
ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

NAME
zshcontrib − user contributions to zsh

DESCRIPTION
The Zsh source distribution includes a number of items contributed by the user community. These are not
inherently a part of the shell, and some may not be available in every zsh installation. The most significant
of these are documented here. For documentation on other contributed items such as shell functions, look
for comments in the function source files.

UTILITIES
Accessing On−Line Help

The key sequence ESC h is normally bound by ZLE to execute the run−help widget (see zshzle(1)). This
invokes the run−help command with the command word from the current input line as its argument. By
default, run−help is an alias for the man command, so this often fails when the command word is a shell
builtin or a user−defined function. By redefining the run−help alias, one can improve the on−line help pro-
vided by the shell.

The helpfiles utility, found in the Util directory of the distribution, is a Perl program that can be used to
process the zsh manual to produce a separate help file for each shell builtin and for many other shell fea-
tures as well. The autoloadable run−help function, found in Functions/Misc, searches for these helpfiles
and performs several other tests to produce the most complete help possible for the command.

Help files are installed by default to a subdirectory of /usr/share/zsh or /usr/local/share/zsh.

To create your own help files with helpfiles, choose or create a directory where the individual command
help files will reside. For example, you might choose ˜/zsh_help. If you unpacked the zsh distribution in
your home directory, you would use the commands:

mkdir ˜/zsh_help
perl ˜/zsh−5.8/Util/helpfiles ˜/zsh_help

The HELPDIR parameter tells run−help where to look for the help files. When unset, it uses the default
installation path. To use your own set of help files, set this to the appropriate path in one of your startup
files:

HELPDIR=˜/zsh_help

To use the run−help function, you need to add lines something like the following to your .zshrc or equiva-
lent startup file:

unalias run−help
autoload run−help

Note that in order for ‘autoload run−help’ to work, the run−help file must be in one of the directories
named in your fpath array (see zshparam(1)). This should already be the case if you have a standard zsh
installation; if it is not, copy Functions/Misc/run−help to an appropriate directory.

Recompiling Functions
If you frequently edit your zsh functions, or periodically update your zsh installation to track the latest de-
velopments, you may find that function digests compiled with the zcompile builtin are frequently out of
date with respect to the function source files. This is not usually a problem, because zsh always looks for
the newest file when loading a function, but it may cause slower shell startup and function loading. Also, if
a digest file is explicitly used as an element of fpath, zsh won’t check whether any of its source files has
changed.

The zrecompile autoloadable function, found in Functions/Misc, can be used to keep function digests up
to date.

zrecompile [−qt] [name ...]
zrecompile [−qt] −p arg ... [−− arg ...]

This tries to find *.zwc files and automatically re−compile them if at least one of the original files
is newer than the compiled file. This works only if the names stored in the compiled files are full
paths or are relative to the directory that contains the .zwc file.

zsh 5.8 February 14, 2020 1

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

In the first form, each name is the name of a compiled file or a directory containing *.zwc files that
should be checked. If no arguments are given, the directories and *.zwc files in fpath are used.

When −t is given, no compilation is performed, but a return status of zero (true) is set if there are
files that need to be re−compiled and non−zero (false) otherwise. The −q option quiets the chatty
output that describes what zrecompile is doing.

Without the −t option, the return status is zero if all files that needed re−compilation could be
compiled and non−zero if compilation for at least one of the files failed.

If the −p option is given, the args are interpreted as one or more sets of arguments for zcompile,
separated by ‘−−’. For example:

zrecompile −p \
−R ˜/.zshrc −− \
−M ˜/.zcompdump −− \
˜/zsh/comp.zwc ˜/zsh/Completion/*/_*

This compiles ˜/.zshrc into ˜/.zshrc.zwc if that doesn’t exist or if it is older than ˜/.zshrc. The
compiled file will be marked for reading instead of mapping. The same is done for ˜/.zcompdump
and ˜/.zcompdump.zwc, but this compiled file is marked for mapping. The last line re−creates the
file ˜/zsh/comp.zwc if any of the files matching the given pattern is newer than it.

Without the −p option, zrecompile does not create function digests that do not already exist, nor
does it add new functions to the digest.

The following shell loop is an example of a method for creating function digests for all functions in your
fpath, assuming that you have write permission to the directories:

for ((i=1; i <= $#fpath; ++i)); do
dir=$fpath[i]
zwc=${dir:t}.zwc
if [[$dir == (.|..) || $dir == (.|..)/*]]; then
continue

fi
files=($dir/*(N−.))
if [[−w $dir:h && −n $files]]; then
files=(${${(M)files%/*/*}#/})
if (cd $dir:h &&

zrecompile −p −U −z $zwc $files); then
fpath[i]=$fpath[i].zwc

fi
fi

done

The −U and −z options are appropriate for functions in the default zsh installation fpath; you may need to
use different options for your personal function directories.

Once the digests have been created and your fpath modified to refer to them, you can keep them up to date
by running zrecompile with no arguments.

Keyboard Definition
The large number of possible combinations of keyboards, workstations, terminals, emulators, and window
systems makes it impossible for zsh to have built−in key bindings for every situation. The zkbd utility,
found in Functions/Misc, can help you quickly create key bindings for your configuration.

Run zkbd either as an autoloaded function, or as a shell script:

zsh −f ˜/zsh−5.8/Functions/Misc/zkbd

When you run zkbd, it first asks you to enter your terminal type; if the default it offers is correct, just press
return. It then asks you to press a number of different keys to determine characteristics of your keyboard
and terminal; zkbd warns you if it finds anything out of the ordinary, such as a Delete key that sends neither

zsh 5.8 February 14, 2020 2

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

ˆH nor ˆ?.

The keystrokes read by zkbd are recorded as a definition for an associative array named key, written to a
file in the subdirectory .zkbd within either your HOME or ZDOTDIR directory. The name of the file is
composed from the TERM, VENDOR and OSTYPE parameters, joined by hyphens.

You may read this file into your .zshrc or another startup file with the ‘source’ or ‘.’ commands, then refer-
ence the key parameter in bindkey commands, like this:

source ${ZDOTDIR:−$HOME}/.zkbd/$TERM−$VENDOR−$OSTYPE
[[−n ${key[Left]}]] && bindkey "${key[Left]}" backward−char
[[−n ${key[Right]}]] && bindkey "${key[Right]}" forward−char
etc.

Note that in order for ‘autoload zkbd’ to work, the zkdb file must be in one of the directories named in
your fpath array (see zshparam(1)). This should already be the case if you have a standard zsh installation;
if it is not, copy Functions/Misc/zkbd to an appropriate directory.

Dumping Shell State
Occasionally you may encounter what appears to be a bug in the shell, particularly if you are using a beta
version of zsh or a development release. Usually it is sufficient to send a description of the problem to one
of the zsh mailing lists (see zsh(1)), but sometimes one of the zsh developers will need to recreate your en-
vironment in order to track the problem down.

The script named reporter, found in the Util directory of the distribution, is provided for this purpose. (It
is also possible to autoload reporter, but reporter is not installed in fpath by default.) This script outputs
a detailed dump of the shell state, in the form of another script that can be read with ‘zsh −f’ to recreate that
state.

To use reporter, read the script into your shell with the ‘.’ command and redirect the output into a file:

. ˜/zsh−5.8/Util/reporter > zsh.report

You should check the zsh.report file for any sensitive information such as passwords and delete them by
hand before sending the script to the developers. Also, as the output can be voluminous, it’s best to wait for
the developers to ask for this information before sending it.

You can also use reporter to dump only a subset of the shell state. This is sometimes useful for creating
startup files for the first time. Most of the output from reporter is far more detailed than usually is neces-
sary for a startup file, but the aliases, options, and zstyles states may be useful because they include only
changes from the defaults. The bindings state may be useful if you have created any of your own keymaps,
because reporter arranges to dump the keymap creation commands as well as the bindings for every
keymap.

As is usual with automated tools, if you create a startup file with reporter, you should edit the results to re-
move unnecessary commands. Note that if you’re using the new completion system, you should not dump
the functions state to your startup files with reporter; use the compdump function instead (see zshcomp-

sys(1)).

reporter [state ...]
Print to standard output the indicated subset of the current shell state. The state arguments may be
one or more of:

all Output everything listed below.
aliases Output alias definitions.
bindings

Output ZLE key maps and bindings.
completion

Output old−style compctl commands. New completion is covered by functions and
zstyles.

zsh 5.8 February 14, 2020 3

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

functions
Output autoloads and function definitions.

limits Output limit commands.
options

Output setopt commands.
styles Same as zstyles.
variables

Output shell parameter assignments, plus export commands for any environment vari-
ables.

zstyles Output zstyle commands.

If the state is omitted, all is assumed.

With the exception of ‘all’, every state can be abbreviated by any prefix, even a single letter; thus a is the
same as aliases, z is the same as zstyles, etc.

Manipulating Hook Functions
add−zsh−hook [−L | −dD] [−Uzk] hook function

Several functions are special to the shell, as described in the section SPECIAL FUNCTIONS, see
zshmisc(1), in that they are automatically called at specific points during shell execution. Each has
an associated array consisting of names of functions to be called at the same point; these are
so−called ‘hook functions’. The shell function add−zsh−hook provides a simple way of adding or
removing functions from the array.

hook is one of chpwd, periodic, precmd, preexec, zshaddhistory, zshexit, or zsh_direc-
tory_name, the special functions in question. Note that zsh_directory_name is called in a differ-
ent way from the other functions, but may still be manipulated as a hook.

function is name of an ordinary shell function. If no options are given this will be added to the ar-
ray of functions to be executed in the given context. Functions are invoked in the order they were
added.

If the option −L is given, the current values for the hook arrays are listed with typeset.

If the option −d is given, the function is removed from the array of functions to be executed.

If the option −D is given, the function is treated as a pattern and any matching names of functions
are removed from the array of functions to be executed.

The options −U, −z and −k are passed as arguments to autoload for function. For functions con-
tributed with zsh, the options −Uz are appropriate.

add−zle−hook−widget [−L | −dD] [−Uzk] hook widgetname

Several widget names are special to the line editor, as described in the section Special Widgets, see
zshzle(1), in that they are automatically called at specific points during editing. Unlike function
hooks, these do not use a predefined array of other names to call at the same point; the shell func-
tion add−zle−hook−widget maintains a similar array and arranges for the special widget to invoke
those additional widgets.

hook is one of isearch−exit, isearch−update, line−pre−redraw, line−init, line−finish, his-
tory−line−set, or keymap−select, corresponding to each of the special widgets zle−isearch−exit,
etc. The special widget names are also accepted as the hook argument.

widgetname is the name of a ZLE widget. If no options are given this is added to the array of wid-
gets to be invoked in the given hook context. Widgets are invoked in the order they were added,
with

zle widgetname −Nw −− "$@"

Note that this means that the ‘WIDGET’ special parameter tracks the widgetname when the wid-
get function is called, rather than tracking the name of the corresponding special hook widget.

If the option −d is given, the widgetname is removed from the array of widgets to be executed.

zsh 5.8 February 14, 2020 4

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

If the option −D is given, the widgetname is treated as a pattern and any matching names of wid-
gets are removed from the array.

If widgetname does not name an existing widget when added to the array, it is assumed that a shell
function also named widgetname is meant to provide the implementation of the widget. This name
is therefore marked for autoloading, and the options −U, −z and −k are passed as arguments to au-
toload as with add−zsh−hook. The widget is also created with ‘zle −N widgetname’ to cause the
corresponding function to be loaded the first time the hook is called.

The arrays of widgetname are currently maintained in zstyle contexts, one for each hook context,
with a style of ‘widgets’. If the −L option is given, this set of styles is listed with ‘zstyle −L’.
This implementation may change, and the special widgets that refer to the styles are created only if
add−zle−hook−widget is called to add at least one widget, so if this function is used for any
hooks, then all hooks should be managed only via this function.

REMEMBERING RECENT DIRECTORIES
The function cdr allows you to change the working directory to a previous working directory from a list
maintained automatically. It is similar in concept to the directory stack controlled by the pushd, popd and
dirs builtins, but is more configurable, and as it stores all entries in files it is maintained across sessions and
(by default) between terminal emulators in the current session. Duplicates are automatically removed, so
that the list reflects the single most recent use of each directory.

Note that the pushd directory stack is not actually modified or used by cdr unless you configure it to do so
as described in the configuration section below.

Installation
The system works by means of a hook function that is called every time the directory changes. To install
the system, autoload the required functions and use the add−zsh−hook function described above:

autoload −Uz chpwd_recent_dirs cdr add−zsh−hook
add−zsh−hook chpwd chpwd_recent_dirs

Now every time you change directly interactively, no matter which command you use, the directory to
which you change will be remembered in most−recent−first order.

Use
All direct user interaction is via the cdr function.

The argument to cdr is a number N corresponding to the Nth most recently changed−to directory. 1 is the
immediately preceding directory; the current directory is remembered but is not offered as a destination.
Note that if you have multiple windows open 1 may refer to a directory changed to in another window; you
can avoid this by having per−terminal files for storing directory as described for the recent−dirs−file style
below.

If you set the recent−dirs−default style described below cdr will behave the same as cd if given a non−nu-
meric argument, or more than one argument. The recent directory list is updated just the same however you
change directory.

If the argument is omitted, 1 is assumed. This is similar to pushd’s behaviour of swapping the two most re-
cent directories on the stack.

Completion for the argument to cdr is available if compinit has been run; menu selection is recommended,
using:

zstyle ’:completion:*:*:cdr:*:*’ menu selection

to allow you to cycle through recent directories; the order is preserved, so the first choice is the most recent
directory before the current one. The verbose style is also recommended to ensure the directory is shown;
this style is on by default so no action is required unless you have changed it.

Options
The behaviour of cdr may be modified by the following options.

zsh 5.8 February 14, 2020 5

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

−l lists the numbers and the corresponding directories in abbreviated form (i.e. with ˜ substitution
reapplied), one per line. The directories here are not quoted (this would only be an issue if a direc-
tory name contained a newline). This is used by the completion system.

−r sets the variable reply to the current set of directories. Nothing is printed and the directory is not
changed.

−e allows you to edit the list of directories, one per line. The list can be edited to any extent you like;
no sanity checking is performed. Completion is available. No quoting is necessary (except for
newlines, where I have in any case no sympathy); directories are in unabbreviated from and con-
tain an absolute path, i.e. they start with /. Usually the first entry should be left as the current di-
rectory.

−p ’pattern’
Prunes any items in the directory list that match the given extended glob pattern; the pattern needs
to be quoted from immediate expansion on the command line. The pattern is matched against
each completely expanded file name in the list; the full string must match, so wildcards at the end
(e.g. ’*removeme*’) are needed to remove entries with a given substring.

If output is to a terminal, then the function will print the new list after pruning and prompt for con-
firmation by the user. This output and confirmation step can be skipped by using −P instead of
−p.

Configuration
Configuration is by means of the styles mechanism that should be familiar from completion; if not, see the
description of the zstyle command in see zshmodules(1). The context for setting styles should be ’:ch-
pwd:*’ in case the meaning of the context is extended in future, for example:

zstyle ’:chpwd:*’ recent−dirs−max 0

sets the value of the recent−dirs−max style to 0. In practice the style name is specific enough that a con-
text of ’*’ should be fine.

An exception is recent−dirs−insert, which is used exclusively by the completion system and so has the
usual completion system context (’:completion:*’ if nothing more specific is needed), though again ’*’
should be fine in practice.

recent−dirs−default
If true, and the command is expecting a recent directory index, and either there is more than one
argument or the argument is not an integer, then fall through to "cd". This allows the lazy to use
only one command for directory changing. Completion recognises this, too; see recent−dirs−in-
sert for how to control completion when this option is in use.

recent−dirs−file
The file where the list of directories is saved. The default is ${ZDOTDIR:−$HOME}/.ch-
pwd−recent−dirs, i.e. this is in your home directory unless you have set the variable ZDOTDIR
to point somewhere else. Directory names are saved in $’...’ quoted form, so each line in the file
can be supplied directly to the shell as an argument.

The value of this style may be an array. In this case, the first file in the list will always be used for
saving directories while any other files are left untouched. When reading the recent directory list,
if there are fewer than the maximum number of entries in the first file, the contents of later files in
the array will be appended with duplicates removed from the list shown. The contents of the two
files are not sorted together, i.e. all the entries in the first file are shown first. The special value +
can appear in the list to indicate the default file should be read at that point. This allows effects
like the following:

zstyle ’:chpwd:*’ recent−dirs−file \
˜/.chpwd−recent−dirs−${TTY##*/} +

Recent directories are read from a file numbered according to the terminal. If there are insufficient
entries the list is supplemented from the default file.

zsh 5.8 February 14, 2020 6

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

It is possible to use zstyle −e to make the directory configurable at run time:

zstyle −e ’:chpwd:*’ recent−dirs−file pick−recent−dirs−file
pick−recent−dirs−file() {
if [[$PWD = ˜/text/writing(|/*)]]; then
reply=(˜/.chpwd−recent−dirs−writing)

else
reply=(+)

fi
}

In this example, if the current directory is ˜/text/writing or a directory under it, then use a special
file for saving recent directories, else use the default.

recent−dirs−insert
Used by completion. If recent−dirs−default is true, then setting this to true causes the actual di-
rectory, rather than its index, to be inserted on the command line; this has the same effect as using
the corresponding index, but makes the history clearer and the line easier to edit. With this setting,
if part of an argument was already typed, normal directory completion rather than recent directory
completion is done; this is because recent directory completion is expected to be done by cycling
through entries menu fashion.

If the value of the style is always, then only recent directories will be completed; in that case, use
the cd command when you want to complete other directories.

If the value is fallback, recent directories will be tried first, then normal directory completion is
performed if recent directory completion failed to find a match.

Finally, if the value is both then both sets of completions are presented; the usual tag mechanism
can be used to distinguish results, with recent directories tagged as recent−dirs. Note that the re-
cent directories inserted are abbreviated with directory names where appropriate.

recent−dirs−max
The maximum number of directories to save to the file. If this is zero or negative there is no maxi-
mum. The default is 20. Note this includes the current directory, which isn’t offered, so the high-
est number of directories you will be offered is one less than the maximum.

recent−dirs−prune
This style is an array determining what directories should (or should not) be added to the recent
list. Elements of the array can include:

parent Prune parents (more accurately, ancestors) from the recent list. If present, changing di-
rectly down by any number of directories causes the current directory to be overwritten.
For example, changing from ˜pws to ˜pws/some/other/dir causes ˜pws not to be left on the
recent directory stack. This only applies to direct changes to descendant directories; ear-
lier directories on the list are not pruned. For example, changing from ˜pws/yet/another
to ˜pws/some/other/dir does not cause ˜pws to be pruned.

pattern:pattern

Gives a zsh pattern for directories that should not be added to the recent list (if not al-
ready there). This element can be repeated to add different patterns. For example, ’pat-
tern:/tmp(|/*)’ stops /tmp or its descendants from being added. The EX-
TENDED_GLOB option is always turned on for these patterns.

recent−dirs−pushd
If set to true, cdr will use pushd instead of cd to change the directory, so the directory is saved on
the directory stack. As the directory stack is completely separate from the list of files saved by the
mechanism used in this file there is no obvious reason to do this.

Use with dynamic directory naming
It is possible to refer to recent directories using the dynamic directory name syntax by using the supplied
function zsh_directory_name_cdr a hook:

zsh 5.8 February 14, 2020 7

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

autoload −Uz add−zsh−hook
add−zsh−hook −Uz zsh_directory_name zsh_directory_name_cdr

When this is done, ˜[1] will refer to the most recent directory other than $PWD, and so on. Completion af-
ter ˜[... also works.

Details of directory handling
This section is for the curious or confused; most users will not need to know this information.

Recent directories are saved to a file immediately and hence are preserved across sessions. Note currently
no file locking is applied: the list is updated immediately on interactive commands and nowhere else (unlike
history), and it is assumed you are only going to change directory in one window at once. This is not safe
on shared accounts, but in any case the system has limited utility when someone else is changing to a differ-
ent set of directories behind your back.

To make this a little safer, only directory changes instituted from the command line, either directly or indi-
rectly through shell function calls (but not through subshells, evals, traps, completion functions and the
like) are saved. Shell functions should use cd −q or pushd −q to avoid side effects if the change to the di-
rectory is to be invisible at the command line. See the contents of the function chpwd_recent_dirs for
more details.

ABBREVIATED DYNAMIC REFERENCES TO DIRECTORIES
The dynamic directory naming system is described in the subsection Dynamic named directories of the sec-
tion Filename Expansion in expn(1). In this, a reference to ˜[...] is expanded by a function found by the
hooks mechanism.

The contributed function zsh_directory_name_generic provides a system allowing the user to refer to di-
rectories with only a limited amount of new code. It supports all three of the standard interfaces for direc-
tory naming: converting from a name to a directory, converting in the reverse direction to find a short name,
and completion of names.

The main feature of this function is a path−like syntax, combining abbreviations at multiple levels sepa-
rated by ":". As an example, ˜[g:p:s] might specify:
g The top level directory for your git area. This first component has to match, or the function will

return indicating another directory name hook function should be tried.

p The name of a project within your git area.

s The source area within that project. This allows you to collapse references to long hierarchies to a
very compact form, particularly if the hierarchies are similar across different areas of the disk.

Name components may be completed: if a description is shown at the top of the list of completions, it in-
cludes the path to which previous components expand, while the description for an individual completion
shows the path segment it would add. No additional configuration is needed for this as the completion sys-
tem is aware of the dynamic directory name mechanism.

Usage
To use the function, first define a wrapper function for your specific case. We’ll assume it’s to be au-
toloaded. This can have any name but we’ll refer to it as zdn_mywrapper. This wrapper function will de-
fine various variables and then call this function with the same arguments that the wrapper function gets.
This configuration is described below.

Then arrange for the wrapper to be run as a zsh_directory_name hook:

autoload −Uz add−zsh−hook zsh_diretory_name_generic zdn_mywrapper
add−zsh−hook −U zsh_directory_name zdn_mywrapper

Configuration
The wrapper function should define a local associative array zdn_top. Alternatively, this can be set with a
style called mapping. The context for the style is :zdn:wrapper−name where wrapper−name is the func-
tion calling zsh_directory_name_generic; for example:

zstyle :zdn:zdn_mywrapper: mapping zdn_mywrapper_top

zsh 5.8 February 14, 2020 8

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

The keys in this associative array correspond to the first component of the name. The values are matching
directories. They may have an optional suffix with a slash followed by a colon and the name of a variable
in the same format to give the next component. (The slash before the colon is to disambiguate the case
where a colon is needed in the path for a drive. There is otherwise no syntax for escaping this, so path
components whose names start with a colon are not supported.) A special component :default: specifies a
variable in the form /:var (the path section is ignored and so is usually empty) that will be used for the next
component if no variable is given for the path. Variables referred to within zdn_top have the same format
as zdn_top itself, but contain relative paths.

For example,

local −A zdn_top=(
g ˜/git
ga ˜/alternate/git
gs /scratch/$USER/git/:second2
:default: /:second1

)

This specifies the behaviour of a directory referred to as ˜[g:...] or ˜[ga:...] or ˜[gs:...]. Later path compo-
nents are optional; in that case ˜[g] expands to ˜/git, and so on. gs expands to /scratch/$USER/git and uses
the associative array second2 to match the second component; g and ga use the associative array second1
to match the second component.

When expanding a name to a directory, if the first component is not g or ga or gs, it is not an error; the
function simply returns 1 so that a later hook function can be tried. However, matching the first component
commits the function, so if a later component does not match, an error is printed (though this still does not
stop later hooks from being executed).

For components after the first, a relative path is expected, but note that multiple levels may still appear.
Here is an example of second1:

local −A second1=(
p myproject
s somproject
os otherproject/subproject/:third

)

The path as found from zdn_top is extended with the matching directory, so ˜[g:p] becomes ˜/git/mypro-
ject. The slash between is added automatically (it’s not possible to have a later component modify the
name of a directory already matched). Only os specifies a variable for a third component, and there’s no
:default:, so it’s an error to use a name like ˜[g:p:x] or ˜[ga:s:y] because there’s nowhere to look up the x
or y.

The associative arrays need to be visible within this function; the generic function therefore uses internal
variable names beginning _zdn_ in order to avoid clashes. Note that the variable reply needs to be passed
back to the shell, so should not be local in the calling function.

The function does not test whether directories assembled by component actually exist; this allows the sys-
tem to work across automounted file systems. The error from the command trying to use a non−existent di-
rectory should be sufficient to indicate the problem.

Complete example
Here is a full fictitious but usable autoloadable definition of the example function defined by the code
above. So ˜[gs:p:s] expands to /scratch/$USER/git/myscratchproject/top/srcdir (with $USER also ex-
panded).

local −A zdn_top=(
g ˜/git
ga ˜/alternate/git
gs /scratch/$USER/git/:second2
:default: /:second1

zsh 5.8 February 14, 2020 9

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

)

local −A second1=(
p myproject
s somproject
os otherproject/subproject/:third

)

local −A second2=(
p myscratchproject
s somescratchproject

)

local −A third=(
s top/srcdir
d top/documentation

)

autoload not needed if you did this at initialisation...
autoload −Uz zsh_directory_name_generic
zsh_directory_name_generic "$@

It is also possible to use global associative arrays, suitably named, and set the style for the context of your
wrapper function to refer to this. Then your set up code would contain the following:

typeset −A zdn_mywrapper_top=(...)
... and so on for other associative arrays ...
zstyle ’:zdn:zdn_mywrapper:’ mapping zdn_mywrapper_top
autoload −Uz add−zsh−hook zsh_directory_name_generic zdn_mywrapper
add−zsh−hook −U zsh_directory_name zdn_mywrapper

and the function zdn_mywrapper would contain only the following:

zsh_directory_name_generic "$@"

GATHERING INFORMATION FROM VERSION CONTROL SYSTEMS
In a lot of cases, it is nice to automatically retrieve information from version control systems (VCSs), such
as subversion, CVS or git, to be able to provide it to the user; possibly in the user’s prompt. So that you can
instantly tell which branch you are currently on, for example.

In order to do that, you may use the vcs_info function.

The following VCSs are supported, showing the abbreviated name by which they are referred to within the
system:
Bazaar (bzr)

https://bazaar.canonical.com/
Codeville (cdv)

http://freecode.com/projects/codeville/
Concurrent Versioning System (cvs)

https://www.nongnu.org/cvs/
Darcs (darcs)

http://darcs.net/
Fossil (fossil)

https://fossil−scm.org/
Git (git)

https://git−scm.com/
GNU arch (tla)

https://www.gnu.org/software/gnu−arch/

zsh 5.8 February 14, 2020 10

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

Mercurial (hg)
https://www.mercurial−scm.org/

Monotone (mtn)
https://monotone.ca/

Perforce (p4)
https://www.perforce.com/

Subversion (svn)
https://subversion.apache.org/

SVK (svk)
https://svk.bestpractical.com/

There is also support for the patch management system quilt (https://savan-
nah.nongnu.org/projects/quilt). See Quilt Support below for details.

To load vcs_info:

autoload −Uz vcs_info

It can be used in any existing prompt, because it does not require any specific $psvar entries to be avail-
able.

Quickstart
To get this feature working quickly (including colors), you can do the following (assuming, you loaded
vcs_info properly − see above):

zstyle ’:vcs_info:*’ actionformats \
’%F{5}(%f%s%F{5})%F{3}−%F{5}[%F{2}%b%F{3}|%F{1}%a%F{5}]%f ’

zstyle ’:vcs_info:*’ formats \
’%F{5}(%f%s%F{5})%F{3}−%F{5}[%F{2}%b%F{5}]%f ’

zstyle ’:vcs_info:(sv[nk]|bzr):*’ branchformat ’%b%F{1}:%F{3}%r’
precmd () { vcs_info }
PS1=’%F{5}[%F{2}%n%F{5}] %F{3}%3˜ ${vcs_info_msg_0_}%f%# ’

Obviously, the last two lines are there for demonstration. You need to call vcs_info from your precmd
function. Once that is done you need a single quoted ’${vcs_info_msg_0_}’ in your prompt.

To be able to use ’${vcs_info_msg_0_}’ directly in your prompt like this, you will need to have the
PROMPT_SUBST option enabled.

Now call the vcs_info_printsys utility from the command line:

% vcs_info_printsys
list of supported version control backends:
disabled systems are prefixed by a hash sign (#)
bzr
cdv
cvs
darcs
fossil
git
hg
mtn
p4
svk
svn
tla
flavours (cannot be used in the enable or disable styles; they
are enabled and disabled with their master [git−svn −> git])
they *can* be used in contexts: ’:vcs_info:git−svn:*’.
git−p4

zsh 5.8 February 14, 2020 11

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

git−svn
hg−git
hg−hgsubversion
hg−hgsvn

You may not want all of these because there is no point in running the code to detect systems you do not
use. So there is a way to disable some backends altogether:

zstyle ’:vcs_info:*’ disable bzr cdv darcs mtn svk tla

You may also pick a few from that list and enable only those:

zstyle ’:vcs_info:*’ enable git cvs svn

If you rerun vcs_info_printsys after one of these commands, you will see the backends listed in the disable
style (or backends not in the enable style − if you used that) marked as disabled by a hash sign. That
means the detection of these systems is skipped completely. No wasted time there.

Configuration
The vcs_info feature can be configured via zstyle.

First, the context in which we are working:
:vcs_info:vcs−string:user−context:repo−root−name

vcs−string

is one of: git, git−svn, git−p4, hg, hg−git, hg−hgsubversion, hg−hgsvn, darcs, bzr, cdv, mtn,
svn, cvs, svk, tla, p4 or fossil. This is followed by ‘.quilt−quilt−mode’ in Quilt mode (see Quilt
Support for details) and by ‘+hook−name’ while hooks are active (see Hooks in vcs_info for de-
tails).

Currently, hooks in quilt mode don’t add the ‘.quilt−quilt−mode’ information. This may change
in the future.

user−context

is a freely configurable string, assignable by the user as the first argument to vcs_info (see its de-
scription below).

repo−root−name

is the name of a repository in which you want a style to match. So, if you want a setting specific to
/usr/src/zsh, with that being a CVS checkout, you can set repo−root−name to zsh to make it so.

There are three special values for vcs−string: The first is named −init−, that is in effect as long as there was
no decision what VCS backend to use. The second is −preinit−; it is used before vcs_info is run, when ini-
tializing the data exporting variables. The third special value is formats and is used by the
vcs_info_lastmsg for looking up its styles.

The initial value of repo−root−name is −all− and it is replaced with the actual name, as soon as it is
known. Only use this part of the context for defining the formats, actionformats or branchformat styles,
as it is guaranteed that repo−root−name is set up correctly for these only. For all other styles, just use ’*’
instead.

There are two pre−defined values for user−context:
default the one used if none is specified
command

used by vcs_info_lastmsg to lookup its styles

You can of course use ’:vcs_info:*’ to match all VCSs in all user−contexts at once.

This is a description of all styles that are looked up.

formats
A list of formats, used when actionformats is not used (which is most of the time).

zsh 5.8 February 14, 2020 12

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

actionformats
A list of formats, used if there is a special action going on in your current repository; like an inter-
active rebase or a merge conflict.

branchformat
Some backends replace %b in the formats and actionformats styles above, not only by a branch
name but also by a revision number. This style lets you modify how that string should look.

nvcsformats
These "formats" are set when we didn’t detect a version control system for the current directory or
vcs_info was disabled. This is useful if you want vcs_info to completely take over the generation
of your prompt. You would do something like PS1=’${vcs_info_msg_0_}’ to accomplish that.

hgrevformat
hg uses both a hash and a revision number to reference a specific changeset in a repository. With
this style you can format the revision string (see branchformat) to include either or both. It’s only
useful when get−revision is true. Note, the full 40−character revision id is not available (except
when using the use−simple option) because executing hg more than once per prompt is too slow;
you may customize this behavior using hooks.

max−exports
Defines the maximum number of vcs_info_msg_*_ variables vcs_info will set.

enable A list of backends you want to use. Checked in the −init− context. If this list contains an item
called NONE no backend is used at all and vcs_info will do nothing. If this list contains ALL,
vcs_info will use all known backends. Only with ALL in enable will the disable style have any
effect. ALL and NONE are case insensitive.

disable A list of VCSs you don’t want vcs_info to test for repositories (checked in the −init− context, too).
Only used if enable contains ALL.

disable−patterns
A list of patterns that are checked against $PWD. If a pattern matches, vcs_info will be disabled.
This style is checked in the :vcs_info:−init−:*:−all− context.

Say, ˜/.zsh is a directory under version control, in which you do not want vcs_info to be active, do:
zstyle ’:vcs_info:*’ disable−patterns "${(b)HOME}/.zsh(|/*)"

use−quilt
If enabled, the quilt support code is active in ‘addon’ mode. See Quilt Support for details.

quilt−standalone
If enabled, ‘standalone’ mode detection is attempted if no VCS is active in a giv en directory. See
Quilt Support for details.

quilt−patch−dir
Overwrite the value of the $QUILT_PATCHES environment variable. See Quilt Support for de-
tails.

quiltcommand
When quilt itself is called in quilt support, the value of this style is used as the command name.

check−for−changes
If enabled, this style causes the %c and %u format escapes to show when the working directory
has uncommitted changes. The strings displayed by these escapes can be controlled via the
stagedstr and unstagedstr styles. The only backends that currently support this option are git, hg,
and bzr (the latter two only support unstaged).

For this style to be evaluated with the hg backend, the get−revision style needs to be set and the
use−simple style needs to be unset. The latter is the default; the former is not.

With the bzr backend, lightweight checkouts only honor this style if the use−server style is set.

Note, the actions taken if this style is enabled are potentially expensive (read: they may be slow,

zsh 5.8 February 14, 2020 13

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

depending on how big the current repository is). Therefore, it is disabled by default.

check−for−staged−changes
This style is like check−for−changes, but it never checks the worktree files, only the metadata in
the .${vcs} dir. Therefore, this style initializes only the %c escape (with stagedstr) but not the
%u escape. This style is faster than check−for−changes.

In the git backend, this style checks for changes in the index. Other backends do not currently im-
plement this style.

This style is disabled by default.

stagedstr
This string will be used in the %c escape if there are staged changes in the repository.

unstagedstr
This string will be used in the %u escape if there are unstaged changes in the repository.

command
This style causes vcs_info to use the supplied string as the command to use as the VCS’s binary.
Note, that setting this in ’:vcs_info:*’ is not a good idea.

If the value of this style is empty (which is the default), the used binary name is the name of the
backend in use (e.g. svn is used in an svn repository).

The repo−root−name part in the context is always the default −all− when this style is looked up.

For example, this style can be used to use binaries from non−default installation directories. As-
sume, git is installed in /usr/bin but your sysadmin installed a newer version in /usr/local/bin. In-
stead of changing the order of your $PATH parameter, you can do this:

zstyle ’:vcs_info:git:*:−all−’ command /usr/local/bin/git

use−server
This is used by the Perforce backend (p4) to decide if it should contact the Perforce server to find
out if a directory is managed by Perforce. This is the only reliable way of doing this, but runs the
risk of a delay if the server name cannot be found. If the server (more specifically, the host:port
pair describing the server) cannot be contacted, its name is put into the associative array
vcs_info_p4_dead_servers and is not contacted again during the session until it is removed by
hand. If you do not set this style, the p4 backend is only usable if you have set the environment
variable P4CONFIG to a file name and have corresponding files in the root directories of each
Perforce client. See comments in the function VCS_INFO_detect_p4 for more detail.

The Bazaar backend (bzr) uses this to permit contacting the server about lightweight checkouts,
see the check−for−changes style.

use−simple
If there are two different ways of gathering information, you can select the simpler one by setting
this style to true; the default is to use the not−that−simple code, which is potentially a lot slower
but might be more accurate in all possible cases. This style is used by the bzr and hg backends. In
the case of hg it will invoke the external hexdump program to parse the binary dirstate cache file;
this method will not return the local revision number.

get−revision
If set to true, vcs_info goes the extra mile to figure out the revision of a repository’s work tree
(currently for the git and hg backends, where this kind of information is not always vital). For git,
the hash value of the currently checked out commit is available via the %i expansion. With hg, the
local revision number and the corresponding global hash are available via %i.

get−mq
If set to true, the hg backend will look for a Mercurial Queue (mq) patch directory. Information
will be available via the ‘%m’ replacement.

zsh 5.8 February 14, 2020 14

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

get−bookmarks
If set to true, the hg backend will try to get a list of current bookmarks. They will be available via
the ‘%m’ replacement.

The default is to generate a comma−separated list of all bookmark names that refer to the currently
checked out revision. If a bookmark is active, its name is suffixed an asterisk and placed first in
the list.

use−prompt−escapes
Determines if we assume that the assembled string from vcs_info includes prompt escapes. (Used
by vcs_info_lastmsg.)

debug Enable debugging output to track possible problems. Currently this style is only used by
vcs_info’s hooks system.

hooks A list style that defines hook−function names. See Hooks in vcs_info below for details.

patch−format
nopatch−format

This pair of styles format the patch information used by the %m expando in formats and action-
formats for the git and hg backends. The value is subject to certain %−expansions described be-
low. The expanded value is made available in the global backend_misc array as ${back-
end_misc[patches]} (also if a set−patch−format hook is used).

get−unapplied
This boolean style controls whether a backend should attempt to gather a list of unapplied patches
(for example with Mercurial Queue patches).

Used by the quilt and hg backends.

The default values for these styles in all contexts are:

formats
" (%s)−[%b]%u%c−"

actionformats
" (%s)−[%b|%a]%u%c−"

branchformat
"%b:%r" (for bzr, svn, svk and hg)

nvcsformats
""

hgrevformat
"%r:%h"

max−exports
2

enable ALL
disable (empty list)
disable−patterns

(empty list)
check−for−changes

false
check−for−staged−changes

false
stagedstr

(string: "S")
unstagedstr

(string: "U")
command

(empty string)

zsh 5.8 February 14, 2020 15

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

use−server
false

use−simple
false

get−revision
false

get−mq
true

get−bookmarks
false

use−prompt−escapes
true

debug false
hooks (empty list)
use−quilt

false
quilt−standalone

false
quilt−patch−dir

empty − use $QUILT_PATCHES
quiltcommand

quilt
patch−format

backend dependent

nopatch−format
backend dependent

get−unapplied
false

In normal formats and actionformats the following replacements are done:

%s The VCS in use (git, hg, svn, etc.).
%b Information about the current branch.
%a An identifier that describes the action. Only makes sense in actionformats.
%i The current revision number or identifier. For hg the hgrevformat style may be used to customize

the output.
%c The string from the stagedstr style if there are staged changes in the repository.
%u The string from the unstagedstr style if there are unstaged changes in the repository.
%R The base directory of the repository.
%r The repository name. If %R is /foo/bar/repoXY, %r is repoXY.
%S A subdirectory within a repository. If $PWD is /foo/bar/repoXY/beer/tasty, %S is beer/tasty.
%m A "misc" replacement. It is at the discretion of the backend to decide what this replacement ex-

pands to.

The hg and git backends use this expando to display patch information. hg sources patch informa-
tion from the mq extensions; git from in−progress rebase and cherry−pick operations and from
the stgit extension. The patch−format and nopatch−format styles control the generated string.
The former is used when at least one patch from the patch queue has been applied, and the latter
otherwise.

The hg backend displays bookmark information in this expando (in addition to mq information).
See the get−mq and get−bookmarks styles. Both of these styles may be enabled at the same
time. If both are enabled, both resulting strings will be shown separated by a semicolon (that can-
not currently be customized).

The quilt ‘standalone’ backend sets this expando to the same value as the %Q expando.

zsh 5.8 February 14, 2020 16

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

%Q Quilt series information. When quilt is used (either in ‘addon’ mode or as a ‘standalone’ back-
end), this expando is set to quilt series’ patch−format string. The set−patch−format hook and
nopatch−format style are honoured.

See Quilt Support below for details.

In branchformat these replacements are done:

%b The branch name.
%r The current revision number or the hgrevformat style for hg.

In hgrevformat these replacements are done:

%r The current local revision number.
%h The current global revision identifier.

In patch−format and nopatch−format these replacements are done:

%p The name of the top−most applied patch; may be overridden by the applied−string hook.
%u The number of unapplied patches; may be overridden by the unapplied−string hook.
%n The number of applied patches.
%c The number of unapplied patches.
%a The number of all patches (%a = %n + %c).
%g The names of active mq guards (hg backend).
%G The number of active mq guards (hg backend).

Not all VCS backends have to support all replacements. For nvcsformats no replacements are performed at
all, it is just a string.

Oddities
If you want to use the %b (bold off) prompt expansion in formats, which expands %b itself, use %%b.
That will cause the vcs_info expansion to replace %%b with %b, so that zsh’s prompt expansion mecha-
nism can handle it. Similarly, to hand down %b from branchformat, use %%%%b. Sorry for this incon-
venience, but it cannot be easily avoided. Luckily we do not clash with a lot of prompt expansions and this
only needs to be done for those.

When one of the gen−applied−string, gen−unapplied−string, and set−patch−format hooks is defined,
applying %−escaping (‘foo=${foo//’%’/%%}’) to the interpolated values for use in the prompt is the re-
sponsibility of those hooks (jointly); when neither of those hooks is defined, vcs_info handles escaping by
itself. We regret this coupling, but it was required for backwards compatibility.

Quilt Support
Quilt is not a version control system, therefore this is not implemented as a backend. It can help keeping
track of a series of patches. People use it to keep a set of changes they want to use on top of software pack-
ages (which is tightly integrated into the package build process − the Debian project does this for a large
number of packages). Quilt can also help individual developers keep track of their own patches on top of
real version control systems.

The vcs_info integration tries to support both ways of using quilt by having two slightly different modes of
operation: ‘addon’ mode and ‘standalone’ mode).

Quilt integration is off by default; to enable it, set the use−quilt style, and add %Q to your formats or ac-
tionformats style:

zstyle ’:vcs_info:*’ use−quilt true

Styles looked up from the Quilt support code include ‘.quilt−quilt−mode’ in the vcs−string part of the con-
text, where quilt−mode is either addon or standalone. Example: :vcs_info:git.quilt−addon:de-
fault:repo−root−name.

For ‘addon’ mode to become active vcs_info must have already detected a real version control system con-
trolling the directory. If that is the case, a directory that holds quilt’s patches needs to be found. That direc-
tory is configurable via the ‘QUILT_PATCHES’ environment variable. If that variable exists its value is
used, otherwise the value ‘patches’ is assumed. The value from $QUILT_PATCHES can be overwritten

zsh 5.8 February 14, 2020 17

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

using the ‘quilt−patches’ style. (Note: you can use vcs_info to keep the value of $QUILT_PATCHES cor-
rect all the time via the post−quilt hook).

When the directory in question is found, quilt is assumed to be active. To gather more information, vcs_info
looks for a directory called ‘.pc’; Quilt uses that directory to track its current state. If this directory does not
exist we know that quilt has not done anything to the working directory (read: no patches have been applied
yet).

If patches are applied, vcs_info will try to find out which. If you want to know which patches of a series are
not yet applied, you need to activate the get−unapplied style in the appropriate context.

vcs_info allows for very detailed control over how the gathered information is presented (see the Configu-
ration and Hooks in vcs_info sections), all of which are documented below. Note there are a number of
other patch tracking systems that work on top of a certain version control system (like stgit for git, or mq
for hg); the configuration for systems like that are generally configured the same way as the quilt support.

If the quilt support is working in ‘addon’ mode, the produced string is available as a simple format replace-
ment (%Q to be precise), which can be used in formats and actionformats; see below for details).

If, on the other hand, the support code is working in ‘standalone’ mode, vcs_info will pretend as if quilt
were an actual version control system. That means that the version control system identifier (which other-
wise would be something like ‘svn’ or ‘cvs’) will be set to ‘−quilt−’. This has implications on the used
style context where this identifier is the second element. vcs_info will have filled in a proper value for the
"repository’s" root directory and the string containing the information about quilt’s state will be available as
the ‘misc’ replacement (and %Q for compatibility with ‘addon’ mode).

What is left to discuss is how ‘standalone’ mode is detected. The detection itself is a series of searches for
directories. You can have this detection enabled all the time in every directory that is not otherwise under
version control. If you know there is only a limited set of trees where you would like vcs_info to try and
look for Quilt in ‘standalone’ mode to minimise the amount of searching on every call to vcs_info, there are
a number of ways to do that:

Essentially, ‘standalone’ mode detection is controlled by a style called ‘quilt−standalone’. It is a string
style and its value can have different effects. The simplest values are: ‘always’ to run detection every time
vcs_info is run, and ‘never’ to turn the detection off entirely.

If the value of quilt−standalone is something else, it is interpreted differently. If the value is the name of a
scalar variable the value of that variable is checked and that value is used in the same ‘always’/‘never’ way
as described above.

If the value of quilt−standalone is an array, the elements of that array are used as directory names under
which you want the detection to be active.

If quilt−standalone is an associative array, the keys are taken as directory names under which you want the
detection to be active, but only if the corresponding value is the string ‘true’.

Last, but not least, if the value of quilt−standalone is the name of a function, the function is called without
arguments and the return value decides whether detection should be active. A ‘0’ return value is true; a
non−zero return value is interpreted as false.

Note, if there is both a function and a variable by the name of quilt−standalone, the function will take
precedence.

Function Descriptions (Public API)
vcs_info [user−context]

The main function, that runs all backends and assembles all data into ${vcs_info_msg_*_}. This is
the function you want to call from precmd if you want to include up−to−date information in your
prompt (see Variable Description below). If an argument is given, that string will be used instead
of default in the user−context field of the style context.

vcs_info_hookadd
Statically registers a number of functions to a given hook. The hook needs to be given as the first
argument; what follows is a list of hook−function names to register to the hook. The ‘+vi−’ prefix

zsh 5.8 February 14, 2020 18

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

needs to be left out here. See Hooks in vcs_info below for details.

vcs_info_hookdel
Remove hook−functions from a given hook. The hook needs to be given as the first non−option ar-
gument; what follows is a list of hook−function names to un−register from the hook. If ‘−a’ is
used as the first argument, all occurrences of the functions are unregistered. Otherwise only the
last occurrence is removed (if a function was registered to a hook more than once). The ‘+vi−’ pre-
fix needs to be left out here. See Hooks in vcs_info below for details.

vcs_info_lastmsg
Outputs the last ${vcs_info_msg_*_} value. Takes into account the value of the use−prompt−es-
capes style in ’:vcs_info:formats:command:−all−’. It also only prints max−exports values.

vcs_info_printsys [user−context]
Prints a list of all supported version control systems. Useful to find out possible contexts (and
which of them are enabled) or values for the disable style.

vcs_info_setsys
Initializes vcs_info’s internal list of available backends. With this function, you can add support
for new VCSs without restarting the shell.

All functions named VCS_INFO_* are for internal use only.

Variable Description
${vcs_info_msg_N_} (Note the trailing underscore)

Where N is an integer, e.g., vcs_info_msg_0_. These variables are the storage for the informa-
tional message the last vcs_info call has assembled. These are strongly connected to the formats,
actionformats and nvcsformats styles described above. Those styles are lists. The first member of
that list gets expanded into ${vcs_info_msg_0_}, the second into ${vcs_info_msg_1_} and the
Nth into ${vcs_info_msg_N−1_}. (See the max−exports style above.)

All variables named VCS_INFO_* are for internal use only.

Hooks in vcs_info
Hooks are places in vcs_info where you can run your own code. That code can communicate with the code
that called it and through that, change the system’s behaviour.

For configuration, hooks change the style context:
:vcs_info:vcs−string+hook−name:user−context:repo−root−name

To register functions to a hook, you need to list them in the hooks style in the appropriate context.

Example:
zstyle ’:vcs_info:*+foo:*’ hooks bar baz

This registers functions to the hook ‘foo’ for all backends. In order to avoid namespace problems, all regis-
tered function names are prepended by a ‘+vi−’, so the actual functions called for the ‘foo’ hook are
‘+vi−bar’ and ‘+vi−baz’.

If you would like to register a function to a hook regardless of the current context, you may use the
vcs_info_hookadd function. To remove a function that was added like that, the vcs_info_hookdel function
can be used.

If something seems weird, you can enable the ‘debug’ boolean style in the proper context and the
hook−calling code will print what it tried to execute and whether the function in question existed.

When you register more than one function to a hook, all functions are executed one after another until one
function returns non−zero or until all functions have been called. Context−sensitive hook functions are exe-
cuted before statically registered ones (the ones added by vcs_info_hookadd).

You may pass data between functions via an associative array, user_data. For example:
+vi−git−myfirsthook(){

user_data[myval]=$myval
}

zsh 5.8 February 14, 2020 19

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

+vi−git−mysecondhook(){
do something with ${user_data[myval]}

}

There are a number of variables that are special in hook contexts:

ret The return value that the hooks system will return to the caller. The default is an integer ‘zero’. If
and how a changed ret value changes the execution of the caller depends on the specific hook. See
the hook documentation below for details.

hook_com
An associated array which is used for bidirectional communication from the caller to hook func-
tions. The used keys depend on the specific hook.

context
The active context of the hook. Functions that wish to change this variable should make it local
scope first.

vcs The current VCS after it was detected. The same values as in the enable/disable style are used.
Av ailable in all hooks except start−up.

Finally, the full list of currently available hooks:

start−up
Called after starting vcs_info but before the VCS in this directory is determined. It can be used to
deactivate vcs_info temporarily if necessary. When ret is set to 1, vcs_info aborts and does noth-
ing; when set to 2, vcs_info sets up everything as if no version control were active and exits.

pre−get−data
Same as start−up but after the VCS was detected.

gen−hg−bookmark−string
Called in the Mercurial backend when a bookmark string is generated; the get−revision and
get−bookmarks styles must be true.

This hook gets the names of the Mercurial bookmarks that vcs_info collected from ‘hg’.

If a bookmark is active, the key ${hook_com[hg−active−bookmark]} is set to its name. The key
is otherwise unset.

When setting ret to non−zero, the string in ${hook_com[hg−bookmark−string]} will be used in
the %m escape in formats and actionformats and will be available in the global backend_misc
array as ${backend_misc[bookmarks]}.

gen−applied−string
Called in the git (with stgit or during rebase or merge), and hg (with mq) backends and in quilt
support when the applied−string is generated; the use−quilt zstyle must be true for quilt (the mq
and stgit backends are active by default).

This hook gets the names of all applied patches which vcs_info collected so far in the opposite or-
der, which means that the first argument is the top−most patch and so forth.

When setting ret to non−zero, the string in ${hook_com[applied−string]} will be available as
%p in the patch−format and nopatch−format styles. This hook is, in concert with
set−patch−format, responsible for %−escaping that value for use in the prompt. (See the Oddi-
ties section.)

gen−unapplied−string
Called in the git (with stgit or during rebase), and hg (with mq) backend and in quilt support
when the unapplied−string is generated; the get−unapplied style must be true.

This hook gets the names of all unapplied patches which vcs_info collected so far in order, which
means that the first argument is the patch next−in−line to be applied and so forth.

When setting ret to non−zero, the string in ${hook_com[unapplied−string]} will be available as

zsh 5.8 February 14, 2020 20

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

%u in the patch−format and nopatch−format styles. This hook is, in concert with
set−patch−format, responsible for %−escaping that value for use in the prompt. (See the Oddi-
ties section.)

gen−mqguards−string
Called in the hg backend when guards−string is generated; the get−mq style must be true (de-
fault).

This hook gets the names of any active mq guards.

When setting ret to non−zero, the string in ${hook_com[guards−string]} will be used in the %g
escape in the patch−format and nopatch−format styles.

no−vcs This hooks is called when no version control system was detected.

The ‘hook_com’ parameter is not used.

post−backend
Called as soon as the backend has finished collecting information.

The ‘hook_com’ keys available are as for the set−message hook.

post−quilt
Called after the quilt support is done. The following information is passed as arguments to the
hook: 1. the quilt−support mode (‘addon’ or ‘standalone’); 2. the directory that contains the patch
series; 3. the directory that holds quilt’s status information (the ‘.pc’ directory) or the string
"−nopc−" if that directory wasn’t found.

The ‘hook_com’ parameter is not used.

set−branch−format
Called before ‘branchformat’ is set. The only argument to the hook is the format that is config-
ured at this point.

The ‘hook_com’ keys considered are ‘branch’ and ‘re vision’. They are set to the values figured
out so far by vcs_info and any change will be used directly when the actual replacement is done.

If ret is set to non−zero, the string in ${hook_com[branch−replace]} will be used unchanged as
the ‘%b’ replacement in the variables set by vcs_info.

set−hgrev−format
Called before a ‘hgrevformat’ is set. The only argument to the hook is the format that is config-
ured at this point.

The ‘hook_com’ keys considered are ‘hash’ and ‘localrev’. They are set to the values figured out
so far by vcs_info and any change will be used directly when the actual replacement is done.

If ret is set to non−zero, the string in ${hook_com[rev−replace]} will be used unchanged as the
‘%i’ replacement in the variables set by vcs_info.

pre−addon−quilt
This hook is used when vcs_info’s quilt functionality is active in "addon" mode (quilt used on top
of a real version control system). It is activated right before any quilt specific action is taken.

Setting the ‘ret’ variable in this hook to a non−zero value avoids any quilt specific actions from
being run at all.

set−patch−format
This hook is used to control some of the possible expansions in patch−format and nopatch−for-
mat styles with patch queue systems such as quilt, mqueue and the like.

This hook is used in the git, hg and quilt backends.

The hook allows the control of the %p (${hook_com[applied]}) and %u (${hook_com[unap-
plied]}) expansion in all backends that use the hook. With the mercurial backend, the %g
(${hook_com[guards]}) expansion is controllable in addition to that.

zsh 5.8 February 14, 2020 21

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

If ret is set to non−zero, the string in ${hook_com[patch−replace]} will be used unchanged in-
stead of an expanded format from patch−format or nopatch−format.

This hook is, in concert with the gen−applied−string or gen−unapplied−string hooks if they are
defined, responsible for %−escaping the final patch−format value for use in the prompt. (See the
Oddities section.)

set−message
Called each time before a ‘vcs_info_msg_N_’ message is set. It takes two arguments; the first be-
ing the ‘N’ in the message variable name, the second is the currently configured formats or ac-
tionformats.

There are a number of ‘hook_com’ keys, that are used here: ‘action’, ‘branch’, ‘base’,
‘base−name’, ‘subdir’, ‘staged’, ‘unstaged’, ‘re vision’, ‘misc’, ‘vcs’ and one ‘miscN’ entry for
each backend−specific data field (N starting at zero). They are set to the values figured out so far
by vcs_info and any change will be used directly when the actual replacement is done.

Since this hook is triggered multiple times (once for each configured formats or actionformats),
each of the ‘hook_com’ keys mentioned above (except for the miscN entries) has an ‘_orig’ coun-
terpart, so even if you changed a value to your liking you can still get the original value in the next
run. Changing the ‘_orig’ values is probably not a good idea.

If ret is set to non−zero, the string in ${hook_com[message]} will be used unchanged as the mes-
sage by vcs_info.

If all of this sounds rather confusing, take a look at the Examples section below and also in the
Misc/vcs_info−examples file in the Zsh source. They contain some explanatory code.

Examples
Don’t use vcs_info at all (even though it’s in your prompt):

zstyle ’:vcs_info:*’ enable NONE

Disable the backends for bzr and svk:
zstyle ’:vcs_info:*’ disable bzr svk

Disable everything but bzr and svk:
zstyle ’:vcs_info:*’ enable bzr svk

Provide a special formats for git:
zstyle ’:vcs_info:git:*’ formats ’ GIT, BABY! [%b]’
zstyle ’:vcs_info:git:*’ actionformats ’ GIT ACTION! [%b|%a]’

All %x expansion in all sorts of formats (formats, actionformats, branchformat, you name it) are done
using the ‘zformat’ builtin from the ‘zsh/zutil’ module. That means you can do everything with these %x
items what zformat supports. In particular, if you want something that is really long to have a fixed width,
like a hash in a mercurial branchformat, you can do this: %12.12i. That’ll shrink the 40 character hash to
its 12 leading characters. The form is actually ‘%min.maxx’. More is possible. See the section ‘The
zsh/zutil Module’ in zshmodules(1) for details.

Use the quicker bzr backend
zstyle ’:vcs_info:bzr:*’ use−simple true

If you do use use−simple, please report if it does ‘the−right−thing[tm]’.

Display the revision number in yellow for bzr and svn:
zstyle ’:vcs_info:(svn|bzr):*’ \

branchformat ’%b%{’${fg[yellow]}’%}:%r’

If you want colors, make sure you enclose the color codes in %{...%} if you want to use the string provided
by vcs_info in prompts.

Here is how to print the VCS information as a command (not in a prompt):
alias vcsi=’vcs_info command; vcs_info_lastmsg’

This way, you can even define different formats for output via vcs_info_lastmsg in the

zsh 5.8 February 14, 2020 22

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

’:vcs_info:*:command:*’ namespace.

Now as promised, some code that uses hooks: say, you’d like to replace the string ‘svn’ by ‘subversion’ in
vcs_info’s %s formats replacement.

First, we will tell vcs_info to call a function when populating the message variables with the gathered infor-
mation:

zstyle ’:vcs_info:*+set−message:*’ hooks svn2subversion

Nothing happens. Which is reasonable, since we didn’t define the actual function yet. To see what the
hooks subsystem is trying to do, enable the ‘debug’ style:

zstyle ’:vcs_info:*+*:*’ debug true

That should give you an idea what is going on. Specifically, the function that we are looking for is
‘+vi−svn2subversion’. Note, the ‘+vi−’ prefix. So, everything is in order, just as documented. When you
are done checking out the debugging output, disable it again:

zstyle ’:vcs_info:*+*:*’ debug false

Now, let’s define the function:
function +vi−svn2subversion() {

[[${hook_com[vcs_orig]} == svn]] && hook_com[vcs]=subversion
}

Simple enough. And it could have even been simpler, if only we had registered our function in a less
generic context. If we do it only in the ‘svn’ backend’s context, we don’t need to test which the active back-
end is:

zstyle ’:vcs_info:svn+set−message:*’ hooks svn2subversion
function +vi−svn2subversion() {

hook_com[vcs]=subversion
}

And finally a little more elaborate example, that uses a hook to create a customised bookmark string for the
hg backend.

Again, we start off by registering a function:
zstyle ’:vcs_info:hg+gen−hg−bookmark−string:*’ hooks hgbookmarks

And then we define the ‘+vi−hgbookmarks’ function:
function +vi−hgbookmarks() {

The default is to connect all bookmark names by
commas. This mixes things up a little.
Imagine, there’s one type of bookmarks that is
special to you. Say, because it’s *your* work.
Those bookmarks look always like this: "sh/*"
(because your initials are sh, for example).
This makes the bookmarks string use only those
bookmarks. If there’s more than one, it
concatenates them using commas.
The bookmarks returned by ‘hg’ are available in
the function’s positional parameters.
local s="${(Mj:,:)@:#sh/*}"
Now, the communication with the code that calls
the hook functions is done via the hook_com[]
hash. The key at which the ‘gen−hg−bookmark−string’
hook looks is ‘hg−bookmark−string’. So:
hook_com[hg−bookmark−string]=$s
And to signal that we want to use the string we
just generated, set the special variable ‘ret’ to
something other than the default zero:
ret=1

zsh 5.8 February 14, 2020 23

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

return 0
}

Some longer examples and code snippets which might be useful are available in the examples file located at
Misc/vcs_info−examples in the Zsh source directory.

This concludes our guided tour through zsh’s vcs_info.

PROMPT THEMES
Installation

You should make sure all the functions from the Functions/Prompts directory of the source distribution are
available; they all begin with the string ‘prompt_’ except for the special function‘promptinit’. You also
need the ‘colors’ and ‘add−zsh−hook’ functions from Functions/Misc. All these functions may already
be installed on your system; if not, you will need to find them and copy them. The directory should appear
as one of the elements of the fpath array (this should already be the case if they were installed), and at least
the function promptinit should be autoloaded; it will autoload the rest. Finally, to initialize the use of the
system you need to call the promptinit function. The following code in your .zshrc will arrange for this;
assume the functions are stored in the directory ˜/myfns:

fpath=(˜/myfns $fpath)
autoload −U promptinit
promptinit

Theme Selection
Use the prompt command to select your preferred theme. This command may be added to your .zshrc fol-
lowing the call to promptinit in order to start zsh with a theme already selected.

prompt [−c | −l]
prompt [−p | −h] [theme ...]
prompt [−s] theme [arg ...]

Set or examine the prompt theme. With no options and a theme argument, the theme with that
name is set as the current theme. The available themes are determined at run time; use the −l op-
tion to see a list. The special theme ‘random’ selects at random one of the available themes and
sets your prompt to that.

In some cases the theme may be modified by one or more arguments, which should be given after
the theme name. See the help for each theme for descriptions of these arguments.

Options are:

−c Show the currently selected theme and its parameters, if any.
−l List all available prompt themes.
−p Preview the theme named by theme, or all themes if no theme is given.
−h Show help for the theme named by theme, or for the prompt function if no theme is

given.
−s Set theme as the current theme and save state.

prompt_theme_setup
Each available theme has a setup function which is called by the prompt function to install that
theme. This function may define other functions as necessary to maintain the prompt, including
functions used to preview the prompt or provide help for its use. You should not normally call a
theme’s setup function directly.

Utility Themes
prompt off

The theme ‘off’ sets all the prompt variables to minimal values with no special effects.

prompt default
The theme ‘default’ sets all prompt variables to the same state as if an interactive zsh was started
with no initialization files.

zsh 5.8 February 14, 2020 24

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

prompt restore
The special theme ‘restore’ erases all theme settings and sets prompt variables to their state before
the first time the ‘prompt’ function was run, provided each theme has properly defined its cleanup
(see below).

Note that you can undo ‘prompt off’ and ‘prompt default’ with ‘prompt restore’, but a second
restore does not undo the first.

Writing Themes
The first step for adding your own theme is to choose a name for it, and create a file ‘prompt_name_setup’

in a directory in your fpath, such as ˜/myfns in the example above. The file should at minimum contain as-

signments for the prompt variables that your theme wishes to modify. By convention, themes use PS1, PS2,

RPS1, etc., rather than the longer PROMPT and RPROMPT.

The file is autoloaded as a function in the current shell context, so it may contain any necessary commands
to customize your theme, including defining additional functions. To make some complex tasks easier,
your setup function may also do any of the following:

Assign prompt_opts
The array prompt_opts may be assigned any of "bang", "cr", "percent", "sp", and/or "subst"
as values. The corresponding setopts (promptbang, etc.) are turned on, all other prompt−related
options are turned off. The prompt_opts array preserves setopts even beyond the scope of
localoptions, should your function need that.

Modify precmd and preexec
Use of add−zsh−hook is recommended. The precmd and preexec hooks are automatically ad-
justed if the prompt theme changes or is disabled.

Declare cleanup
If your function makes any other changes that should be undone when the theme is disabled, your
setup function may call
prompt_cleanup command

where command should be suitably quoted. If your theme is ever disabled or replaced by another, com-

mand is executed with ev al. You may declare more than one such cleanup hook.

Define preview

Define or autoload a function prompt_name_preview to display a simulated version of your

prompt. A simple default previewer is defined by promptinit for themes that do not define their

own. This preview function is called by ‘prompt −p’.

Provide help

Define or autoload a function prompt_name_help to display documentation or help text for your

theme. This help function is called by ‘prompt −h’.

ZLE FUNCTIONS
Widgets

These functions all implement user−defined ZLE widgets (see zshzle(1)) which can be bound to keystrokes
in interactive shells. To use them, your .zshrc should contain lines of the form

autoload function

zle −N function

followed by an appropriate bindkey command to associate the function with a key sequence. Suggested
bindings are described below.

bash−style word functions
If you are looking for functions to implement moving over and editing words in the manner of
bash, where only alphanumeric characters are considered word characters, you can use the func-
tions described in the next section. The following is sufficient:

autoload −U select−word−style
select−word−style bash

zsh 5.8 February 14, 2020 25

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

forward−word−match, backward−word−match
kill−word−match, backward−kill−word−match
transpose−words−match, capitalize−word−match
up−case−word−match, down−case−word−match
delete−whole−word−match, select−word−match
select−word−style, match−word−context, match−words−by−style

The first eight ‘−match’ functions are drop−in replacements for the builtin widgets without the
suffix. By default they behave in a similar way. However, by the use of styles and the function se-
lect−word−style, the way words are matched can be altered. select−word−match is intended to
be used as a text object in vi mode but with custom word styles. For comparison, the widgets de-
scribed in zshzle(1) under Text Objects use fixed definitions of words, compatible with the vim ed-
itor.

The simplest way of configuring the functions is to use select−word−style, which can either be
called as a normal function with the appropriate argument, or invoked as a user−defined widget
that will prompt for the first character of the word style to be used. The first time it is invoked, the
first eight −match functions will automatically replace the builtin versions, so they do not need to
be loaded explicitly.

The word styles available are as follows. Only the first character is examined.

bash Word characters are alphanumeric characters only.

normal
As in normal shell operation: word characters are alphanumeric characters plus any char-
acters present in the string given by the parameter $WORDCHARS.

shell Words are complete shell command arguments, possibly including complete quoted
strings, or any tokens special to the shell.

whitespace
Words are any set of characters delimited by whitespace.

default Restore the default settings; this is usually the same as ‘normal’.

All but ‘default’ can be input as an upper case character, which has the same effect but with sub-
word matching turned on. In this case, words with upper case characters are treated specially:
each separate run of upper case characters, or an upper case character followed by any number of
other characters, is considered a word. The style subword−range can supply an alternative char-
acter range to the default ‘[:upper:]’; the value of the style is treated as the contents of a ‘[...]’ pat-
tern (note that the outer brackets should not be supplied, only those surrounding named ranges).

More control can be obtained using the zstyle command, as described in zshmodules(1). Each
style is looked up in the context :zle:widget where widget is the name of the user−defined widget,
not the name of the function implementing it, so in the case of the definitions supplied by se-
lect−word−style the appropriate contexts are :zle:forward−word, and so on. The function se-
lect−word−style itself always defines styles for the context ‘:zle:*’ which can be overridden by
more specific (longer) patterns as well as explicit contexts.

The style word−style specifies the rules to use. This may have the following values.

normal
Use the standard shell rules, i.e. alphanumerics and $WORDCHARS, unless overridden
by the styles word−chars or word−class.

specified
Similar to normal, but only the specified characters, and not also alphanumerics, are con-
sidered word characters.

unspecified
The negation of specified. The given characters are those which will not be considered
part of a word.

zsh 5.8 February 14, 2020 26

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

shell Words are obtained by using the syntactic rules for generating shell command arguments.
In addition, special tokens which are never command arguments such as ‘()’ are also
treated as words.

whitespace
Words are whitespace−delimited strings of characters.

The first three of those rules usually use $WORDCHARS, but the value in the parameter can be
overridden by the style word−chars, which works in exactly the same way as $WORDCHARS.
In addition, the style word−class uses character class syntax to group characters and takes prece-
dence over word−chars if both are set. The word−class style does not include the surrounding
brackets of the character class; for example, ‘−:[:alnum:]’ is a valid word−class to include all al-
phanumerics plus the characters ‘−’ and ‘:’. Be careful including ‘]’, ‘ˆ’ and ‘−’ as these are spe-
cial inside character classes.

word−style may also have ‘−subword’ appended to its value to turn on subword matching, as de-
scribed above.

The style skip−chars is mostly useful for transpose−words and similar functions. If set, it gives
a count of characters starting at the cursor position which will not be considered part of the word
and are treated as space, regardless of what they actually are. For example, if

zstyle ’:zle:transpose−words’ skip−chars 1

has been set, and transpose−words−match is called with the cursor on the X of fooXbar, where X

can be any character, then the resulting expression is barXfoo.

Finer grained control can be obtained by setting the style word−context to an array of pairs of en-
tries. Each pair of entries consists of a pattern and a subcontext. The shell argument the cursor is
on is matched against each pattern in turn until one matches; if it does, the context is extended by
a colon and the corresponding subcontext. Note that the test is made against the original word on
the line, with no stripping of quotes. Special handling is done between words: the current context
is examined and if it contains the string between the word is set to a single space; else if it is con-
tains the string back, the word before the cursor is considered, else the word after cursor is consid-
ered. Some examples are given below.

The style skip−whitespace−first is only used with the forward−word widget. If it is set to true,
then forward−word skips any non−word−characters, followed by any non−word−characters: this
is similar to the behaviour of other word−orientated widgets, and also that used by other editors,
however it differs from the standard zsh behaviour. When using select−word−style the widget is
set in the context :zle:* to true if the word style is bash and false otherwise. It may be overridden
by setting it in the more specific context :zle:forward−word*.

It is possible to create widgets with specific behaviour by defining a new widget implemented by
the appropriate generic function, then setting a style for the context of the specific widget. For ex-
ample, the following defines a widget backward−kill−space−word using back-
ward−kill−word−match, the generic widget implementing backward−kill−word behaviour, and
ensures that the new widget always implements space−delimited behaviour.

zle −N backward−kill−space−word backward−kill−word−match
zstyle :zle:backward−kill−space−word word−style space

The widget backward−kill−space−word can now be bound to a key.

Here are some further examples of use of the styles, actually taken from the simplified interface in
select−word−style:

zstyle ’:zle:*’ word−style standard
zstyle ’:zle:*’ word−chars ’’

Implements bash−style word handling for all widgets, i.e. only alphanumerics are word characters;
equivalent to setting the parameter WORDCHARS empty for the given context.

zsh 5.8 February 14, 2020 27

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

style ’:zle:*kill*’ word−style space

Uses space−delimited words for widgets with the word ‘kill’ in the name. Neither of the styles
word−chars nor word−class is used in this case.

Here are some examples of use of the word−context style to extend the context.

zstyle ’:zle:*’ word−context \
"*/*" filename "[[:space:]]" whitespace

zstyle ’:zle:transpose−words:whitespace’ word−style shell
zstyle ’:zle:transpose−words:filename’ word−style normal
zstyle ’:zle:transpose−words:filename’ word−chars ’’

This provides two different ways of using transpose−words depending on whether the cursor is
on whitespace between words or on a filename, here any word containing a /. On whitespace,
complete arguments as defined by standard shell rules will be transposed. In a filename, only al-
phanumerics will be transposed. Elsewhere, words will be transposed using the default style for
:zle:transpose−words.

The word matching and all the handling of zstyle settings is actually implemented by the function
match−words−by−style. This can be used to create new user−defined widgets. The calling func-
tion should set the local parameter curcontext to :zle:widget, create the local parameter
matched_words and call match−words−by−style with no arguments. On return,
matched_words will be set to an array with the elements: (1) the start of the line (2) the word be-
fore the cursor (3) any non−word characters between that word and the cursor (4) any non−word
character at the cursor position plus any remaining non−word characters before the next word, in-
cluding all characters specified by the skip−chars style, (5) the word at or following the cursor (6)
any non−word characters following that word (7) the remainder of the line. Any of the elements
may be an empty string; the calling function should test for this to decide whether it can perform
its function.

If the variable matched_words is defined by the caller to match−words−by−style as an associa-
tive array (local −A matched_words), then the seven values given above should be retrieved from
it as elements named start, word−before−cursor, ws−before−cursor, ws−after−cursor,
word−after−cursor, ws−after−word, and end. In addition the element is−word−start is 1 if the
cursor is on the start of a word or subword, or on white space before it (the cases can be distin-
guished by testing the ws−after−cursor element) and 0 otherwise. This form is recommended for
future compatibility.

It is possible to pass options with arguments to match−words−by−style to override the use of
styles. The options are:
−w word−style

−s skip−chars

−c word−class

−C word−chars

−r subword−range

For example, match−words−by−style −w shell −c 0 may be used to extract the command argu-
ment around the cursor.

The word−context style is implemented by the function match−word−context. This should not
usually need to be called directly.

bracketed−paste−magic
The bracketed−paste widget (see subsection Miscellaneous in zshzle(1)) inserts pasted text liter-
ally into the editor buffer rather than interpret it as keystrokes. This disables some common us-
ages where the self−insert widget is replaced in order to accomplish some extra processing. An
example is the contributed url−quote−magic widget described below.

The bracketed−paste−magic widget is meant to replace bracketed−paste with a wrapper that
re−enables these self−insert actions, and other actions as selected by zstyles. Therefore this

zsh 5.8 February 14, 2020 28

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

widget is installed with

autoload −Uz bracketed−paste−magic
zle −N bracketed−paste bracketed−paste−magic

Other than enabling some widget processing, bracketed−paste−magic attempts to replicate
bracketed−paste as faithfully as possible.

The following zstyles may be set to control processing of pasted text. All are looked up in the
context ‘:bracketed−paste−magic’.

active−widgets
A list of patterns matching widget names that should be activated during the paste. All
other key sequences are processed as self−insert−unmeta. The default is ‘self−*’ so any
user−defined widgets named with that prefix are active along with the builtin self−insert.

If this style is not set (explicitly deleted) or set to an empty value, no widgets are active
and the pasted text is inserted literally. If the value includes ‘undefined−key’, any un-
known sequences are discarded from the pasted text.

inactive−keys
The inverse of active−widgets, a list of key sequences that always use self−insert−un-
meta ev en when bound to an active widget. Note that this is a list of literal key se-
quences, not patterns.

paste−init
A list of function names, called in widget context (but not as widgets). The functions are
called in order until one of them returns a non−zero status. The parameter ‘PASTED’
contains the initial state of the pasted text. All other ZLE parameters such as ‘BUFFER’
have their normal values and side−effects, and full history is available, so for example
paste−init functions may move words from BUFFER into PASTED to make those
words visible to the active−widgets.

A non−zero return from a paste−init function does not prevent the paste itself from pro-
ceeding.

Loading bracketed−paste−magic defines backward−extend−paste, a helper function
for use in paste−init.

zstyle :bracketed−paste−magic paste−init \
backward−extend−paste

When a paste would insert into the middle of a word or append text to a word already on
the line, backward−extend−paste moves the prefix from LBUFFER into PASTED so
that the active−widgets see the full word so far. This may be useful with
url−quote−magic.

paste−finish
Another list of function names called in order until one returns non−zero. These func-
tions are called after the pasted text has been processed by the active−widgets, but before

it is inserted into ‘BUFFER’. ZLE parameters have their normal values and side−effects.

A non−zero return from a paste−finish function does not prevent the paste itself from
proceeding.

Loading bracketed−paste−magic also defines quote−paste, a helper function for use in
paste−finish.

zstyle :bracketed−paste−magic paste−finish \
quote−paste

zstyle :bracketed−paste−magic:finish quote−style \
qqq

zsh 5.8 February 14, 2020 29

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

When the pasted text is inserted into BUFFER, it is quoted per the quote−style value.
To forcibly turn off the built−in numeric prefix quoting of bracketed−paste, use:

zstyle :bracketed−paste−magic:finish quote−style \
none

Important: During active−widgets processing of the paste (after paste−init and before paste−fin-
ish), BUFFER starts empty and history is restricted, so cursor motions, etc., may not pass outside
of the pasted content. Te xt assigned to BUFFER by the active widgets is copied back into
PASTED before paste−finish.

copy−earlier−word
This widget works like a combination of insert−last−word and copy−prev−shell−word. Re-
peated invocations of the widget retrieve earlier words on the relevant history line. With a numeric
argument N, insert the Nth word from the history line; N may be negative to count from the end of
the line.

If insert−last−word has been used to retrieve the last word on a previous history line, repeated in-
vocations will replace that word with earlier words from the same line.

Otherwise, the widget applies to words on the line currently being edited. The widget style can be
set to the name of another widget that should be called to retrieve words. This widget must accept
the same three arguments as insert−last−word.

cycle−completion−positions
After inserting an unambiguous string into the command line, the new function based completion
system may know about multiple places in this string where characters are missing or differ from
at least one of the possible matches. It will then place the cursor on the position it considers to be
the most interesting one, i.e. the one where one can disambiguate between as many matches as
possible with as little typing as possible.

This widget allows the cursor to be easily moved to the other interesting spots. It can be invoked
repeatedly to cycle between all positions reported by the completion system.

delete−whole−word−match
This is another function which works like the −match functions described immediately above, i.e.
using styles to decide the word boundaries. However, it is not a replacement for any existing func-
tion.

The basic behaviour is to delete the word around the cursor. There is no numeric argument han-
dling; only the single word around the cursor is considered. If the widget contains the string kill,
the removed text will be placed in the cutbuffer for future yanking. This can be obtained by defin-
ing kill−whole−word−match as follows:

zle −N kill−whole−word−match delete−whole−word−match

and then binding the widget kill−whole−word−match.

up−line−or−beginning−search, down−line−or−beginning−search
These widgets are similar to the builtin functions up−line−or−search and down−line−or−search:
if in a multiline buffer they move up or down within the buffer, otherwise they search for a history
line matching the start of the current line. In this case, however, they search for a line which
matches the current line up to the current cursor position, in the manner of history−begin-
ning−search−backward and −forward, rather than the first word on the line.

edit−command−line
Edit the command line using your visual editor, as in ksh.

bindkey −M vicmd v edit−command−line

expand−absolute−path
Expand the file name under the cursor to an absolute path, resolving symbolic links. Where possi-
ble, the initial path segment is turned into a named directory or reference to a user’s home

zsh 5.8 February 14, 2020 30

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

directory.

history−search−end
This function implements the widgets history−beginning−search−backward−end and his-
tory−beginning−search−forward−end. These commands work by first calling the corresponding
builtin widget (see ‘History Control’ in zshzle(1)) and then moving the cursor to the end of the
line. The original cursor position is remembered and restored before calling the builtin widget a
second time, so that the same search is repeated to look farther through the history.

Although you autoload only one function, the commands to use it are slightly different because it
implements two widgets.

zle −N history−beginning−search−backward−end \
history−search−end

zle −N history−beginning−search−forward−end \
history−search−end

bindkey ’\eˆP’ history−beginning−search−backward−end
bindkey ’\eˆN’ history−beginning−search−forward−end

history−beginning−search−menu
This function implements yet another form of history searching. The text before the cursor is used
to select lines from the history, as for history−beginning−search−backward except that all
matches are shown in a numbered menu. Typing the appropriate digits inserts the full history line.
Note that leading zeroes must be typed (they are only shown when necessary for removing ambi-
guity). The entire history is searched; there is no distinction between forwards and backwards.

With a numeric argument, the search is not anchored to the start of the line; the string typed by the
use may appear anywhere in the line in the history.

If the widget name contains ‘−end’ the cursor is moved to the end of the line inserted. If the wid-
get name contains ‘−space’ any space in the text typed is treated as a wildcard and can match any-
thing (hence a leading space is equivalent to giving a numeric argument). Both forms can be com-
bined, for example:

zle −N history−beginning−search−menu−space−end \
history−beginning−search−menu

history−pattern−search
The function history−pattern−search implements widgets which prompt for a pattern with which
to search the history backwards or forwards. The pattern is in the usual zsh format, however the
first character may be ˆ to anchor the search to the start of the line, and the last character may be $
to anchor the search to the end of the line. If the search was not anchored to the end of the line the
cursor is positioned just after the pattern found.

The commands to create bindable widgets are similar to those in the example immediately above:

autoload −U history−pattern−search
zle −N history−pattern−search−backward history−pattern−search
zle −N history−pattern−search−forward history−pattern−search

incarg Typing the keystrokes for this widget with the cursor placed on or to the left of an integer causes
that integer to be incremented by one. With a numeric argument, the number is incremented by
the amount of the argument (decremented if the numeric argument is negative). The shell parame-
ter incarg may be set to change the default increment to something other than one.

bindkey ’ˆX+’ incarg

incremental−complete−word
This allows incremental completion of a word. After starting this command, a list of completion
choices can be shown after every character you type, which you can delete with ˆH or DEL.
Pressing return accepts the completion so far and returns you to normal editing (that is, the com-
mand line is not immediately executed). You can hit TAB to do normal completion, ˆG to abort

zsh 5.8 February 14, 2020 31

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

back to the state when you started, and ˆD to list the matches.

This works only with the new function based completion system.

bindkey ’ˆXi’ incremental−complete−word

insert−composed−char
This function allows you to compose characters that don’t appear on the keyboard to be inserted
into the command line. The command is followed by two keys corresponding to ASCII characters
(there is no prompt). For accented characters, the two keys are a base character followed by a
code for the accent, while for other special characters the two characters together form a mne-
monic for the character to be inserted. The two−character codes are a subset of those given by
RFC 1345 (see for example http://www.faqs.org/rfcs/rfc1345.html).

The function may optionally be followed by up to two characters which replace one or both of the
characters read from the keyboard; if both characters are supplied, no input is read. For example,
insert−composed−char a: can be used within a widget to insert an a with umlaut into the com-
mand line. This has the advantages over use of a literal character that it is more portable.

For best results zsh should have been built with support for multibyte characters (configured with
−−enable−multibyte); however, the function works for the limited range of characters available in
single−byte character sets such as ISO−8859−1.

The character is converted into the local representation and inserted into the command line at the
cursor position. (The conversion is done within the shell, using whatever facilities the C library
provides.) With a numeric argument, the character and its code are previewed in the status line

The function may be run outside zle in which case it prints the character (together with a newline)
to standard output. Input is still read from keystrokes.

See insert−unicode−char for an alternative way of inserting Unicode characters using their hexa-
decimal character number.

The set of accented characters is reasonably complete up to Unicode character U+0180, the set of
special characters less so. However, it is very sporadic from that point. Adding new characters is
easy, howev er; see the function define−composed−chars. Please send any additions to
zsh−workers@zsh.org.

The codes for the second character when used to accent the first are as follows. Note that not ev-
ery character can take every accent.
! Grave.
’ Acute.
> Circumflex.
? Tilde. (This is not ˜ as RFC 1345 does not assume that character is present on the key-

board.)
− Macron. (A horizontal bar over the base character.)
(Breve. (A shallow dish shape over the base character.)
. Dot above the base character, or in the case of i no dot, or in the case of L and l a cen-

tered dot.
: Diaeresis (Umlaut).
c Cedilla.
_ Underline, however there are currently no underlined characters.
/ Stroke through the base character.
" Double acute (only supported on a few letters).
; Ogonek. (A little forward facing hook at the bottom right of the character.)
< Caron. (A little v over the letter.)
0 Circle over the base character.
2 Hook over the base character.
9 Horn over the base character.

The most common characters from the Arabic, Cyrillic, Greek and Hebrew alphabets are

zsh 5.8 February 14, 2020 32

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

available; consult RFC 1345 for the appropriate sequences. In addition, a set of two letter codes
not in RFC 1345 are available for the double−width characters corresponding to ASCII characters
from ! to ˜ (0x21 to 0x7e) by preceding the character with ˆ, for example ˆA for a double−width
A.

The following other two−character sequences are understood.

ASCII characters
These are already present on most keyboards:

<(Left square bracket
// Backslash (solidus)
)> Right square bracket
(! Left brace (curly bracket)
!! Vertical bar (pipe symbol)
!) Right brace (curly bracket)
’? Tilde

Special letters
Characters found in various variants of the Latin alphabet:

ss Eszett (scharfes S)
D−, d− Eth
TH, th Thorn
kk Kra
’n ’n
NG, ng Ng
OI, oi Oi
yr yr
ED ezh

Currency symbols
Ct Cent
Pd Pound sterling (also lira and others)
Cu Currency
Ye Yen
Eu Euro (N.B. not in RFC 1345)

Punctuation characters
References to "right" quotes indicate the shape (like a 9 rather than 6) rather than their
grammatical use. (For example, a "right" low double quote is used to open quotations in
German.)

!I Inverted exclamation mark
BB Broken vertical bar
SE Section
Co Copyright
−a Spanish feminine ordinal indicator
<< Left guillemet
−− Soft hyphen
Rg Registered trade mark
PI Pilcrow (paragraph)
−o Spanish masculine ordinal indicator
>> Right guillemet
?I Inverted question mark
−1 Hyphen
−N En dash
−M Em dash
−3 Horizontal bar

zsh 5.8 February 14, 2020 33

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

:3 Vertical ellipsis
.3 Horizontal midline ellipsis
!2 Double vertical line
=2 Double low line
’6 Left single quote
’9 Right single quote
.9 "Right" low quote
9’ Reversed "right" quote
"6 Left double quote
"9 Right double quote
:9 "Right" low double quote
9" Reversed "right" double quote
/− Dagger
/= Double dagger

Mathematical symbols
DG Degree
−2, +−, −+

− sign, +/− sign, −/+ sign
2S Superscript 2
3S Superscript 3
1S Superscript 1
My Micro
.M Middle dot
14 Quarter
12 Half
34 Three quarters
*X Multiplication
−: Division
%0 Per mille
FA, TE, /0

For all, there exists, empty set
dP, DE, NB

Partial derivative, delta (increment), del (nabla)
(−, −) Element of, contains
*P, +Z Product, sum
*−, Ob, Sb

Asterisk, ring, bullet
RT, 0(, 00

Root sign, proportional to, infinity

Other symbols
cS, cH, cD, cC

Card suits: spades, hearts, diamonds, clubs
Md, M8, M2, Mb, Mx, MX

Musical notation: crotchet (quarter note), quaver (eighth note), semiquavers (sixteenth
notes), flag sign, natural sign, sharp sign

Fm, Ml
Female, male

Accents on their own
’> Circumflex (same as caret, ˆ)
’! Grave (same as backtick, ‘)
’, Cedilla
’: Diaeresis (Umlaut)

zsh 5.8 February 14, 2020 34

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

’m Macron
’’ Acute

insert−files
This function allows you type a file pattern, and see the results of the expansion at each step.
When you hit return, all expansions are inserted into the command line.

bindkey ’ˆXf’ insert−files

insert−unicode−char
When first executed, the user inputs a set of hexadecimal digits. This is terminated with another
call to insert−unicode−char. The digits are then turned into the corresponding Unicode charac-
ter. For example, if the widget is bound to ˆXU, the character sequence ‘ˆXU 4 c ˆXU’ inserts L
(Unicode U+004c).

See insert−composed−char for a way of inserting characters using a two−character mnemonic.

narrow−to−region [−p pre] [−P post]
[−S statepm | −R statepm | [−l lbufvar] [−r rbufvar]]
[−n] [start end]

narrow−to−region−invisible
Narrow the editable portion of the buffer to the region between the cursor and the mark, which
may be in either order. The region may not be empty.

narrow−to−region may be used as a widget or called as a function from a user−defined widget;
by default, the text outside the editable area remains visible. A recursive−edit is performed and
the original widening status is then restored. Various options and arguments are available when it
is called as a function.

The options −p pretext and −P posttext may be used to replace the text before and after the display
for the duration of the function; either or both may be an empty string.

If the option −n is also given, pretext or posttext will only be inserted if there is text before or after
the region respectively which will be made invisible.

Tw o numeric arguments may be given which will be used instead of the cursor and mark positions.

The option −S statepm is used to narrow according to the other options while saving the original
state in the parameter with name statepm, while the option −R statepm is used to restore the state
from the parameter; note in both cases the name of the parameter is required. In the second case,
other options and arguments are irrelevant. When this method is used, no recursive−edit is per-
formed; the calling widget should call this function with the option −S, perform its own editing on
the command line or pass control to the user via ‘zle recursive−edit’, then call this function with
the option −R. The argument statepm must be a suitable name for an ordinary parameter, except
that parameters beginning with the prefix _ntr_ are reserved for use within narrow−to−region.
Typically the parameter will be local to the calling function.

The options −l lbufvar and −r rbufvar may be used to specify parameters where the widget will
store the resulting text from the operation. The parameter lbufvar will contain LBUFFER and
rbufvar will contain RBUFFER. Neither of these two options may be used with −S or −R.

narrow−to−region−invisible is a simple widget which calls narrow−to−region with arguments
which replace any text outside the region with ‘...’. It does not take any arguments.

The display is restored (and the widget returns) upon any zle command which would usually cause
the line to be accepted or aborted. Hence an additional such command is required to accept or
abort the current line.

The return status of both widgets is zero if the line was accepted, else non−zero.

Here is a trivial example of a widget using this feature.
local state

zsh 5.8 February 14, 2020 35

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

narrow−to−region −p $’Editing restricted region\n’ \
−P ’’ −S state

zle recursive−edit
narrow−to−region −R state

predict−on
This set of functions implements predictive typing using history search. After predict−on, typing
characters causes the editor to look backward in the history for the first line beginning with what
you have typed so far. After predict−off, editing returns to normal for the line found. In fact, you
often don’t even need to use predict−off, because if the line doesn’t match something in the his-
tory, adding a key performs standard completion, and then inserts itself if no completions were
found. However, editing in the middle of a line is liable to confuse prediction; see the toggle style
below.

With the function based completion system (which is needed for this), you should be able to type
TAB at almost any point to advance the cursor to the next ‘‘interesting’’ character position (usually
the end of the current word, but sometimes somewhere in the middle of the word). And of course
as soon as the entire line is what you want, you can accept with return, without needing to move
the cursor to the end first.

The first time predict−on is used, it creates several additional widget functions:

delete−backward−and−predict
Replaces the backward−delete−char widget. You do not need to bind this yourself.

insert−and−predict
Implements predictive typing by replacing the self−insert widget. You do not need to
bind this yourself.

predict−off
Turns off predictive typing.

Although you autoload only the predict−on function, it is necessary to create a keybinding for
predict−off as well.

zle −N predict−on
zle −N predict−off
bindkey ’ˆXˆZ’ predict−on
bindkey ’ˆZ’ predict−off

read−from−minibuffer
This is most useful when called as a function from inside a widget, but will work correctly as a
widget in its own right. It prompts for a value below the current command line; a value may be in-
put using all of the standard zle operations (and not merely the restricted set available when exe-
cuting, for example, execute−named−cmd). The value is then returned to the calling function in
the parameter $REPLY and the editing buffer restored to its previous state. If the read was
aborted by a keyboard break (typically ˆG), the function returns status 1 and $REPLY is not set.

If one argument is supplied to the function it is taken as a prompt, otherwise ‘? ’ is used. If two
arguments are supplied, they are the prompt and the initial value of $LBUFFER, and if a third ar-
gument is given it is the initial value of $RBUFFER. This provides a default value and starting
cursor placement. Upon return the entire buffer is the value of $REPLY.

One option is available: ‘−k num’ specifies that num characters are to be read instead of a whole
line. The line editor is not invoked recursively in this case, so depending on the terminal settings
the input may not be visible, and only the input keys are placed in $REPLY, not the entire buffer.
Note that unlike the read builtin num must be given; there is no default.

The name is a slight misnomer, as in fact the shell’s own minibuffer is not used. Hence it is still
possible to call executed−named−cmd and similar functions while reading a value.

zsh 5.8 February 14, 2020 36

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

replace−argument, replace−argument−edit
The function replace−argument can be used to replace a command line argument in the current
command line or, if the current command line is empty, in the last command line executed (the
new command line is not executed). Arguments are as delimited by standard shell syntax,

If a numeric argument is given, that specifies the argument to be replaced. 0 means the command
name, as in history expansion. A negative numeric argument counts backward from the last word.

If no numeric argument is given, the current argument is replaced; this is the last argument if the
previous history line is being used.

The function prompts for a replacement argument.

If the widget contains the string edit, for example is defined as

zle −N replace−argument−edit replace−argument

then the function presents the current value of the argument for editing, otherwise the editing buf-
fer for the replacement is initially empty.

replace−string, replace−pattern
replace−string−again, replace−pattern−again

The function replace−string implements three widgets. If defined under the same name as the
function, it prompts for two strings; the first (source) string will be replaced by the second every-
where it occurs in the line editing buffer.

If the widget name contains the word ‘pattern’, for example by defining the widget using the
command ‘zle −N replace−pattern replace−string’, then the matching is performed using zsh
patterns. All zsh extended globbing patterns can be used in the source string; note that unlike file-
name generation the pattern does not need to match an entire word, nor do glob qualifiers have any
effect. In addition, the replacement string can contain parameter or command substitutions. Fur-
thermore, a ‘&’ in the replacement string will be replaced with the matched source string, and a
backquoted digit ‘\N’ will be replaced by the Nth parenthesised expression matched. The form
‘\{N}’ may be used to protect the digit from following digits.

If the widget instead contains the word ‘regex’ (or ‘regexp’), then the matching is performed us-
ing regular expressions, respecting the setting of the option RE_MATCH_PCRE (see the descrip-
tion of the function regexp−replace below). The special replacement facilities described above
for pattern matching are available.

By default the previous source or replacement string will not be offered for editing. However, this
feature can be activated by setting the style edit−previous in the context :zle:widget (for example,
:zle:replace−string) to true. In addition, a positive numeric argument forces the previous values
to be offered, a negative or zero argument forces them not to be.

The function replace−string−again can be used to repeat the previous replacement; no prompting
is done. As with replace−string, if the name of the widget contains the word ‘pattern’ or
‘regex’, pattern or regular expression matching is performed, else a literal string replacement.
Note that the previous source and replacement text are the same whether pattern, regular expres-
sion or string matching is used.

In addition, replace−string shows the previous replacement above the prompt, so long as there
was one during the current session; if the source string is empty, that replacement will be repeated
without the widget prompting for a replacement string.

For example, starting from the line:

print This line contains fan and fond

and invoking replace−pattern with the source string ‘f(?)n’ and the replacement string ‘c\1r’ pro-
duces the not very useful line:

print This line contains car and cord

The range of the replacement string can be limited by using the narrow−to−region−invisible

zsh 5.8 February 14, 2020 37

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

widget. One limitation of the current version is that undo will cycle through changes to the re-
placement and source strings before undoing the replacement itself.

send−invisible
This is similar to read−from−minibuffer in that it may be called as a function from a widget or as a
widget of its own, and interactively reads input from the keyboard. However, the input being
typed is concealed and a string of asterisks (‘*’) is shown instead. The value is saved in the pa-
rameter $INVISIBLE to which a reference is inserted into the editing buffer at the restored cursor
position. If the read was aborted by a keyboard break (typically ˆG) or another escape from edit-
ing such as push−line, $INVISIBLE is set to empty and the original buffer is restored unchanged.

If one argument is supplied to the function it is taken as a prompt, otherwise ‘Non−echoed text: ’
is used (as in emacs). If a second and third argument are supplied they are used to begin and end
the reference to $INVISIBLE that is inserted into the buffer. The default is to open with ${, then
INVISIBLE, and close with }, but many other effects are possible.

smart−insert−last−word
This function may replace the insert−last−word widget, like so:

zle −N insert−last−word smart−insert−last−word

With a numeric argument, or when passed command line arguments in a call from another widget,
it behaves like insert−last−word, except that words in comments are ignored when INTERAC-
TIVE_COMMENTS is set.

Otherwise, the rightmost ‘‘interesting’’ word from the previous command is found and inserted.
The default definition of ‘‘interesting’’ is that the word contains at least one alphabetic character,
slash, or backslash. This definition may be overridden by use of the match style. The context
used to look up the style is the widget name, so usually the context is :insert−last−word. How-
ev er, you can bind this function to different widgets to use different patterns:

zle −N insert−last−assignment smart−insert−last−word
zstyle :insert−last−assignment match ’[[:alpha:]][][[:alnum:]]#=*’
bindkey ’\e=’ insert−last−assignment

If no interesting word is found and the auto−previous style is set to a true value, the search con-
tinues upward through the history. When auto−previous is unset or false (the default), the widget
must be invoked repeatedly in order to search earlier history lines.

transpose−lines
Only useful with a multi−line editing buffer; the lines here are lines within the current on−screen
buffer, not history lines. The effect is similar to the function of the same name in Emacs.

Transpose the current line with the previous line and move the cursor to the start of the next line.
Repeating this (which can be done by providing a positive numeric argument) has the effect of
moving the line above the cursor down by a number of lines.

With a negative numeric argument, requires two lines above the cursor. These two lines are trans-
posed and the cursor moved to the start of the previous line. Using a numeric argument less than
−1 has the effect of moving the line above the cursor up by minus that number of lines.

url−quote−magic
This widget replaces the built−in self−insert to make it easier to type URLs as command line ar-
guments. As you type, the input character is analyzed and, if it may need quoting, the current
word is checked for a URI scheme. If one is found and the current word is not already in quotes, a
backslash is inserted before the input character.

Styles to control quoting behavior:

url−metas
This style is looked up in the context ‘:url−quote−magic:scheme’ (where scheme is that
of the current URL, e.g. "ftp"). The value is a string listing the characters to be treated as
globbing metacharacters when appearing in a URL using that scheme. The default is to

zsh 5.8 February 14, 2020 38

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

quote all zsh extended globbing characters, excluding ’<’ and ’>’ but including braces (as
in brace expansion). See also url−seps.

url−seps
Like url−metas, but lists characters that should be considered command separators, redi-
rections, history references, etc. The default is to quote the standard set of shell separa-
tors, excluding those that overlap with the extended globbing characters, but including ’<’
and ’>’ and the first character of $histchars.

url−globbers
This style is looked up in the context ‘:url−quote−magic’. The values form a list of
command names that are expected to do their own globbing on the URL string. This im-
plies that they are aliased to use the ‘noglob’ modifier. When the first word on the line
matches one of the values and the URL refers to a local file (see url−local−schema),
only the url−seps characters are quoted; the url−metas are left alone, allowing them to
affect command−line parsing, completion, etc. The default values are a literal ‘noglob’
plus (when the zsh/parameter module is available) any commands aliased to the helper
function ‘urlglobber’ or its alias ‘globurl’.

url−local−schema
This style is always looked up in the context ‘:urlglobber’, even though it is used by both
url−quote−magic and urlglobber. The values form a list of URI schema that should be
treated as referring to local files by their real local path names, as opposed to files which
are specified relative to a web−server−defined document root. The defaults are "ftp" and
"file".

url−other−schema
Like url−local−schema, but lists all other URI schema upon which urlglobber and
url−quote−magic should act. If the URI on the command line does not have a scheme
appearing either in this list or in url−local−schema, it is not magically quoted. The de-
fault values are "http", "https", and "ftp". When a scheme appears both here and in
url−local−schema, it is quoted differently depending on whether the command name ap-
pears in url−globbers.

Loading url−quote−magic also defines a helper function ‘urlglobber’ and aliases ‘globurl’ to
‘noglob urlglobber’. This function takes a local URL apart, attempts to pattern−match the local
file portion of the URL path, and then puts the results back into URL format again.

vi−pipe
This function reads a movement command from the keyboard and then prompts for an external
command. The part of the buffer covered by the movement is piped to the external command and
then replaced by the command’s output. If the movement command is bound to vi−pipe, the cur-
rent line is used.

The function serves as an example for reading a vi movement command from within a user−de-
fined widget.

which−command
This function is a drop−in replacement for the builtin widget which−command. It has enhanced
behaviour, in that it correctly detects whether or not the command word needs to be expanded as
an alias; if so, it continues tracing the command word from the expanded alias until it reaches the
command that will be executed.

The style whence is available in the context :zle:$WIDGET; this may be set to an array to give
the command and options that will be used to investigate the command word found. The default is
whence −c.

zcalc−auto−insert
This function is useful together with the zcalc function described in the section Mathematical
Functions. It should be bound to a key representing a binary operator such as ‘+’, ‘−’, ‘*’ or ‘/’.

zsh 5.8 February 14, 2020 39

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

When running in zcalc, if the key occurs at the start of the line or immediately following an open
parenthesis, the text "ans " is inserted before the representation of the key itself. This allows easy
use of the answer from the previous calculation in the current line. The text to be inserted before
the symbol typed can be modified by setting the variable ZCALC_AUTO_INSERT_PREFIX.

Hence, for example, typing ‘+12’ followed by return adds 12 to the previous result.

If zcalc is in RPN mode (−r option) the effect of this binding is automatically suppressed as opera-
tors alone on a line are meaningful.

When not in zcalc, the key simply inserts the symbol itself.

Utility Functions
These functions are useful in constructing widgets. They should be loaded with ‘autoload −U function’
and called as indicated from user−defined widgets.

split−shell−arguments
This function splits the line currently being edited into shell arguments and whitespace. The result
is stored in the array reply. The array contains all the parts of the line in order, starting with any
whitespace before the first argument, and finishing with any whitespace after the last argument.
Hence (so long as the option KSH_ARRAYS is not set) whitespace is given by odd indices in the
array and arguments by even indices. Note that no stripping of quotes is done; joining together all
the elements of reply in order is guaranteed to produce the original line.

The parameter REPLY is set to the index of the word in reply which contains the character after
the cursor, where the first element has index 1. The parameter REPLY2 is set to the index of the
character under the cursor in that word, where the first character has index 1.

Hence reply, REPLY and REPLY2 should all be made local to the enclosing function.

See the function modify−current−argument, described below, for an example of how to call this
function.

modify−current−argument [expr−using−$ARG | func]
This function provides a simple method of allowing user−defined widgets to modify the command
line argument under the cursor (or immediately to the left of the cursor if the cursor is between ar-
guments).

The argument can be an expression which when evaluated operates on the shell parameter ARG,
which will have been set to the command line argument under the cursor. The expression should
be suitably quoted to prevent it being evaluated too early.

Alternatively, if the argument does not contain the string ARG, it is assumed to be a shell function,
to which the current command line argument is passed as the only argument. The function should
set the variable REPLY to the new value for the command line argument. If the function returns
non−zero status, so does the calling function.

For example, a user−defined widget containing the following code converts the characters in the
argument under the cursor into all upper case:

modify−current−argument ’${(U)ARG}’

The following strips any quoting from the current word (whether backslashes or one of the styles
of quotes), and replaces it with single quoting throughout:

modify−current−argument ’${(qq)${(Q)ARG}}’

The following performs directory expansion on the command line argument and replaces it by the
absolute path:

expand−dir() {
REPLY=${˜1}
REPLY=${REPLY:a}

}
modify−current−argument expand−dir

zsh 5.8 February 14, 2020 40

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

In practice the function expand−dir would probably not be defined within the widget where mod-
ify−current−argument is called.

Styles
The behavior of several of the above widgets can be controlled by the use of the zstyle mechanism. In par-
ticular, widgets that interact with the completion system pass along their context to any completions that
they inv oke.

break−keys
This style is used by the incremental−complete−word widget. Its value should be a pattern, and
all keys matching this pattern will cause the widget to stop incremental completion without the key
having any further effect. Like all styles used directly by incremental−complete−word, this style
is looked up using the context ‘:incremental’.

completer
The incremental−complete−word and insert−and−predict widgets set up their top−level context
name before calling completion. This allows one to define different sets of completer functions
for normal completion and for these widgets. For example, to use completion, approximation and
correction for normal completion, completion and correction for incremental completion and only
completion for prediction one could use:

zstyle ’:completion:*’ completer \
_complete _correct _approximate

zstyle ’:completion:incremental:*’ completer \
_complete _correct

zstyle ’:completion:predict:*’ completer \
_complete

It is a good idea to restrict the completers used in prediction, because they may be automatically
invoked as you type. The _list and _menu completers should never be used with prediction. The
_approximate, _correct, _expand, and _match completers may be used, but be aware that they
may change characters anywhere in the word behind the cursor, so you need to watch carefully
that the result is what you intended.

cursor The insert−and−predict widget uses this style, in the context ‘:predict’, to decide where to place
the cursor after completion has been tried. Values are:

complete
The cursor is left where it was when completion finished, but only if it is after a character
equal to the one just inserted by the user. If it is after another character, this value is the
same as ‘key’.

key The cursor is left after the nth occurrence of the character just inserted, where n is the
number of times that character appeared in the word before completion was attempted. In
short, this has the effect of leaving the cursor after the character just typed even if the
completion code found out that no other characters need to be inserted at that position.

Any other value for this style unconditionally leaves the cursor at the position where the comple-
tion code left it.

list When using the incremental−complete−word widget, this style says if the matches should be
listed on every key press (if they fit on the screen). Use the context prefix ‘:completion:incre-
mental’.

The insert−and−predict widget uses this style to decide if the completion should be shown even
if there is only one possible completion. This is done if the value of this style is the string always.
In this case the context is ‘:predict’ (not ‘:completion:predict’).

match This style is used by smart−insert−last−word to provide a pattern (using full EX-
TENDED_GLOB syntax) that matches an interesting word. The context is the name of the wid-
get to which smart−insert−last−word is bound (see above). The default behavior of smart−in-
sert−last−word is equivalent to:

zsh 5.8 February 14, 2020 41

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

zstyle :insert−last−word match ’*[[:alpha:]/\\]*’

However, you might want to include words that contain spaces:

zstyle :insert−last−word match ’*[[:alpha:][:space:]/\\]*’

Or include numbers as long as the word is at least two characters long:

zstyle :insert−last−word match ’*([[:digit:]]?|[[:alpha:]/\\])*’

The above example causes redirections like "2>" to be included.

prompt
The incremental−complete−word widget shows the value of this style in the status line during in-
cremental completion. The string value may contain any of the following substrings in the manner
of the PS1 and other prompt parameters:

%c Replaced by the name of the completer function that generated the matches (without the
leading underscore).

%l When the list style is set, replaced by ‘...’ if the list of matches is too long to fit on the
screen and with an empty string otherwise. If the list style is ‘false’ or not set, ‘%l’ is al-
ways removed.

%n Replaced by the number of matches generated.

%s Replaced by ‘−no match−’, ‘−no prefix−’, or an empty string if there is no completion
matching the word on the line, if the matches have no common prefix different from the
word on the line, or if there is such a common prefix, respectively.

%u Replaced by the unambiguous part of all matches, if there is any, and if it is different
from the word on the line.

Like ‘break−keys’, this uses the ‘:incremental’ context.

stop−keys
This style is used by the incremental−complete−word widget. Its value is treated similarly to the
one for the break−keys style (and uses the same context: ‘:incremental’). However, in this case
all keys matching the pattern given as its value will stop incremental completion and will then exe-
cute their usual function.

toggle This boolean style is used by predict−on and its related widgets in the context ‘:predict’. If set to
one of the standard ‘true’ values, predictive typing is automatically toggled off in situations where
it is unlikely to be useful, such as when editing a multi−line buffer or after moving into the middle
of a line and then deleting a character. The default is to leave prediction turned on until an explicit
call to predict−off.

verbose
This boolean style is used by predict−on and its related widgets in the context ‘:predict’. If set to
one of the standard ‘true’ values, these widgets display a message below the prompt when the pre-
dictive state is toggled. This is most useful in combination with the toggle style. The default does
not display these messages.

widget This style is similar to the command style: For widget functions that use zle to call other widgets,
this style can sometimes be used to override the widget which is called. The context for this style
is the name of the calling widget (not the name of the calling function, because one function may
be bound to multiple widget names).

zstyle :copy−earlier−word widget smart−insert−last−word

Check the documentation for the calling widget or function to determine whether the widget style
is used.

EXCEPTION HANDLING
Tw o functions are provided to enable zsh to provide exception handling in a form that should be familiar
from other languages.

zsh 5.8 February 14, 2020 42

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

throw exception

The function throw throws the named exception. The name is an arbitrary string and is only used
by the throw and catch functions. An exception is for the most part treated the same as a shell er-
ror, i.e. an unhandled exception will cause the shell to abort all processing in a function or script
and to return to the top level in an interactive shell.

catch exception−pattern

The function catch returns status zero if an exception was thrown and the pattern exception−pat-

tern matches its name. Otherwise it returns status 1. exception−pattern is a standard shell pattern,
respecting the current setting of the EXTENDED_GLOB option. An alias catch is also defined
to prevent the argument to the function from matching filenames, so patterns may be used un-
quoted. Note that as exceptions are not fundamentally different from other shell errors it is possi-
ble to catch shell errors by using an empty string as the exception name. The shell variable
CAUGHT is set by catch to the name of the exception caught. It is possible to rethrow an excep-
tion by calling the throw function again once an exception has been caught.

The functions are designed to be used together with the always construct described in zshmisc(1). This is
important as only this construct provides the required support for exceptions. A typical example is as fol-
lows.

{
"try" block
... nested code here calls "throw MyExcept"

} always {
"always" block
if catch MyExcept; then
print "Caught exception MyExcept"

elif catch ’’; then
print "Caught a shell error. Propagating..."
throw ’’

fi
Other exceptions are not handled but may be caught further
up the call stack.

}

If all exceptions should be caught, the following idiom might be preferable.

{
... nested code here throws an exception

} always {
if catch *; then
case $CAUGHT in
(MyExcept)
print "Caught my own exception"
;;
(*)
print "Caught some other exception"
;;

esac
fi

}

In common with exception handling in other languages, the exception may be thrown by code deeply
nested inside the ‘try’ block. However, note that it must be thrown inside the current shell, not in a subshell
forked for a pipeline, parenthesised current−shell construct, or some form of command or process substitu-
tion.

The system internally uses the shell variable EXCEPTION to record the name of the exception between
throwing and catching. One drawback of this scheme is that if the exception is not handled the variable

zsh 5.8 February 14, 2020 43

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

EXCEPTION remains set and may be incorrectly recognised as the name of an exception if a shell error
subsequently occurs. Adding unset EXCEPTION at the start of the outermost layer of any code that uses
exception handling will eliminate this problem.

MIME FUNCTIONS
Three functions are available to provide handling of files recognised by extension, for example to dispatch a
file text.ps when executed as a command to an appropriate viewer.

zsh−mime−setup [−fv] [−l [suffix ...]]
zsh−mime−handler [−l] command argument ...

These two functions use the files ˜/.mime.types and /etc/mime.types, which associate types and
extensions, as well as ˜/.mailcap and /etc/mailcap files, which associate types and the programs
that handle them. These are provided on many systems with the Multimedia Internet Mail Exten-
sions.

To enable the system, the function zsh−mime−setup should be autoloaded and run. This allows
files with extensions to be treated as executable; such files be completed by the function comple-
tion system. The function zsh−mime−handler should not need to be called by the user.

The system works by setting up suffix aliases with ‘alias −s’. Suffix aliases already installed by
the user will not be overwritten.

For suffixes defined in lower case, upper case variants will also automatically be handled (e.g.
PDF is automatically handled if handling for the suffix pdf is defined), but not vice versa.

Repeated calls to zsh−mime−setup do not override the existing mapping between suffixes and ex-
ecutable files unless the option −f is given. Note, however, that this does not override existing suf-
fix aliases assigned to handlers other than zsh−mime−handler.

Calling zsh−mime−setup with the option −l lists the existing mappings without altering them.
Suffixes to list (which may contain pattern characters that should be quoted from immediate inter-
pretation on the command line) may be given as additional arguments, otherwise all suffixes are
listed.

Calling zsh−mime−setup with the option −v causes verbose output to be shown during the setup
operation.

The system respects the mailcap flags needsterminal and copiousoutput, see mailcap(4).

The functions use the following styles, which are defined with the zstyle builtin command (see
zshmodules(1)). They should be defined before zsh−mime−setup is run. The contexts used all
start with :mime:, with additional components in some cases. It is recommended that a trailing *
(suitably quoted) be appended to style patterns in case the system is extended in future. Some ex-
amples are given below.

For files that have multiple suffixes, e.g. .pdf.gz, where the context includes the suffix it will be
looked up starting with the longest possible suffix until a match for the style is found. For exam-
ple, if .pdf.gz produces a match for the handler, that will be used; otherwise the handler for .gz
will be used. Note that, owing to the way suffix aliases work, it is always required that there be a
handler for the shortest possible suffix, so in this example .pdf.gz can only be handled if .gz is also
handled (though not necessarily in the same way). Alternatively, if no handling for .gz on its own
is needed, simply adding the command

alias −s gz=zsh−mime−handler

to the initialisation code is sufficient; .gz will not be handled on its own, but may be in combina-
tion with other suffixes.

current−shell
If this boolean style is true, the mailcap handler for the context in question is run using
the ev al builtin instead of by starting a new sh process. This is more efficient, but may
not work in the occasional cases where the mailcap handler uses strict POSIX syntax.

zsh 5.8 February 14, 2020 44

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

disown If this boolean style is true, mailcap handlers started in the background will be disowned,
i.e. not subject to job control within the parent shell. Such handlers nearly always pro-
duce their own windows, so the only likely harmful side effect of setting the style is that
it becomes harder to kill jobs from within the shell.

execute−as−is
This style gives a list of patterns to be matched against files passed for execution with a
handler program. If the file matches the pattern, the entire command line is executed in
its current form, with no handler. This is useful for files which might have suffixes but
nonetheless be executable in their own right. If the style is not set, the pattern *(*) *(/) is
used; hence executable files are executed directly and not passed to a handler, and the op-
tion AUTO_CD may be used to change to directories that happen to have MIME suffixes.

execute−never
This style is useful in combination with execute−as−is. It is set to an array of patterns
corresponding to full paths to files that should never be treated as executable, even if the
file passed to the MIME handler matches execute−as−is. This is useful for file systems
that don’t handle execute permission or that contain executables from another operating
system. For example, if /mnt/windows is a Windows mount, then

zstyle ’:mime:*’ execute−never ’/mnt/windows/*’

will ensure that any files found in that area will be executed as MIME types even if they
are executable. As this example shows, the complete file name is matched against the
pattern, regardless of how the file was passed to the handler. The file is resolved to a full
path using the :P modifier described in the subsection Modifiers in zshexpn(1); this
means that symbolic links are resolved where possible, so that links into other file sys-
tems behave in the correct fashion.

file−path
Used if the style find−file−in−path is true for the same context. Set to an array of direc-
tories that are used for searching for the file to be handled; the default is the command
path given by the special parameter path. The shell option PATH_DIRS is respected; if
that is set, the appropriate path will be searched even if the name of the file to be handled
as it appears on the command line contains a ‘/’. The full context is :mime:.suffix:, as de-
scribed for the style handler.

find−file−in−path
If set, allows files whose names do not contain absolute paths to be searched for in the
command path or the path specified by the file−path style. If the file is not found in the
path, it is looked for locally (whether or not the current directory is in the path); if it is not
found locally, the handler will abort unless the handle−nonexistent style is set. Files
found in the path are tested as described for the style execute−as−is. The full context is
:mime:.suffix:, as described for the style handler.

flags Defines flags to go with a handler; the context is as for the handler style, and the format
is as for the flags in mailcap.

handle−nonexistent
By default, arguments that don’t correspond to files are not passed to the MIME handler
in order to prevent it from intercepting commands found in the path that happen to have
suffixes. This style may be set to an array of extended glob patterns for arguments that
will be passed to the handler even if they don’t exist. If it is not explicitly set it defaults
to [[:alpha:]]#:/* which allows URLs to be passed to the MIME handler even though
they don’t exist in that format in the file system. The full context is :mime:.suffix:, as de-
scribed for the style handler.

handler
Specifies a handler for a suffix; the suffix is given by the context as :mime:.suffix:, and
the format of the handler is exactly that in mailcap. Note in particular the ‘.’ and trailing

zsh 5.8 February 14, 2020 45

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

colon to distinguish this use of the context. This overrides any handler specified by the
mailcap files. If the handler requires a terminal, the flags style should be set to include
the word needsterminal, or if the output is to be displayed through a pager (but not if the
handler is itself a pager), it should include copiousoutput.

mailcap
A list of files in the format of ˜/.mailcap and /etc/mailcap to be read during setup, replac-
ing the default list which consists of those two files. The context is :mime:. A + in the
list will be replaced by the default files.

mailcap−priorities
This style is used to resolve multiple mailcap entries for the same MIME type. It consists
of an array of the following elements, in descending order of priority; later entries will be
used if earlier entries are unable to resolve the entries being compared. If none of the
tests resolve the entries, the first entry encountered is retained.

files The order of files (entries in the mailcap style) read. Earlier files are preferred.
(Note this does not resolve entries in the same file.)

priority
The priority flag from the mailcap entry. The priority is an integer from 0 to 9
with the default value being 5.

flags The test given by the mailcap−prio−flags option is used to resolve entries.

place Later entries are preferred; as the entries are strictly ordered, this test always
succeeds.

Note that as this style is handled during initialisation, the context is always :mime:, with
no discrimination by suffix.

mailcap−prio−flags
This style is used when the keyword flags is encountered in the list of tests specified by
the mailcap−priorities style. It should be set to a list of patterns, each of which is tested
against the flags specified in the mailcap entry (in other words, the sets of assignments
found with some entries in the mailcap file). Earlier patterns in the list are preferred to
later ones, and matched patterns are preferred to unmatched ones.

mime−types
A list of files in the format of ˜/.mime.types and /etc/mime.types to be read during setup,
replacing the default list which consists of those two files. The context is :mime:. A + in
the list will be replaced by the default files.

never−background
If this boolean style is set, the handler for the given context is always run in the fore-
ground, even if the flags provided in the mailcap entry suggest it need not be (for exam-
ple, it doesn’t require a terminal).

pager If set, will be used instead of $PAGER or more to handle suffixes where the copiousout-
put flag is set. The context is as for handler, i.e. :mime:.suffix: for handling a file with
the given suffix.

Examples:

zstyle ’:mime:*’ mailcap ˜/.mailcap /usr/local/etc/mailcap
zstyle ’:mime:.txt:’ handler less %s
zstyle ’:mime:.txt:’ flags needsterminal

When zsh−mime−setup is subsequently run, it will look for mailcap entries in the two files given.
Files of suffix .txt will be handled by running ‘less file.txt’. The flag needsterminal is set to show
that this program must run attached to a terminal.

As there are several steps to dispatching a command, the following should be checked if

zsh 5.8 February 14, 2020 46

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

attempting to execute a file by extension .ext does not have the expected effect.

The command ‘alias −s ext’ should show ‘ps=zsh−mime−handler’. If it shows something else,
another suffix alias was already installed and was not overwritten. If it shows nothing, no handler
was installed: this is most likely because no handler was found in the .mime.types and mailcap
combination for .ext files. In that case, appropriate handling should be added to ˜/.mime.types
and mailcap.

If the extension is handled by zsh−mime−handler but the file is not opened correctly, either the
handler defined for the type is incorrect, or the flags associated with it are in appropriate. Running
zsh−mime−setup −l will show the handler and, if there are any, the flags. A %s in the handler is
replaced by the file (suitably quoted if necessary). Check that the handler program listed lists and
can be run in the way shown. Also check that the flags needsterminal or copiousoutput are set if
the handler needs to be run under a terminal; the second flag is used if the output should be sent to
a pager. An example of a suitable mailcap entry for such a program is:

text/html; /usr/bin/lynx ’%s’; needsterminal

Running ‘zsh−mime−handler −l command line’ prints the command line that would be executed,
simplified to remove the effect of any flags, and quoted so that the output can be run as a complete
zsh command line. This is used by the completion system to decide how to complete after a file
handled by zsh−mime−setup.

pick−web−browser
This function is separate from the two MIME functions described above and can be assigned di-
rectly to a suffix:

autoload −U pick−web−browser
alias −s html=pick−web−browser

It is provided as an intelligent front end to dispatch a web browser. It may be run as either a func-
tion or a shell script. The status 255 is returned if no browser could be started.

Various styles are available to customize the choice of browsers:

browser−style
The value of the style is an array giving preferences in decreasing order for the type of
browser to use. The values of elements may be

running
Use a GUI browser that is already running when an X Window display is avail-
able. The browsers listed in the x−browsers style are tried in order until one is
found; if it is, the file will be displayed in that browser, so the user may need to
check whether it has appeared. If no running browser is found, one is not
started. Browsers other than Firefox, Opera and Konqueror are assumed to un-
derstand the Mozilla syntax for opening a URL remotely.

x Start a new GUI browser when an X Window display is available. Search for the
availability of one of the browsers listed in the x−browsers style and start the
first one that is found. No check is made for an already running browser.

tty Start a terminal−based browser. Search for the availability of one of the
browsers listed in the tty−browsers style and start the first one that is found.

If the style is not set the default running x tty is used.

x−browsers
An array in decreasing order of preference of browsers to use when running under the X
Window System. The array consists of the command name under which to start the
browser. They are looked up in the context :mime: (which may be extended in future, so
appending ‘*’ is recommended). For example,

zstyle ’:mime:*’ x−browsers opera konqueror firefox

zsh 5.8 February 14, 2020 47

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

specifies that pick−web−browser should first look for a running instance of Opera, Kon-
queror or Firefox, in that order, and if it fails to find any should attempt to start Opera.
The default is firefox mozilla netscape opera konqueror.

tty−browsers
An array similar to x−browsers, except that it gives browsers to use when no X Window
display is available. The default is elinks links lynx.

command
If it is set this style is used to pick the command used to open a page for a browser. The
context is :mime:browser:new:$browser: to start a new browser or
:mime:browser:running:$browser: to open a URL in a browser already running on the
current X display, where $browser is the value matched in the x−browsers or
tty−browsers style. The escape sequence %b in the style’s value will be replaced by the
browser, while %u will be replaced by the URL. If the style is not set, the default for all
new instances is equivalent to %b %u and the defaults for using running browsers are
equivalent to the values kfmclient openURL %u for Konqueror, firefox −new−tab %u
for Firefox, opera −newpage %u for Opera, and %b −remote "openUrl(%u)" for all
others.

MATHEMATICAL FUNCTIONS
zcalc [−erf] [expression ...]

A reasonably powerful calculator based on zsh’s arithmetic evaluation facility. The syntax is simi-
lar to that of formulae in most programming languages; see the section ‘Arithmetic Evaluation’ in
zshmisc(1) for details.

Non−programmers should note that, as in many other programming languages, expressions involv-
ing only integers (whether constants without a ‘.’, variables containing such constants as strings, or
variables declared to be integers) are by default evaluated using integer arithmetic, which is not
how an ordinary desk calculator operates. To force floating point operation, pass the option −f; see
further notes below.

If the file ˜/.zcalcrc exists it will be sourced inside the function once it is set up and about to
process the command line. This can be used, for example, to set shell options; emulate −L zsh
and setopt extendedglob are in effect at this point. Any failure to source the file if it exists is
treated as fatal. As with other initialisation files, the directory $ZDOTDIR is used instead of
$HOME if it is set.

The mathematical library zsh/mathfunc will be loaded if it is available; see the section ‘The
zsh/mathfunc Module’ in zshmodules(1). The mathematical functions correspond to the raw sys-
tem libraries, so trigonometric functions are evaluated using radians, and so on.

Each line typed is evaluated as an expression. The prompt shows a number, which corresponds to
a positional parameter where the result of that calculation is stored. For example, the result of the
calculation on the line preceded by ‘4> ’ is available as $4. The last value calculated is available
as ans. Full command line editing, including the history of previous calculations, is available; the
history is saved in the file ˜/.zcalc_history. To exit, enter a blank line or type ‘:q’ on its own (‘q’
is allowed for historical compatibility).

A line ending with a single backslash is treated in the same fashion as it is in command line edit-
ing: the backslash is removed, the function prompts for more input (the prompt is preceded by ‘...’
to indicate this), and the lines are combined into one to get the final result. In addition, if the input
so far contains more open than close parentheses zcalc will prompt for more input.

If arguments are given to zcalc on start up, they are used to prime the first few positional parame-
ters. A visual indication of this is given when the calculator starts.

The constants PI (3.14159...) and E (2.71828...) are provided. Parameter assignment is possible,
but note that all parameters will be put into the global namespace unless the :local special com-
mand is used. The function creates local variables whose names start with _, so users should avoid

zsh 5.8 February 14, 2020 48

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

doing so. The variables ans (the last answer) and stack (the stack in RPN mode) may be referred
to directly; stack is an array but elements of it are numeric. Various other special variables are
used locally with their standard meaning, for example compcontext, match, mbegin, mend,
psvar.

The output base can be initialised by passing the option ‘−#base’, for example ‘zcalc −#16’ (the
‘#’ may have to be quoted, depending on the globbing options set).

If the option ‘−e’ is set, the function runs non−interactively: the arguments are treated as expres-
sions to be evaluated as if entered interactively line by line.

If the option ‘−f’ is set, all numbers are treated as floating point, hence for example the expression
‘3/4’ evaluates to 0.75 rather than 0. Options must appear in separate words.

If the option ‘−r’ is set, RPN (Reverse Polish Notation) mode is entered. This has various addi-
tional properties:
Stack Evaluated values are maintained in a stack; this is contained in an array named stack with

the most recent value in ${stack[1]}.

Operators and functions
If the line entered matches an operator (+, −, *, /, **, ˆ, | or &) or a function supplied by
the zsh/mathfunc library, the bottom element or elements of the stack are popped to use
as the argument or arguments. The higher elements of stack (least recent) are used as ear-
lier arguments. The result is then pushed into ${stack[1]}.

Expressions
Other expressions are evaluated normally, printed, and added to the stack as numeric val-
ues. The syntax within expressions on a single line is normal shell arithmetic (not RPN).

Stack listing
If an integer follows the option −r with no space, then on every evaluation that many ele-
ments of the stack, where available, are printed instead of just the most recent result.
Hence, for example, zcalc −r4 shows $stack[4] to $stack[1] each time results are
printed.

Duplication: =
The pseudo−operator = causes the most recent element of the stack to be duplicated onto
the stack.

pop The pseudo−function pop causes the most recent element of the stack to be popped. A
‘>’ on its own has the same effect.

>ident The expression > followed (with no space) by a shell identifier causes the most recent ele-
ment of the stack to be popped and assigned to the variable with that name. The variable
is local to the zcalc function.

<ident The expression < followed (with no space) by a shell identifier causes the value of the
variable with that name to be pushed onto the stack. ident may be an integer, in which
case the previous result with that number (as shown before the > in the standard zcalc
prompt) is put on the stack.

Exchange: xy
The pseudo−function xy causes the most recent two elements of the stack to be ex-
changed. ‘<>’ has the same effect.

The prompt is configurable via the parameter ZCALCPROMPT, which undergoes standard
prompt expansion. The index of the current entry is stored locally in the first element of the array
psvar, which can be referred to in ZCALCPROMPT as ‘%1v’. The default prompt is ‘%1v> ’.

The variable ZCALC_ACTIVE is set within the function and can be tested by nested functions; it
has the value rpn if RPN mode is active, else 1.

A few special commands are available; these are introduced by a colon. For backward

zsh 5.8 February 14, 2020 49

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

compatibility, the colon may be omitted for certain commands. Completion is available if
compinit has been run.

The output precision may be specified within zcalc by special commands familiar from many cal-
culators.
:norm The default output format. It corresponds to the printf %g specification. Typically this

shows six decimal digits.

:sci digits

Scientific notation, corresponding to the printf %g output format with the precision given
by digits. This produces either fixed point or exponential notation depending on the value
output.

:fix digits

Fixed point notation, corresponding to the printf %f output format with the precision
given by digits.

:eng digits

Exponential notation, corresponding to the printf %E output format with the precision
given by digits.

:raw Raw output: this is the default form of the output from a math evaluation. This may
show more precision than the number actually possesses.

Other special commands:
:!line... Execute line... as a normal shell command line. Note that it is executed in the context of

the function, i.e. with local variables. Space is optional after :!.

:local arg ...
Declare variables local to the function. Other variables may be used, too, but they will be
taken from or put into the global scope.

:function name [body]
Define a mathematical function or (with no body) delete it. :function may be abbreviated
to :func or simply :f. The name may contain the same characters as a shell function
name. The function is defined using zmathfuncdef, see below.

Note that zcalc takes care of all quoting. Hence for example:

:f cube $1 * $1 * $1

defines a function to cube the sole argument. Functions so defined, or indeed any func-
tions defined directly or indirectly using functions −M, are available to execute by typing
only the name on the line in RPN mode; this pops the appropriate number of arguments
off the stack to pass to the function, i.e. 1 in the case of the example cube function. If
there are optional arguments only the mandatory arguments are supplied by this means.

[#base] This is not a special command, rather part of normal arithmetic syntax; however, when
this form appears on a line by itself the default output radix is set to base. Use, for exam-
ple, ‘[#16]’ to display hexadecimal output preceded by an indication of the base, or
‘[##16]’ just to display the raw number in the given base. Bases themselves are always
specified in decimal. ‘[#]’ restores the normal output format. Note that setting an output
base suppresses floating point output; use ‘[#]’ to return to normal operation.

$var Print out the value of var literally; does not affect the calculation. To use the value of var,
omit the leading ‘$’.

See the comments in the function for a few extra tips.

min(arg, ...)
max(arg, ...)

zsh 5.8 February 14, 2020 50

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

sum(arg, ...)
zmathfunc

The function zmathfunc defines the three mathematical functions min, max, and sum. The func-
tions min and max take one or more arguments. The function sum takes zero or more arguments.
Arguments can be of different types (ints and floats).

Not to be confused with the zsh/mathfunc module, described in the section ‘The zsh/mathfunc
Module’ in zshmodules(1).

zmathfuncdef [mathfunc [body]]
A convenient front end to functions −M.

With two arguments, define a mathematical function named mathfunc which can be used in any
form of arithmetic evaluation. body is a mathematical expression to implement the function. It
may contain references to position parameters $1, $2, ... to refer to mandatory parameters and
${1:−defvalue} ... to refer to optional parameters. Note that the forms must be strictly adhered to
for the function to calculate the correct number of arguments. The implementation is held in a
shell function named zsh_math_func_mathfunc; usually the user will not need to refer to the shell
function directly. Any existing function of the same name is silently replaced.

With one argument, remove the mathematical function mathfunc as well as the shell function im-
plementation.

With no arguments, list all mathfunc functions in a form suitable for restoring the definition. The
functions have not necessarily been defined by zmathfuncdef.

USER CONFIGURATION FUNCTIONS
The zsh/newuser module comes with a function to aid in configuring shell options for new users. If the
module is installed, this function can also be run by hand. It is available even if the module’s default be-
haviour, namely running the function for a new user logging in without startup files, is inhibited.

zsh−newuser−install [−f]
The function presents the user with various options for customizing their initialization scripts.
Currently only ˜/.zshrc is handled. $ZDOTDIR/.zshrc is used instead if the parameter ZDOT-
DIR is set; this provides a way for the user to configure a file without altering an existing .zshrc.

By default the function exits immediately if it finds any of the files .zshenv, .zprofile, .zshrc, or
.zlogin in the appropriate directory. The option −f is required in order to force the function to con-
tinue. Note this may happen even if .zshrc itself does not exist.

As currently configured, the function will exit immediately if the user has root privileges; this be-
haviour cannot be overridden.

Once activated, the function’s behaviour is supposed to be self−explanatory. Menus are present al-
lowing the user to alter the value of options and parameters. Suggestions for improvements are al-
ways welcome.

When the script exits, the user is given the opportunity to save the new file or not; changes are not
irreversible until this point. However, the script is careful to restrict changes to the file only to a
group marked by the lines ‘# Lines configured by zsh−newuser−install’ and ‘# End of lines
configured by zsh−newuser−install’. In addition, the old version of .zshrc is saved to a file with
the suffix .zni appended.

If the function edits an existing .zshrc, it is up to the user to ensure that the changes made will take
effect. For example, if control usually returns early from the existing .zshrc the lines will not be
executed; or a later initialization file may override options or parameters, and so on. The function
itself does not attempt to detect any such conflicts.

OTHER FUNCTIONS
There are a large number of helpful functions in the Functions/Misc directory of the zsh distribution. Most
are very simple and do not require documentation here, but a few are worthy of special mention.

zsh 5.8 February 14, 2020 51

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

Descriptions
colors This function initializes several associative arrays to map color names to (and from) the ANSI

standard eight−color terminal codes. These are used by the prompt theme system (see above).
You seldom should need to run colors more than once.

The eight base colors are: black, red, green, yellow, blue, magenta, cyan, and white. Each of
these has codes for foreground and background. In addition there are seven intensity attributes:
bold, faint, standout, underline, blink, re verse, and conceal. Finally, there are seven codes used
to negate attributes: none (reset all attributes to the defaults), normal (neither bold nor faint),
no−standout, no−underline, no−blink, no−rev erse, and no−conceal.

Some terminals do not support all combinations of colors and intensities.

The associative arrays are:

color
colour Map all the color names to their integer codes, and integer codes to the color names. The

eight base names map to the foreground color codes, as do names prefixed with ‘fg−’,
such as ‘fg−red’. Names prefixed with ‘bg−’, such as ‘bg−blue’, refer to the background
codes. The reverse mapping from code to color yields base name for foreground codes
and the bg− form for backgrounds.

Although it is a misnomer to call them ‘colors’, these arrays also map the other fourteen
attributes from names to codes and codes to names.

fg
fg_bold
fg_no_bold

Map the eight basic color names to ANSI terminal escape sequences that set the corre-
sponding foreground text properties. The fg sequences change the color without chang-
ing the eight intensity attributes.

bg
bg_bold
bg_no_bold

Map the eight basic color names to ANSI terminal escape sequences that set the corre-
sponding background properties. The bg sequences change the color without changing
the eight intensity attributes.

In addition, the scalar parameters reset_color and bold_color are set to the ANSI terminal escapes
that turn off all attributes and turn on bold intensity, respectively.

fned [−x num] name

Same as zed −f. This function does not appear in the zsh distribution, but can be created by link-
ing zed to the name fned in some directory in your fpath.

is−at−least needed [present]
Perform a greater−than−or−equal−to comparison of two strings having the format of a zsh version
number; that is, a string of numbers and text with segments separated by dots or dashes. If the
present string is not provided, $ZSH_VERSION is used. Segments are paired left−to−right in the
two strings with leading non−number parts ignored. If one string has fewer segments than the
other, the missing segments are considered zero.

This is useful in startup files to set options and other state that are not available in all versions of
zsh.

is−at−least 3.1.6−15 && setopt NO_GLOBAL_RCS
is−at−least 3.1.0 && setopt HIST_REDUCE_BLANKS
is−at−least 2.6−17 || print "You can’t use is−at−least here."

zsh 5.8 February 14, 2020 52

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

nslookup [arg ...]
This wrapper function for the nslookup command requires the zsh/zpty module (see zshmod-

ules(1)). It behaves exactly like the standard nslookup except that it provides customizable
prompts (including a right−side prompt) and completion of nslookup commands, host names, etc.
(if you use the function−based completion system). Completion styles may be set with the context
prefix ‘:completion:nslookup’.

See also the pager, prompt and rprompt styles below.

regexp−replace var reg exp replace

Use regular expressions to perform a global search and replace operation on a variable. POSIX
extended regular expressions are used, unless the option RE_MATCH_PCRE has been set, in
which case Perl−compatible regular expressions are used (this requires the shell to be linked
against the pcre library).

var is the name of the variable containing the string to be matched. The variable will be modified
directly by the function. The variables MATCH, MBEGIN, MEND, match, mbegin, mend
should be avoided as these are used by the regular expression code.

regexp is the regular expression to match against the string.

replace is the replacement text. This can contain parameter, command and arithmetic expressions
which will be replaced: in particular, a reference to $MATCH will be replaced by the text
matched by the pattern.

The return status is 0 if at least one match was performed, else 1.

run−help cmd

This function is designed to be invoked by the run−help ZLE widget, in place of the default alias.
See ‘Accessing On−Line Help’ above for setup instructions.

In the discussion which follows, if cmd is a file system path, it is first reduced to its rightmost
component (the file name).

Help is first sought by looking for a file named cmd in the directory named by the HELPDIR pa-
rameter. If no file is found, an assistant function, alias, or command named run−help−cmd is

sought. If found, the assistant is executed with the rest of the current command line (everything af-

ter the command name cmd) as its arguments. When neither file nor assistant is found, the exter-

nal command ‘man cmd’ is run.

An example assistant for the "ssh" command:

run−help−ssh() {
emulate −LR zsh
local −a args
Delete the "−l username" option
zparseopts −D −E −a args l:
Delete other options, leaving: host command
args=(${@:#−*})
if [[${#args} −lt 2]]; then

man ssh
else

run−help $args[2]
fi

}

Several of these assistants are provided in the Functions/Misc directory. These must be au-
toloaded, or placed as executable scripts in your search path, in order to be found and used by
run−help.

zsh 5.8 February 14, 2020 53

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

run−help−git
run−help−ip
run−help−openssl
run−help−p4
run−help−sudo
run−help−svk
run−help−svn

Assistant functions for the git, ip, openssl, p4, sudo, svk, and svn, commands.

tetris Zsh was once accused of not being as complete as Emacs, because it lacked a Tetris game. This
function was written to refute this vicious slander.

This function must be used as a ZLE widget:

autoload −U tetris
zle −N tetris
bindkey keys tetris

To start a game, execute the widget by typing the keys. Whatever command line you were editing
disappears temporarily, and your keymap is also temporarily replaced by the Tetris control keys.
The previous editor state is restored when you quit the game (by pressing ‘q’) or when you lose.

If you quit in the middle of a game, the next invocation of the tetris widget will continue where
you left off. If you lost, it will start a new game.

tetriscurses
This is a port of the above to zcurses. The input handling is improved a bit so that moving a block
sideways doesn’t automatically advance a timestep, and the graphics use unicode block graphics.

This version does not save the game state between invocations, and is not invoked as a widget, but
rather as:

autoload −U tetriscurses
tetriscurses

zargs [option ... −−] [input ...] [−− command [arg ...]]
This function has a similar purpose to GNU xargs. Instead of reading lines of arguments from the
standard input, it takes them from the command line. This is useful because zsh, especially with
recursive glob operators, often can construct a command line for a shell function that is longer
than can be accepted by an external command.

The option list represents options of the zargs command itself, which are the same as those of
xargs. The input list is the collection of strings (often file names) that become the arguments of
the command, analogous to the standard input of xargs. Finally, the arg list consists of those ar-
guments (usually options) that are passed to the command each time it runs. The arg list precedes
the elements from the input list in each run. If no command is provided, then no arg list may be
provided, and in that event the default command is ‘print’ with arguments ‘−r −−’.

For example, to get a long ls listing of all non−hidden plain files in the current directory or its sub-
directories:

autoload −U zargs
zargs −− **/*(.) −− ls −ld −−

The first and third occurrences of ‘−−’ are used to mark the end of options for zargs and ls respec-
tively to guard against filenames starting with ‘−’, while the second is used to separate the list of
files from the command to run (‘ls −ld −−’).

The first ‘−−’ would also be needed if there was a chance the list might be empty as in:

zargs −r −− ./*.back(#qN) −− rm −f

In the event that the string ‘−−’ is or may be an input, the −e option may be used to change the
end−of−inputs marker. Note that this does not change the end−of−options marker. For example,

zsh 5.8 February 14, 2020 54

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

to use ‘..’ as the marker:

zargs −e.. −− **/*(.) .. ls −ld −−

This is a good choice in that example because no plain file can be named ‘..’, but the best
end−marker depends on the circumstances.

The options −i, −I, −l, −L, and −n differ slightly from their usage in xargs. There are no input
lines for zargs to count, so −l and −L count through the input list, and −n counts the number of ar-
guments passed to each execution of command, including any arg list. Also, any time −i or −I is
used, each input is processed separately as if by ‘−L 1’.

For details of the other zargs options, see xargs(1) (but note the difference in function between
zargs and xargs) or run zargs with the −−help option.

zed [−f [−x num]] name

zed −b This function uses the ZLE editor to edit a file or function.

Only one name argument is allowed. If the −f option is given, the name is taken to be that of a
function; if the function is marked for autoloading, zed searches for it in the fpath and loads it.
Note that functions edited this way are installed into the current shell, but not written back to the
autoload file. In this case the −x option specifies that leading tabs indenting the function according
to syntax should be converted into the given number of spaces; ‘−x 2’ is consistent with the layout
of functions distributed with the shell.

Without −f, name is the path name of the file to edit, which need not exist; it is created on write, if
necessary.

While editing, the function sets the main keymap to zed and the vi command keymap to
zed−vicmd. These will be copied from the existing main and vicmd keymaps if they do not exist
the first time zed is run. They can be used to provide special key bindings used only in zed.

If it creates the keymap, zed rebinds the return key to insert a line break and ‘ˆXˆW’ to accept the
edit in the zed keymap, and binds ‘ZZ’ to accept the edit in the zed−vicmd keymap.

The bindings alone can be installed by running ‘zed −b’. This is suitable for putting into a startup
file. Note that, if rerun, this will overwrite the existing zed and zed−vicmd keymaps.

Completion is available, and styles may be set with the context prefix ‘:completion:zed’.

A zle widget zed−set−file−name is available. This can be called by name from within zed using
‘\ex zed−set−file−name’ (note, however, that because of zed’s rebindings you will have to type ˆj
at the end instead of the return key), or can be bound to a key in either of the zed or zed−vicmd
keymaps after ‘zed −b’ has been run. When the widget is called, it prompts for a new name for
the file being edited. When zed exits the file will be written under that name and the original file
will be left alone. The widget has no effect with ‘zed −f’.

While zed−set−file−name is running, zed uses the keymap zed−normal−keymap, which is linked
from the main keymap in effect at the time zed initialised its bindings. (This is to make the return
key operate normally.) The result is that if the main keymap has been changed, the widget won’t
notice. This is not a concern for most users.

zcp [−finqQvwW] srcpat dest

zln [−finqQsvwW] srcpat dest

Same as zmv −C and zmv −L, respectively. These functions do not appear in the zsh distribution,
but can be created by linking zmv to the names zcp and zln in some directory in your fpath.

zkbd See ‘Keyboard Definition’ above.

zmv [−finqQsvwW] [−C | −L | −M | −{p|P} program] [−o optstring]
srcpat dest

Move (usually, rename) files matching the pattern srcpat to corresponding files having names of
the form given by dest, where srcpat contains parentheses surrounding patterns which will be

zsh 5.8 February 14, 2020 55

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

replaced in turn by $1, $2, ... in dest. For example,

zmv ’(*).lis’ ’$1.txt’

renames ‘foo.lis’ to ‘foo.txt’, ‘my.old.stuff.lis’ to ‘my.old.stuff.txt’, and so on.

The pattern is always treated as an EXTENDED_GLOB pattern. Any file whose name is not
changed by the substitution is simply ignored. Any error (a substitution resulted in an empty
string, two substitutions gav e the same result, the destination was an existing regular file and −f
was not given) causes the entire function to abort without doing anything.

In addition to pattern replacement, the variable $f can be referrred to in the second (replacement)
argument. This makes it possible to use variable substitution to alter the argument; see examples
below.

Options:

−f Force overwriting of destination files. Not currently passed down to the mv/cp/ln com-
mand due to vagaries of implementations (but you can use −o−f to do that).

−i Interactive: show each line to be executed and ask the user whether to execute it. ‘Y’ or
‘y’ will execute it, anything else will skip it. Note that you just need to type one charac-
ter.

−n No execution: print what would happen, but don’t do it.
−q Turn bare glob qualifiers off: now assumed by default, so this has no effect.
−Q Force bare glob qualifiers on. Don’t turn this on unless you are actually using glob quali-

fiers in a pattern.
−s Symbolic, passed down to ln; only works with −L.
−v Verbose: print each command as it’s being executed.
−w Pick out wildcard parts of the pattern, as described above, and implicitly add parentheses

for referring to them.
−W Just like −w, with the addition of turning wildcards in the replacement pattern into se-

quential ${1} .. ${N} references.
−C
−L
−M Force cp, ln or mv, respectively, reg ardless of the name of the function.
−p program

Call program instead of cp, ln or mv. Whatever it does, it should at least understand the
form ‘program −− oldname newname’ where oldname and newname are filenames gener-
ated by zmv. program will be split into words, so might be e.g. the name of an archive
tool plus a copy or rename subcommand.

−P program

As −p program, except that program does not accept a following −− to indicate the end of
options. In this case filenames must already be in a sane form for the program in ques-
tion.

−o optstring

The optstring is split into words and passed down verbatim to the cp, ln or mv command
called to perform the work. It should probably begin with a ‘−’.

Further examples:

zmv −v ’(* *)’ ’${1// /_}’

For any file in the current directory with at least one space in the name, replace every space by an
underscore and display the commands executed.

zmv −v ’* *’ ’${f// /_}’

This does exactly the same by referring to the file name stored in $f.

For more complete examples and other implementation details, see the zmv source file, usually lo-
cated in one of the directories named in your fpath, or in Functions/Misc/zmv in the zsh distribu-
tion.

zsh 5.8 February 14, 2020 56

ZSHCONTRIB(1) General Commands Manual ZSHCONTRIB(1)

zrecompile
See ‘Recompiling Functions’ above.

zstyle+ context style value [+ subcontext style value ...]
This makes defining styles a bit simpler by using a single ‘+’ as a special token that allows you to
append a context name to the previously used context name. Like this:

zstyle+ ’:foo:bar’ style1 value1 \
+’:baz’ style2 value2 \
+’:frob’ style3 value3

This defines style1 with value1 for the context :foo:bar as usual, but it also defines style2 with
value2 for the context :foo:bar:baz and style3 with value3 for :foo:bar:frob. Any subcontext

may be the empty string to re−use the first context unchanged.

Styles
insert−tab

The zed function sets this style in context ‘:completion:zed:*’ to turn off completion when TAB
is typed at the beginning of a line. You may override this by setting your own value for this con-
text and style.

pager The nslookup function looks up this style in the context ‘:nslookup’ to determine the program
used to display output that does not fit on a single screen.

prompt
rprompt

The nslookup function looks up this style in the context ‘:nslookup’ to set the prompt and the
right−side prompt, respectively. The usual expansions for the PS1 and RPS1 parameters may be
used (see EXPANSION OF PROMPT SEQUENCES in zshmisc(1)).

zsh 5.8 February 14, 2020 57

