicated in the mini−buffer.

Any character that is not bound to one of the above functions, or self−insert or self−insert−un-
meta, will cause the mode to be exited. The character is then looked up and executed in the
keymap in effect at that point.

When called from a widget function by the zle command, the incremental search commands can
take a string argument. This will be treated as a string of keys, as for arguments to the bindkey
command, and used as initial input for the command. Any characters in the string which are un-
used by the incremental search will be silently ignored. For example,

zle history−incremental−search−backward forceps

will search backwards for forceps, leaving the minibuffer containing the string ‘forceps’.

history−incremental−search−forward (ˆS ˆXs) (unbound) (unbound)
Search forward incrementally for a specified string. The search is case−insensitive if the search
string does not have uppercase letters and no numeric argument was given. The string may begin
with ‘ˆ’ to anchor the search to the beginning of the line. The functions available in the mini−buf-
fer are the same as for history−incremental−search−backward.

history−incremental−pattern−search−backward
history−incremental−pattern−search−forward

These widgets behave similarly to the corresponding widgets with no −pattern, but the search
string typed by the user is treated as a pattern, respecting the current settings of the various options
affecting pattern matching. See FILENAME GENERATION in zshexpn(1) for a description of
patterns. If no numeric argument was given lowercase letters in the search string may match up-
percase letters in the history. The string may begin with ‘ˆ’ to anchor the search to the beginning

zsh 5.8 February 14, 2020 18



ZSHZLE(1) General Commands Manual ZSHZLE(1)

of the line.

The prompt changes to indicate an invalid pattern; this may simply indicate the pattern is not yet
complete.

Note that only non−overlapping matches are reported, so an expression with wildcards may return
fewer matches on a line than are visible by inspection.

history−search−backward (ESC−P ESC−p) (unbound) (unbound)
Search backward in the history for a line beginning with the first word in the buffer.

If called from a function by the zle command with arguments, the first argument is taken as the
string for which to search, rather than the first word in the buffer.

vi−history−search−backward (unbound) (/) (unbound)
Search backward in the history for a specified string. The string may begin with ‘ˆ’ to anchor the
search to the beginning of the line.

A restricted set of editing functions is available in the mini−buffer. An interrupt signal, as defined
by the stty setting, will stop the search. The functions available in the mini−buffer are: ac-
cept−line, backward−delete−char, vi−backward−delete−char, backward−kill−word,
vi−backward−kill−word, clear−screen, redisplay, quoted−insert and vi−quoted−insert.

vi−cmd−mode is treated the same as accept−line, and magic−space is treated as a space. Any
other character that is not bound to self−insert or self−insert−unmeta will beep and be ignored. If
the function is called from vi command mode, the bindings of the current insert mode will be used.

If called from a function by the zle command with arguments, the first argument is taken as the
string for which to search, rather than the first word in the buffer.

history−search−forward (ESC−N ESC−n) (unbound) (unbound)
Search forward in the history for a line beginning with the first word in the buffer.

If called from a function by the zle command with arguments, the first argument is taken as the
string for which to search, rather than the first word in the buffer.

vi−history−search−forward (unbound) (?) (unbound)
Search forward in the history for a specified string. The string may begin with ‘ˆ’ to anchor the
search to the beginning of the line. The functions available in the mini−buffer are the same as for
vi−history−search−backward. Argument handling is also the same as for that command.

infer−next−history (ˆXˆN) (unbound) (unbound)
Search in the history list for a line matching the current one and fetch the event following it.

insert−last−word (ESC−_ ESC−.) (unbound) (unbound)
Insert the last word from the previous history event at the cursor position. If a positive numeric ar-
gument is given, insert that word from the end of the previous history event. If the argument is
zero or negative insert that word from the left (zero inserts the previous command word). Repeat-
ing this command replaces the word just inserted with the last word from the history event prior to
the one just used; numeric arguments can be used in the same way to pick a word from that event.

When called from a shell function invoked from a user−defined widget, the command can take one
to three arguments. The first argument specifies a history offset which applies to successive calls
to this widget: if it is −1, the default behaviour is used, while if it is 1, successive calls will move
forwards through the history. The value 0 can be used to indicate that the history line examined by
the previous execution of the command will be reexamined. Note that negative numbers should be
preceded by a ‘−−’ argument to avoid confusing them with options.

If two arguments are given, the second specifies the word on the command line in normal array in-
dex notation (as a more natural alternative to the numeric argument). Hence 1 is the first word,
and −1 (the default) is the last word.

If a third argument is given, its value is ignored, but it is used to signify that the history offset is
relative to the current history line, rather than the one remembered after the previous invocations

zsh 5.8 February 14, 2020 19



ZSHZLE(1) General Commands Manual ZSHZLE(1)

of insert−last−word.

For example, the default behaviour of the command corresponds to

zle insert−last−word −− −1 −1

while the command

zle insert−last−word −− −1 1 −

always copies the first word of the line in the history immediately before the line being edited.
This has the side effect that later invocations of the widget will be relative to that line.

vi−repeat−search (unbound) (n) (unbound)
Repeat the last vi history search.

vi−rev−repeat−search (unbound) (N) (unbound)
Repeat the last vi history search, but in reverse.

up−line−or−history (ˆP ESC−[A) (k) (ESC−[A)
Move up a line in the buffer, or if already at the top line, move to the previous event in the history
list.

vi−up−line−or−history (unbound) (−) (unbound)
Move up a line in the buffer, or if already at the top line, move to the previous event in the history
list. Then move to the first non−blank character on the line.

up−line−or−search
Move up a line in the buffer, or if already at the top line, search backward in the history for a line
beginning with the first word in the buffer.

If called from a function by the zle command with arguments, the first argument is taken as the
string for which to search, rather than the first word in the buffer.

up−history (unbound) (ˆP) (unbound)
Move to the previous event in the history list.

history−beginning−search−forward
Search forward in the history for a line beginning with the current line up to the cursor. This
leaves the cursor in its original position.

set−local−history
By default, history movement commands visit the imported lines as well as the local lines. This
widget lets you toggle this on and off, or set it with the numeric argument. Zero for both local and
imported lines and nonzero for only local lines.

Modifying Text
vi−add−eol (unbound) (A) (unbound)

Move to the end of the line and enter insert mode.

vi−add−next (unbound) (a) (unbound)
Enter insert mode after the current cursor position, without changing lines.

backward−delete−char (ˆH ˆ?) (unbound) (unbound)
Delete the character behind the cursor.

vi−backward−delete−char (unbound) (X) (ˆH)
Delete the character behind the cursor, without changing lines. If in insert mode, this won’t delete
past the point where insert mode was last entered.

backward−delete−word
Delete the word behind the cursor.

backward−kill−line
Kill from the beginning of the line to the cursor position.

zsh 5.8 February 14, 2020 20



ZSHZLE(1) General Commands Manual ZSHZLE(1)

backward−kill−word (ˆW ESC−ˆH ESC−ˆ?) (unbound) (unbound)
Kill the word behind the cursor.

vi−backward−kill−word (unbound) (unbound) (ˆW)
Kill the word behind the cursor, without going past the point where insert mode was last entered.

capitalize−word (ESC−C ESC−c) (unbound) (unbound)
Capitalize the current word and move past it.

vi−change (unbound) (c) (unbound)
Read a movement command from the keyboard, and kill from the cursor position to the endpoint
of the movement. Then enter insert mode. If the command is vi−change, change the current line.

For compatibility with vi, if the command is vi−forward−word or vi−forward−blank−word, the
whitespace after the word is not included. If you prefer the more consistent behaviour with the
whitespace included use the following key binding:

bindkey −a −s cw dwi

vi−change−eol (unbound) (C) (unbound)
Kill to the end of the line and enter insert mode.

vi−change−whole−line (unbound) (S) (unbound)
Kill the current line and enter insert mode.

copy−region−as−kill (ESC−W ESC−w) (unbound) (unbound)
Copy the area from the cursor to the mark to the kill buffer.

If called from a ZLE widget function in the form ‘zle copy−region−as−kill string’ then string will
be taken as the text to copy to the kill buffer. The cursor, the mark and the text on the command
line are not used in this case.

copy−prev−word (ESC−ˆ_) (unbound) (unbound)
Duplicate the word to the left of the cursor.

copy−prev−shell−word
Like copy−prev−word, but the word is found by using shell parsing, whereas copy−prev−word
looks for blanks. This makes a difference when the word is quoted and contains spaces.

vi−delete (unbound) (d) (unbound)
Read a movement command from the keyboard, and kill from the cursor position to the endpoint
of the movement. If the command is vi−delete, kill the current line.

delete−char
Delete the character under the cursor.

vi−delete−char (unbound) (x) (unbound)
Delete the character under the cursor, without going past the end of the line.

delete−word
Delete the current word.

down−case−word (ESC−L ESC−l) (unbound) (unbound)
Convert the current word to all lowercase and move past it.

vi−down−case (unbound) (gu) (unbound)
Read a movement command from the keyboard, and convert all characters from the cursor position
to the endpoint of the movement to lowercase. If the movement command is vi−down−case, swap
the case of all characters on the current line.

kill−word (ESC−D ESC−d) (unbound) (unbound)
Kill the current word.

gosmacs−transpose−chars
Exchange the two characters behind the cursor.

zsh 5.8 February 14, 2020 21



ZSHZLE(1) General Commands Manual ZSHZLE(1)

vi−indent (unbound) (>) (unbound)
Indent a number of lines.

vi−insert (unbound) (i) (unbound)
Enter insert mode.

vi−insert−bol (unbound) (I) (unbound)
Move to the first non−blank character on the line and enter insert mode.

vi−join (ˆXˆJ) (J) (unbound)
Join the current line with the next one.

kill−line (ˆK) (unbound) (unbound)
Kill from the cursor to the end of the line. If already on the end of the line, kill the newline char-
acter.

vi−kill−line (unbound) (unbound) (ˆU)
Kill from the cursor back to wherever insert mode was last entered.

vi−kill−eol (unbound) (D) (unbound)
Kill from the cursor to the end of the line.

kill−region
Kill from the cursor to the mark.

kill−buffer (ˆXˆK) (unbound) (unbound)
Kill the entire buffer.

kill−whole−line (ˆU) (unbound) (unbound)
Kill the current line.

vi−match−bracket (ˆXˆB) (%) (unbound)
Move to the bracket character (one of {}, () or []) that matches the one under the cursor. If the cur-
sor is not on a bracket character, move forward without going past the end of the line to find one,
and then go to the matching bracket.

vi−open−line−above (unbound) (O) (unbound)
Open a line above the cursor and enter insert mode.

vi−open−line−below (unbound) (o) (unbound)
Open a line below the cursor and enter insert mode.

vi−oper−swap−case (unbound) (g˜) (unbound)
Read a movement command from the keyboard, and swap the case of all characters from the cur-
sor position to the endpoint of the movement. If the movement command is vi−oper−swap−case,
swap the case of all characters on the current line.

overwrite−mode (ˆXˆO) (unbound) (unbound)
Toggle between overwrite mode and insert mode.

vi−put−before (unbound) (P) (unbound)
Insert the contents of the kill buffer before the cursor. If the kill buffer contains a sequence of
lines (as opposed to characters), paste it above the current line.

vi−put−after (unbound) (p) (unbound)
Insert the contents of the kill buffer after the cursor. If the kill buffer contains a sequence of lines
(as opposed to characters), paste it below the current line.

put−replace−selection (unbound) (unbound) (unbound)
Replace the contents of the current region or selection with the contents of the kill buffer. If the
kill buffer contains a sequence of lines (as opposed to characters), the current line will be split by
the pasted lines.

zsh 5.8 February 14, 2020 22



ZSHZLE(1) General Commands Manual ZSHZLE(1)

quoted−insert (ˆV) (unbound) (unbound)
Insert the next character typed into the buffer literally. An interrupt character will not be inserted.

vi−quoted−insert (unbound) (unbound) (ˆQ ˆV)
Display a ‘ˆ’ at the cursor position, and insert the next character typed into the buffer literally. An
interrupt character will not be inserted.

quote−line (ESC−’) (unbound) (unbound)
Quote the current line; that is, put a ‘’’ character at the beginning and the end, and convert all ‘’’
characters to ‘’\’’’.

quote−region (ESC−") (unbound) (unbound)
Quote the region from the cursor to the mark.

vi−replace (unbound) (R) (unbound)
Enter overwrite mode.

vi−repeat−change (unbound) (.) (unbound)
Repeat the last vi mode text modification. If a count was used with the modification, it is remem-
bered. If a count is given to this command, it overrides the remembered count, and is remembered
for future uses of this command. The cut buffer specification is similarly remembered.

vi−replace−chars (unbound) (r) (unbound)
Replace the character under the cursor with a character read from the keyboard.

self−insert (printable characters) (unbound) (printable characters and some control characters)
Insert a character into the buffer at the cursor position.

self−insert−unmeta (ESC−ˆI ESC−ˆJ ESC−ˆM) (unbound) (unbound)
Insert a character into the buffer after stripping the meta bit and converting ˆM to ˆJ.

vi−substitute (unbound) (s) (unbound)
Substitute the next character(s).

vi−swap−case (unbound) (˜) (unbound)
Swap the case of the character under the cursor and move past it.

transpose−chars (ˆT) (unbound) (unbound)
Exchange the two characters to the left of the cursor if at end of line, else exchange the character
under the cursor with the character to the left.

transpose−words (ESC−T ESC−t) (unbound) (unbound)
Exchange the current word with the one before it.

With a positive numeric argument N, the word around the cursor, or following it if the cursor is be-
tween words, is transposed with the preceding N words. The cursor is put at the end of the result-
ing group of words.

With a negative numeric argument −N, the effect is the same as using a positive argument N ex-
cept that the original cursor position is retained, regardless of how the words are rearranged.

vi−unindent (unbound) (<) (unbound)
Unindent a number of lines.

vi−up−case (unbound) (gU) (unbound)
Read a movement command from the keyboard, and convert all characters from the cursor position
to the endpoint of the movement to lowercase. If the movement command is vi−up−case, swap
the case of all characters on the current line.

up−case−word (ESC−U ESC−u) (unbound) (unbound)
Convert the current word to all caps and move past it.

yank (ˆY) (unbound) (unbound)
Insert the contents of the kill buffer at the cursor position.

zsh 5.8 February 14, 2020 23



ZSHZLE(1) General Commands Manual ZSHZLE(1)

yank−pop (ESC−y) (unbound) (unbound)
Remove the text just yanked, rotate the kill−ring (the history of previously killed text) and yank
the new top. Only works following yank, vi−put−before, vi−put−after or yank−pop.

vi−yank (unbound) (y) (unbound)
Read a movement command from the keyboard, and copy the region from the cursor position to
the endpoint of the movement into the kill buffer. If the command is vi−yank, copy the current
line.

vi−yank−whole−line (unbound) (Y) (unbound)
Copy the current line into the kill buffer.

vi−yank−eol
Copy the region from the cursor position to the end of the line into the kill buffer. Arguably, this
is what Y should do in vi, but it isn’t what it actually does.

Arguments
digit−argument (ESC−0..ESC−9) (1−9) (unbound)

Start a new numeric argument, or add to the current one. See also vi−digit−or−begin-
ning−of−line. This only works if bound to a key sequence ending in a decimal digit.

Inside a widget function, a call to this function treats the last key of the key sequence which called
the widget as the digit.

neg−argument (ESC−−) (unbound) (unbound)
Changes the sign of the following argument.

universal−argument
Multiply the argument of the next command by 4. Alternatively, if this command is followed by
an integer (positive or neg ative), use that as the argument for the next command. Thus digits can-
not be repeated using this command. For example, if this command occurs twice, followed imme-
diately by forward−char, move forward sixteen spaces; if instead it is followed by −2, then for-
ward−char, move backward two spaces.

Inside a widget function, if passed an argument, i.e. ‘zle universal−argument num’, the numeric
argument will be set to num; this is equivalent to ‘NUMERIC=num’.

argument−base
Use the existing numeric argument as a numeric base, which must be in the range 2 to 36 inclu-
sive. Subsequent use of digit−argument and universal−argument will input a new numeric ar-
gument in the given base. The usual hexadecimal convention is used: the letter a or A corresponds
to 10, and so on. Arguments in bases requiring digits from 10 upwards are more conveniently in-
put with universal−argument, since ESC−a etc. are not usually bound to digit−argument.

The function can be used with a command argument inside a user−defined widget. The following
code sets the base to 16 and lets the user input a hexadecimal argument until a key out of the digit
range is typed:

zle argument−base 16
zle universal−argument

Completion
accept−and−menu−complete

In a menu completion, insert the current completion into the buffer, and advance to the next possi-
ble completion.

complete−word
Attempt completion on the current word.

delete−char−or−list (ˆD) (unbound) (unbound)
Delete the character under the cursor. If the cursor is at the end of the line, list possible comple-
tions for the current word.

zsh 5.8 February 14, 2020 24



ZSHZLE(1) General Commands Manual ZSHZLE(1)

expand−cmd−path
Expand the current command to its full pathname.

expand−or−complete (TAB) (unbound) (TAB)
Attempt shell expansion on the current word. If that fails, attempt completion.

expand−or−complete−prefix
Attempt shell expansion on the current word up to cursor.

expand−history (ESC−space ESC−!) (unbound) (unbound)
Perform history expansion on the edit buffer.

expand−word (ˆX*) (unbound) (unbound)
Attempt shell expansion on the current word.

list−choices (ESC−ˆD) (ˆD =) (ˆD)
List possible completions for the current word.

list−expand (ˆXg ˆXG) (ˆG) (ˆG)
List the expansion of the current word.

magic−space
Perform history expansion and insert a space into the buffer. This is intended to be bound to
space.

menu−complete
Like complete−word, except that menu completion is used. See the MENU_COMPLETE op-
tion.

menu−expand−or−complete
Like expand−or−complete, except that menu completion is used.

re verse−menu−complete
Perform menu completion, like menu−complete, except that if a menu completion is already in
progress, move to the previous completion rather than the next.

end−of−list
When a previous completion displayed a list below the prompt, this widget can be used to move
the prompt below the list.

Miscellaneous
accept−and−hold (ESC−A ESC−a) (unbound) (unbound)

Push the contents of the buffer on the buffer stack and execute it.

accept−and−infer−next−history
Execute the contents of the buffer. Then search the history list for a line matching the current one
and push the event following onto the buffer stack.

accept−line (ˆJ ˆM) (ˆJ ˆM) (ˆJ ˆM)
Finish editing the buffer. Normally this causes the buffer to be executed as a shell command.

accept−line−and−down−history (ˆO) (unbound) (unbound)
Execute the current line, and push the next history event on the buffer stack.

auto−suffix−remove
If the previous action added a suffix (space, slash, etc.) to the word on the command line, remove
it. Otherwise do nothing. Removing the suffix ends any active menu completion or menu selec-
tion.

This widget is intended to be called from user−defined widgets to enforce a desired suffix−re-
moval behavior.

auto−suffix−retain
If the previous action added a suffix (space, slash, etc.) to the word on the command line, force it
to be preserved. Otherwise do nothing. Retaining the suffix ends any active menu completion or

zsh 5.8 February 14, 2020 25



ZSHZLE(1) General Commands Manual ZSHZLE(1)

menu selection.

This widget is intended to be called from user−defined widgets to enforce a desired suffix−preser-
vation behavior.

beep Beep, unless the BEEP option is unset.

bracketed−paste
This widget is invoked when text is pasted to the terminal emulator. It is not intended to be bound
to actual keys but instead to the special sequence generated by the terminal emulator when text is
pasted.

When invoked interactively, the pasted text is inserted to the buffer and placed in the cutbuffer. If
a numeric argument is given, shell quoting will be applied to the pasted text before it is inserted.

When a named buffer is specified with vi−set−buffer ("x), the pasted text is stored in that named
buffer but not inserted.

When called from a widget function as ‘bracketed−paste name‘, the pasted text is assigned to the
variable name and no other processing is done.

See also the zle_bracketed_paste parameter.

vi−cmd−mode (ˆXˆV) (unbound) (ˆ[)
Enter command mode; that is, select the ‘vicmd’ keymap. Yes, this is bound by default in emacs
mode.

vi−caps−lock−panic
Hang until any lowercase key is pressed. This is for vi users without the mental capacity to keep
track of their caps lock key (like the author).

clear−screen (ˆL ESC−ˆL) (ˆL) (ˆL)
Clear the screen and redraw the prompt.

deactivate−region
Make the current region inactive. This disables vim−style visual selection mode if it is active.

describe−key−briefly
Reads a key sequence, then prints the function bound to that sequence.

exchange−point−and−mark (ˆXˆX) (unbound) (unbound)
Exchange the cursor position (point) with the position of the mark. Unless a negative numeric ar-
gument is given, the region between point and mark is activated so that it can be highlighted. If a
zero numeric argument is given, the region is activated but point and mark are not swapped.

execute−named−cmd (ESC−x) (:) (unbound)
Read the name of an editor command and execute it. Aliasing this widget with ‘zle −A’ or replac-
ing it with ‘zle −N’ has no effect when interpreting key bindings, but ‘zle execute−named−cmd’
will invoke such an alias or replacement.

A restricted set of editing functions is available in the mini−buffer. Keys are looked up in the spe-
cial command keymap, and if not found there in the main keymap. An interrupt signal, as defined
by the stty setting, will abort the function. Note that the following always perform the same task
within the executed−named−cmd environment and cannot be replaced by user defined widgets,
nor can the set of functions be extended. The allowed functions are: backward−delete−char,
vi−backward−delete−char, clear−screen, redisplay, quoted−insert, vi−quoted−insert, back-
ward−kill−word, vi−backward−kill−word, kill−whole−line, vi−kill−line, backward−kill−line,
list−choices, delete−char−or−list, complete−word, accept−line, expand−or−complete and ex-
pand−or−complete−prefix.

kill−region kills the last word, and vi−cmd−mode is treated the same as accept−line. The space
and tab characters, if not bound to one of these functions, will complete the name and then list the
possibilities if the AUTO_LIST option is set. Any other character that is not bound to self−insert
or self−insert−unmeta will beep and be ignored. The bindings of the current insert mode will be

zsh 5.8 February 14, 2020 26



ZSHZLE(1) General Commands Manual ZSHZLE(1)

used.

Currently this command may not be redefined or called by name.

execute−last−named−cmd (ESC−z) (unbound) (unbound)
Redo the last function executed with execute−named−cmd.

Like execute−named−cmd, this command may not be redefined, but it may be called by name.

get−line (ESC−G ESC−g) (unbound) (unbound)
Pop the top line off the buffer stack and insert it at the cursor position.

pound−insert (unbound) (#) (unbound)
If there is no # character at the beginning of the buffer, add one to the beginning of each line. If
there is one, remove a # from each line that has one. In either case, accept the current line. The
INTERACTIVE_COMMENTS option must be set for this to have any usefulness.

vi−pound−insert
If there is no # character at the beginning of the current line, add one. If there is one, remove it.
The INTERACTIVE_COMMENTS option must be set for this to have any usefulness.

push−input
Push the entire current multiline construct onto the buffer stack and return to the top−level (PS1)
prompt. If the current parser construct is only a single line, this is exactly like push−line. Next
time the editor starts up or is popped with get−line, the construct will be popped off the top of the
buffer stack and loaded into the editing buffer.

push−line (ˆQ ESC−Q ESC−q) (unbound) (unbound)
Push the current buffer onto the buffer stack and clear the buffer. Next time the editor starts up,
the buffer will be popped off the top of the buffer stack and loaded into the editing buffer.

push−line−or−edit
At the top−level (PS1) prompt, equivalent to push−line. At a secondary (PS2) prompt, move the
entire current multiline construct into the editor buffer. The latter is equivalent to push−input fol-
lowed by get−line.

read−command
Only useful from a user−defined widget. A keystroke is read just as in normal operation, but in-
stead of the command being executed the name of the command that would be executed is stored
in the shell parameter REPLY. This can be used as the argument of a future zle command. If the
key sequence is not bound, status 1 is returned; typically, howev er, REPLY is set to unde-
fined−key to indicate a useless key sequence.

recursive−edit
Only useful from a user−defined widget. At this point in the function, the editor regains control
until one of the standard widgets which would normally cause zle to exit (typically an accept−line
caused by hitting the return key) is executed. Instead, control returns to the user−defined widget.
The status returned is non−zero if the return was caused by an error, but the function still continues
executing and hence may tidy up. This makes it safe for the user−defined widget to alter the com-
mand line or key bindings temporarily.

The following widget, caps−lock, serves as an example.

self−insert−ucase() {
LBUFFER+=${(U)KEYS[−1]}

}

integer stat

zle −N self−insert self−insert−ucase
zle −A caps−lock save−caps−lock
zle −A accept−line caps−lock

zsh 5.8 February 14, 2020 27



ZSHZLE(1) General Commands Manual ZSHZLE(1)

zle recursive−edit
stat=$?

zle −A .self−insert self−insert
zle −A save−caps−lock caps−lock
zle −D save−caps−lock

(( stat )) && zle send−break

return $stat

This causes typed letters to be inserted capitalised until either accept−line (i.e. typically the return
key) is typed or the caps−lock widget is invoked again; the later is handled by saving the old defi-
nition of caps−lock as save−caps−lock and then rebinding it to invoke accept−line. Note that an
error from the recursive edit is detected as a non−zero return status and propagated by using the
send−break widget.

redisplay (unbound) (ˆR) (ˆR)
Redisplays the edit buffer.

reset−prompt (unbound) (unbound) (unbound)
Force the prompts on both the left and right of the screen to be re−expanded, then redisplay the
edit buffer. This reflects changes both to the prompt variables themselves and changes in the ex-
pansion of the values (for example, changes in time or directory, or changes to the value of vari-
ables referred to by the prompt).

Otherwise, the prompt is only expanded each time zle starts, and when the display has been inter-
rupted by output from another part of the shell (such as a job notification) which causes the com-
mand line to be reprinted.

reset−prompt doesn’t alter the special parameter LASTWIDGET.

send−break (ˆG ESC−ˆG) (unbound) (unbound)
Abort the current editor function, e.g. execute−named−command, or the editor itself, e.g. if you
are in vared. Otherwise abort the parsing of the current line; in this case the aborted line is avail-
able in the shell variable ZLE_LINE_ABORTED. If the editor is aborted from within vared, the
variable ZLE_VARED_ABORTED is set.

run−help (ESC−H ESC−h) (unbound) (unbound)
Push the buffer onto the buffer stack, and execute the command ‘run−help cmd’, where cmd is the
current command. run−help is normally aliased to man.

vi−set−buffer (unbound) (") (unbound)
Specify a buffer to be used in the following command. There are 37 buffers that can be specified:
the 26 ‘named’ buffers "a to "z, the ‘yank’ buffer "0, the nine ‘queued’ buffers "1 to "9 and the
‘black hole’ buffer "_. The named buffers can also be specified as "A to "Z.

When a buffer is specified for a cut, change or yank command, the text concerned replaces the pre-
vious contents of the specified buffer. If a named buffer is specified using a capital, the newly cut
text is appended to the buffer instead of overwriting it. When using the "_ buffer, nothing happens.
This can be useful for deleting text without affecting any buffers.

If no buffer is specified for a cut or change command, "1 is used, and the contents of "1 to "8 are
each shifted along one buffer; the contents of "9 is lost. If no buffer is specified for a yank com-
mand, "0 is used. Finally, a paste command without a specified buffer will paste the text from the
most recent command regardless of any buffer that might have been used with that command.

When called from a widget function by the zle command, the buffer can optionally be specified
with an argument. For example,

zle vi−set−buffer A

zsh 5.8 February 14, 2020 28



ZSHZLE(1) General Commands Manual ZSHZLE(1)

vi−set−mark (unbound) (m) (unbound)
Set the specified mark at the cursor position.

set−mark−command (ˆ@) (unbound) (unbound)
Set the mark at the cursor position. If called with a negative numeric argument, do not set the
mark but deactivate the region so that it is no longer highlighted (it is still usable for other pur-
poses). Otherwise the region is marked as active.

spell−word (ESC−$ ESC−S ESC−s) (unbound) (unbound)
Attempt spelling correction on the current word.

split−undo
Breaks the undo sequence at the current change. This is useful in vi mode as changes made in in-
sert mode are coalesced on entering command mode. Similarly, undo will normally revert as one
all the changes made by a user−defined widget.

undefined−key
This command is executed when a key sequence that is not bound to any command is typed. By
default it beeps.

undo (ˆ_ ˆXu ˆXˆU) (u) (unbound)
Incrementally undo the last text modification. When called from a user−defined widget, takes an
optional argument indicating a previous state of the undo history as returned by the
UNDO_CHANGE_NO variable; modifications are undone until that state is reached, subject to
any limit imposed by the UNDO_LIMIT_NO variable.

Note that when invoked from vi command mode, the full prior change made in insert mode is re-
verted, the changes having been merged when command mode was selected.

redo (unbound) (ˆR) (unbound)
Incrementally redo undone text modifications.

vi−undo−change (unbound) (unbound) (unbound)
Undo the last text modification. If repeated, redo the modification.

visual−mode (unbound) (v) (unbound)
Toggle vim−style visual selection mode. If line−wise visual mode is currently enabled then it is
changed to being character−wise. If used following an operator, it forces the subsequent movement
command to be treated as a character−wise movement.

visual−line−mode (unbound) (V) (unbound)
Toggle vim−style line−wise visual selection mode. If character−wise visual mode is currently en-
abled then it is changed to being line−wise. If used following an operator, it forces the subsequent
movement command to be treated as a line−wise movement.

what−cursor−position (ˆX=) (ga) (unbound)
Print the character under the cursor, its code as an octal, decimal and hexadecimal number, the cur-
rent cursor position within the buffer and the column of the cursor in the current line.

where−is
Read the name of an editor command and print the listing of key sequences that invoke the speci-
fied command. A restricted set of editing functions is available in the mini−buffer. Keys are
looked up in the special command keymap, and if not found there in the main keymap.

which−command (ESC−?) (unbound) (unbound)
Push the buffer onto the buffer stack, and execute the command ‘which−command cmd’. where
cmd is the current command. which−command is normally aliased to whence.

vi−digit−or−beginning−of−line (unbound) (0) (unbound)
If the last command executed was a digit as part of an argument, continue the argument. Other-
wise, execute vi−beginning−of−line.

zsh 5.8 February 14, 2020 29



ZSHZLE(1) General Commands Manual ZSHZLE(1)

Text Objects
Te xt objects are commands that can be used to select a block of text according to some criteria. They are a
feature of the vim text editor and so are primarily intended for use with vi operators or from visual selection
mode. However, they can also be used from vi−insert or emacs mode. Key bindings listed below apply to
the viopp and visual keymaps.

select−a−blank−word (aW)
Select a word including adjacent blanks, where a word is defined as a series of non−blank charac-
ters. With a numeric argument, multiple words will be selected.

select−a−shell−word (aa)
Select the current command argument applying the normal rules for quoting.

select−a−word (aw)
Select a word including adjacent blanks, using the normal vi−style word definition. With a nu-
meric argument, multiple words will be selected.

select−in−blank−word (iW)
Select a word, where a word is defined as a series of non−blank characters. With a numeric argu-
ment, multiple words will be selected.

select−in−shell−word (ia)
Select the current command argument applying the normal rules for quoting. If the argument be-
gins and ends with matching quote characters, these are not included in the selection.

select−in−word (iw)
Select a word, using the normal vi−style word definition. With a numeric argument, multiple
words will be selected.

CHARACTER HIGHLIGHTING
The line editor has the ability to highlight characters or regions of the line that have a particular signifi-
cance. This is controlled by the array parameter zle_highlight, if it has been set by the user.

If the parameter contains the single entry none all highlighting is turned off. Note the parameter is still ex-
pected to be an array.

Otherwise each entry of the array should consist of a word indicating a context for highlighting, then a
colon, then a comma−separated list of the types of highlighting to apply in that context.

The contexts available for highlighting are the following:

default Any text within the command line not affected by any other highlighting. Te xt outside the editable
area of the command line is not affected.

isearch When one of the incremental history search widgets is active, the area of the command line
matched by the search string or pattern.

region The currently selected text. In emacs terminology, this is referred to as the region and is bounded
by the cursor (point) and the mark. The region is only highlighted if it is active, which is the case
after the mark is modified with set−mark−command or exchange−point−and−mark. Note that
whether or not the region is active has no effect on its use within emacs style widgets, it simply de-
termines whether it is highlighted. In vi mode, the region corresponds to selected text in visual
mode.

special Individual characters that have no direct printable representation but are shown in a special manner
by the line editor. These characters are described below.

suffix This context is used in completion for characters that are marked as suffixes that will be removed
if the completion ends at that point, the most obvious example being a slash (/) after a directory
name. Note that suffix removal is configurable; the circumstances under which the suffix will be
removed may differ for different completions.

paste Following a command to paste text, the characters that were inserted.

When region_highlight is set, the contexts that describe a region −− isearch, region, suffix, and paste −−

zsh 5.8 February 14, 2020 30



ZSHZLE(1) General Commands Manual ZSHZLE(1)

are applied first, then region_highlight is applied, then the remaining zle_highlight contexts are applied.
If a particular character is affected by multiple specifications, the last specification wins.

zle_highlight may contain additional fields for controlling how terminal sequences to change colours are
output. Each of the following is followed by a colon and a string in the same form as for key bindings.
This will not be necessary for the vast majority of terminals as the defaults shown in parentheses are widely
used.

fg_start_code (\e[3)
The start of the escape sequence for the foreground colour. This is followed by one to three ASCII
digits representing the colour. Only used for palette colors, i.e. not 24−bit colors specified via a
color triplet.

fg_default_code (9)
The number to use instead of the colour to reset the default foreground colour.

fg_end_code (m)
The end of the escape sequence for the foreground colour.

bg_start_code (\e[4)
The start of the escape sequence for the background colour. See fg_start_code above.

bg_default_code (9)
The number to use instead of the colour to reset the default background colour.

bg_end_code (m)
The end of the escape sequence for the background colour.

The available types of highlighting are the following. Note that not all types of highlighting are available
on all terminals:

none No highlighting is applied to the given context. It is not useful for this to appear with other types
of highlighting; it is used to override a default.

fg=colour

The foreground colour should be set to colour, a decimal integer, the name of one of the eight
most widely−supported colours or as a ‘#’ followed by an RGB triplet in hexadecimal format.

Not all terminals support this and, of those that do, not all provide facilities to test the support,
hence the user should decide based on the terminal type. Most terminals support the colours
black, red, green, yellow, blue, magenta, cyan and white, which can be set by name. In addi-
tion. default may be used to set the terminal’s default foreground colour. Abbreviations are al-
lowed; b or bl selects black. Some terminals may generate additional colours if the bold attribute
is also present.

On recent terminals and on systems with an up−to−date terminal database the number of colours
supported may be tested by the command ‘echotc Co’; if this succeeds, it indicates a limit on the
number of colours which will be enforced by the line editor. The number of colours is in any case
limited to 256 (i.e. the range 0 to 255).

Some modern terminal emulators have support for 24−bit true colour (16 million colours). In this
case, the hex triplet format can be used. This consists of a ‘#’ followed by either a three or six digit
hexadecimal number describing the red, green and blue components of the colour. Hex triplets can
also be used with 88 and 256 colour terminals via the zsh/nearcolor module (see zshmodules(1)).

Colour is also known as color.

bg=colour

The background colour should be set to colour. This works similarly to the foreground colour, ex-
cept the background is not usually affected by the bold attribute.

bold The characters in the given context are shown in a bold font. Not all terminals distinguish bold
fonts.

zsh 5.8 February 14, 2020 31



ZSHZLE(1) General Commands Manual ZSHZLE(1)

standout
The characters in the given context are shown in the terminal’s standout mode. The actual effect is
specific to the terminal; on many terminals it is inverse video. On some such terminals, where the
cursor does not blink it appears with standout mode negated, making it less than clear where the
cursor actually is. On such terminals one of the other effects may be preferable for highlighting
the region and matched search string.

underline
The characters in the given context are shown underlined. Some terminals show the foreground in
a different colour instead; in this case whitespace will not be highlighted.

The characters described above as ‘special’ are as follows. The formatting described here is used irrespec-
tive of whether the characters are highlighted:

ASCII control characters
Control characters in the ASCII range are shown as ‘ˆ’ followed by the base character.

Unprintable multibyte characters
This item applies to control characters not in the ASCII range, plus other characters as follows. If
the MULTIBYTE option is in effect, multibyte characters not in the ASCII character set that are
reported as having zero width are treated as combining characters when the option COMBIN-
ING_CHARS is on. If the option is off, or if a character appears where a combining character is
not valid, the character is treated as unprintable.

Unprintable multibyte characters are shown as a hexadecimal number between angle brackets.
The number is the code point of the character in the wide character set; this may or may not be
Unicode, depending on the operating system.

Invalid multibyte characters
If the MULTIBYTE option is in effect, any sequence of one or more bytes that does not form a
valid character in the current character set is treated as a series of bytes each shown as a special
character. This case can be distinguished from other unprintable characters as the bytes are repre-
sented as two hexadecimal digits between angle brackets, as distinct from the four or eight digits
that are used for unprintable characters that are nonetheless valid in the current character set.

Not all systems support this: for it to work, the system’s representation of wide characters must be
code values from the Universal Character Set, as defined by IS0 10646 (also known as Unicode).

Wrapped double−width characters
When a double−width character appears in the final column of a line, it is instead shown on the
next line. The empty space left in the original position is highlighted as a special character.

If zle_highlight is not set or no value applies to a particular context, the defaults applied are equivalent to

zle_highlight=(region:standout special:standout
suffix:bold isearch:underline paste:standout)

i.e. both the region and special characters are shown in standout mode.

Within widgets, arbitrary regions may be highlighted by setting the special array parameter region_high-
light; see above.

zsh 5.8 February 14, 2020 32


