
ZSHCOMPWID(1) General Commands Manual ZSHCOMPWID(1)

NAME
zshcompwid − zsh completion widgets

DESCRIPTION
The shell’s programmable completion mechanism can be manipulated in two ways; here the low−level fea-

tures supporting the newer, function−based mechanism are defined. A complete set of shell functions based

on these features is described in zshcompsys(1), and users with no interest in adding to that system (or, po-

tentially, writing their own −− see dictionary entry for ‘hubris’) should skip the current section. The older

system based on the compctl builtin command is described in zshcompctl(1).

Completion widgets are defined by the −C option to the zle builtin command provided by the zsh/zle mod-

ule (see zshzle(1)). For example,

zle −C complete expand−or−complete completer

defines a widget named ‘complete’. The second argument is the name of any of the builtin widgets that

handle completions: complete−word, expand−or−complete, expand−or−complete−prefix, menu−com-
plete, menu−expand−or−complete, re verse−menu−complete, list−choices, or delete−char−or−list.
Note that this will still work even if the widget in question has been re−bound.

When this newly defined widget is bound to a key using the bindkey builtin command defined in the

zsh/zle module (see zshzle(1)), typing that key will call the shell function ‘completer’. This function is re-

sponsible for generating the possible matches using the builtins described below. As with other ZLE wid-

gets, the function is called with its standard input closed.

Once the function returns, the completion code takes over control again and treats the matches in the same

manner as the specified builtin widget, in this case expand−or−complete.

COMPLETION SPECIAL PARAMETERS
The parameters ZLE_REMOVE_SUFFIX_CHARS and ZLE_SPACE_SUFFIX_CHARS are used by

the completion mechanism, but are not special. See Parameters Used By The Shell in zshparam(1).

Inside completion widgets, and any functions called from them, some parameters have special meaning;

outside these functions they are not special to the shell in any way. These parameters are used to pass in-

formation between the completion code and the completion widget. Some of the builtin commands and the

condition codes use or change the current values of these parameters. Any existing values will be hidden

during execution of completion widgets; except for compstate, the parameters are reset on each function

exit (including nested function calls from within the completion widget) to the values they had when the

function was entered.

CURRENT
This is the number of the current word, i.e. the word the cursor is currently on in the words array.

Note that this value is only correct if the ksharrays option is not set.

IPREFIX
Initially this will be set to the empty string. This parameter functions like PREFIX; it contains a

string which precedes the one in PREFIX and is not considered part of the list of matches. Typi-

cally, a string is transferred from the beginning of PREFIX to the end of IPREFIX, for example:

IPREFIX=${PREFIX%%\=*}=
PREFIX=${PREFIX#*=}

causes the part of the prefix up to and including the first equal sign not to be treated as part of a

matched string. This can be done automatically by the compset builtin, see below.

ISUFFIX
As IPREFIX, but for a suffix that should not be considered part of the matches; note that the

ISUFFIX string follows the SUFFIX string.

PREFIX
Initially this will be set to the part of the current word from the beginning of the word up to the po-

sition of the cursor; it may be altered to give a common prefix for all matches.

zsh 5.8 February 14, 2020 1

ZSHCOMPWID(1) General Commands Manual ZSHCOMPWID(1)

QIPREFIX
This parameter is read−only and contains the quoted string up to the word being completed. E.g.

when completing ‘"foo’, this parameter contains the double quote. If the −q option of compset is

used (see below), and the original string was ‘"foo bar’ with the cursor on the ‘bar’, this parame-

ter contains ‘"foo ’.

QISUFFIX
Like QIPREFIX, but containing the suffix.

SUFFIX
Initially this will be set to the part of the current word from the cursor position to the end; it may

be altered to give a common suffix for all matches. It is most useful when the option COM-
PLETE_IN_WORD is set, as otherwise the whole word on the command line is treated as a pre-

fix.

compstate
This is an associative array with various keys and values that the completion code uses to ex-

change information with the completion widget. The keys are:

all_quotes
The −q option of the compset builtin command (see below) allows a quoted string to be

broken into separate words; if the cursor is on one of those words, that word will be com-

pleted, possibly invoking ‘compset −q’ recursively. With this key it is possible to test the

types of quoted strings which are currently broken into parts in this fashion. Its value

contains one character for each quoting level. The characters are a single quote or a dou-

ble quote for strings quoted with these characters, a dollars sign for strings quoted with

$’...’ and a backslash for strings not starting with a quote character. The first character in

the value always corresponds to the innermost quoting level.

context
This will be set by the completion code to the overall context in which completion is at-

tempted. Possible values are:

array_value
when completing inside the value of an array parameter assignment; in this case

the words array contains the words inside the parentheses.

brace_parameter
when completing the name of a parameter in a parameter expansion beginning

with ${. This context will also be set when completing parameter flags follow-

ing ${(; the full command line argument is presented and the handler must test

the value to be completed to ascertain that this is the case.

assign_parameter
when completing the name of a parameter in a parameter assignment.

command
when completing for a normal command (either in command position or for an

argument of the command).

condition
when completing inside a ‘[[...]]’ conditional expression; in this case the words
array contains only the words inside the conditional expression.

math when completing in a mathematical environment such as a ‘((...))’ construct.

parameter
when completing the name of a parameter in a parameter expansion beginning

with $ but not ${.

zsh 5.8 February 14, 2020 2

ZSHCOMPWID(1) General Commands Manual ZSHCOMPWID(1)

redirect
when completing after a redirection operator.

subscript
when completing inside a parameter subscript.

value when completing the value of a parameter assignment.

exact Controls the behaviour when the REC_EXACT option is set. It will be set to accept if

an exact match would be accepted, and will be unset otherwise.

If it was set when at least one match equal to the string on the line was generated, the

match is accepted.

exact_string
The string of an exact match if one was found, otherwise unset.

ignored
The number of words that were ignored because they matched one of the patterns given

with the −F option to the compadd builtin command.

insert This controls the manner in which a match is inserted into the command line. On entry to

the widget function, if it is unset the command line is not to be changed; if set to unam-
biguous, any prefix common to all matches is to be inserted; if set to automenu−unam-
biguous, the common prefix is to be inserted and the next invocation of the completion

code may start menu completion (due to the AUTO_MENU option being set); if set to

menu or automenu menu completion will be started for the matches currently generated

(in the latter case this will happen because the AUTO_MENU is set). The value may also

contain the string ‘tab’ when the completion code would normally not really do comple-

tion, but only insert the TAB character.

On exit it may be set to any of the values above (where setting it to the empty string is the

same as unsetting it), or to a number, in which case the match whose number is given will

be inserted into the command line. Negative numbers count backward from the last

match (with ‘−1’ selecting the last match) and out−of−range values are wrapped around,

so that a value of zero selects the last match and a value one more than the maximum se-

lects the first. Unless the value of this key ends in a space, the match is inserted as in a

menu completion, i.e. without automatically appending a space.

Both menu and automenu may also specify the number of the match to insert, given af-

ter a colon. For example, ‘menu:2’ says to start menu completion, beginning with the

second match.

Note that a value containing the substring ‘tab’ makes the matches generated be ignored

and only the TAB be inserted.

Finally, it may also be set to all, which makes all matches generated be inserted into the

line.

insert_positions
When the completion system inserts an unambiguous string into the line, there may be

multiple places where characters are missing or where the character inserted differs from

at least one match. The value of this key contains a colon separated list of all these posi-

tions, as indexes into the command line.

last_prompt
If this is set to a non−empty string for every match added, the completion code will move

the cursor back to the previous prompt after the list of completions has been displayed.

Initially this is set or unset according to the ALWA YS_LAST_PROMPT option.

list This controls whether or how the list of matches will be displayed. If it is unset or empty

they will never be listed; if its value begins with list, they will always be listed; if it be-

gins with autolist or ambiguous, they will be listed when the AUTO_LIST or

zsh 5.8 February 14, 2020 3

ZSHCOMPWID(1) General Commands Manual ZSHCOMPWID(1)

LIST_AMBIGUOUS options respectively would normally cause them to be.

If the substring force appears in the value, this makes the list be shown even if there is

only one match. Normally, the list would be shown only if there are at least two matches.

The value contains the substring packed if the LIST_PACKED option is set. If this sub-

string is given for all matches added to a group, this group will show the

LIST_PACKED behavior. The same is done for the LIST_ROWS_FIRST option with

the substring ro ws.

Finally, if the value contains the string explanations, only the explanation strings, if any,

will be listed and if it contains messages, only the messages (added with the −x option of

compadd) will be listed. If it contains both explanations and messages both kinds of

explanation strings will be listed. It will be set appropriately on entry to a completion

widget and may be changed there.

list_lines
This gives the number of lines that are needed to display the full list of completions.

Note that to calculate the total number of lines to display you need to add the number of

lines needed for the command line to this value, this is available as the value of the

BUFFERLINES special parameter.

list_max
Initially this is set to the value of the LISTMAX parameter. It may be set to any other

value; when the widget exits this value will be used in the same way as the value of

LISTMAX.

nmatches
The number of matches generated and accepted by the completion code so far.

old_insert
On entry to the widget this will be set to the number of the match of an old list of comple-

tions that is currently inserted into the command line. If no match has been inserted, this

is unset.

As with old_list, the value of this key will only be used if it is the string keep. If it was

set to this value by the widget and there was an old match inserted into the command line,

this match will be kept and if the value of the insert key specifies that another match

should be inserted, this will be inserted after the old one.

old_list
This is set to yes if there is still a valid list of completions from a previous completion at

the time the widget is invoked. This will usually be the case if and only if the previous

editing operation was a completion widget or one of the builtin completion functions. If

there is a valid list and it is also currently shown on the screen, the value of this key is

shown.

After the widget has exited the value of this key is only used if it was set to keep. In this

case the completion code will continue to use this old list. If the widget generated new

matches, they will not be used.

parameter
The name of the parameter when completing in a subscript or in the value of a parameter

assignment.

pattern_insert
Normally this is set to menu, which specifies that menu completion will be used when-

ev er a set of matches was generated using pattern matching. If it is set to any other

non−empty string by the user and menu completion is not selected by other option set-

tings, the code will instead insert any common prefix for the generated matches as with

normal completion.

zsh 5.8 February 14, 2020 4

ZSHCOMPWID(1) General Commands Manual ZSHCOMPWID(1)

pattern_match
Locally controls the behaviour given by the GLOB_COMPLETE option. Initially it is

set to ‘*’ if and only if the option is set. The completion widget may set it to this value,

to an empty string (which has the same effect as unsetting it), or to any other non−empty

string. If it is non−empty, unquoted metacharacters on the command line will be treated

as patterns; if it is ‘*’, then additionally a wildcard ‘*’ is assumed at the cursor position;

if it is empty or unset, metacharacters will be treated literally.

Note that the matcher specifications given to the compadd builtin command are not used

if this is set to a non−empty string.

quote When completing inside quotes, this contains the quotation character (i.e. either a single

quote, a double quote, or a backtick). Otherwise it is unset.

quoting
When completing inside single quotes, this is set to the string single; inside double

quotes, the string double; inside backticks, the string backtick. Otherwise it is unset.

redirect
The redirection operator when completing in a redirection position, i.e. one of <, >, etc.

restore This is set to auto before a function is entered, which forces the special parameters men-

tioned above (words, CURRENT, PREFIX, IPREFIX, SUFFIX, and ISUFFIX) to be

restored to their previous values when the function exits. If a function unsets it or sets it

to any other string, they will not be restored.

to_end Specifies the occasions on which the cursor is moved to the end of a string when a match

is inserted. On entry to a widget function, it may be single if this will happen when a sin-

gle unambiguous match was inserted or match if it will happen any time a match is in-

serted (for example, by menu completion; this is likely to be the effect of the AL-
WA YS_TO_END option).

On exit, it may be set to single as above. It may also be set to always, or to the empty

string or unset; in those cases the cursor will be moved to the end of the string always or

never respectively. Any other string is treated as match.

unambiguous
This key is read−only and will always be set to the common (unambiguous) prefix the

completion code has generated for all matches added so far.

unambiguous_cursor
This gives the position the cursor would be placed at if the common prefix in the unam-
biguous key were inserted, relative to the value of that key. The cursor would be placed

before the character whose index is giv en by this key.

unambiguous_positions
This contains all positions where characters in the unambiguous string are missing or

where the character inserted differs from at least one of the matches. The positions are

given as indexes into the string given by the value of the unambiguous key.

vared If completion is called while editing a line using the vared builtin, the value of this key is

set to the name of the parameter given as an argument to vared. This key is only set

while a vared command is active.

words This array contains the words present on the command line currently being edited.

COMPLETION BUILTIN COMMANDS
compadd [−akqQfenUl12C] [−F array]

[−P prefix] [−S suffix]

[−p hidden−prefix] [−s hidden−suffix]

zsh 5.8 February 14, 2020 5

ZSHCOMPWID(1) General Commands Manual ZSHCOMPWID(1)

[−i ignored−prefix] [−I ignored−suffix]

[−W file−prefix] [−d array]

[−J group−name] [−X explanation] [−x message]

[−V group−name] [−o [order]]

[−r remove−chars] [−R remove−func]

[−D array] [−O array] [−A array]

[−E number]

[−M match−spec] [−−] [words ...]

This builtin command can be used to add matches directly and control all the information the com-

pletion code stores with each possible match. The return status is zero if at least one match was

added and non−zero if no matches were added.

The completion code breaks the string to complete into seven fields in the order:

<ipre><apre><hpre><word><hsuf><asuf><isuf>

The first field is an ignored prefix taken from the command line, the contents of the IPREFIX pa-

rameter plus the string given with the −i option. With the −U option, only the string from the −i
option is used. The field <apre> is an optional prefix string given with the −P option. The

<hpre> field is a string that is considered part of the match but that should not be shown when list-

ing completions, given with the −p option; for example, functions that do filename generation

might specify a common path prefix this way. <word> is the part of the match that should appear

in the list of completions, i.e. one of the words given at the end of the compadd command line.

The suffixes <hsuf>, <asuf> and <isuf> correspond to the prefixes <hpre>, <apre> and <ipre>

and are given by the options −s, −S and −I, respectively.

The supported flags are:

−P prefix

This gives a string to be inserted before the given words. The string given is not consid-

ered as part of the match and any shell metacharacters in it will not be quoted when the

string is inserted.

−S suffix

Like −P, but gives a string to be inserted after the match.

−p hidden−prefix

This gives a string that should be inserted into the command line before the match but

that should not appear in the list of matches. Unless the −U option is given, this string

must be matched as part of the string on the command line.

−s hidden−suffix

Like ‘−p’, but gives a string to insert after the match.

−i ignored−prefix

This gives a string to insert into the command line just before any string given with the

‘−P’ option. Without ‘−P’ the string is inserted before the string given with ‘−p’ or di-

rectly before the match.

−I ignored−suffix

Like −i, but gives an ignored suffix.

−a With this flag the words are taken as names of arrays and the possible matches are their

values. If only some elements of the arrays are needed, the words may also contain sub-

scripts, as in ‘foo[2,−1]’.

−k With this flag the words are taken as names of associative arrays and the possible matches

are their keys. As for −a, the words may also contain subscripts, as in ‘foo[(R)*bar*]’.

−d array

This adds per−match display strings. The array should contain one element per word

given. The completion code will then display the first element instead of the first word,

zsh 5.8 February 14, 2020 6

ZSHCOMPWID(1) General Commands Manual ZSHCOMPWID(1)

and so on. The array may be given as the name of an array parameter or directly as a

space−separated list of words in parentheses.

If there are fewer display strings than words, the leftover words will be displayed un-

changed and if there are more display strings than words, the leftover display strings will

be silently ignored.

−l This option only has an effect if used together with the −d option. If it is given, the dis-

play strings are listed one per line, not arrayed in columns.

−o [order]

This controls the order in which matches are sorted. order is a comma−separated list

comprising the following possible values. These values can be abbreviated to their initial

two or three characters. Note that the order forms part of the group name space so

matches with different orderings will not be in the same group.

match If given, the order of the output is determined by the match strings; otherwise it

is determined by the display strings (i.e. the strings given by the −d option). This

is the default if ‘−o’ is specified but the order argument is omitted.

nosort This specifies that the matches are pre−sorted and their order should be pre-

served. This value only makes sense alone and cannot be combined with any

others.

numeric
If the matches include numbers, sort them numerically rather than lexicographi-

cally.

re verse Arrange the matches backwards by reversing the sort ordering.

−J group−name

Gives the name of the group of matches the words should be stored in.

−V group−name

Like −J but naming an unsorted group. This option is identical to the combination of −J
and −o nosort.

−1 If given together with the −V option, makes only consecutive duplicates in the group be

removed. If combined with the −J option, this has no visible effect. Note that groups with

and without this flag are in different name spaces.

−2 If given together with the −J or −V option, makes all duplicates be kept. Again, groups

with and without this flag are in different name spaces.

−X explanation

The explanation string will be printed with the list of matches, above the group currently

selected.

Within the explanation, the following sequences may be used to specify output attributes

as described in the section EXPANSION OF PROMPT SEQUENCES in zshmisc(1):

‘%B’, ‘%S’, ‘%U’, ‘%F’, ‘%K’ and their lower case counterparts, as well as

‘%{...%}’. ‘%F’, ‘%K’ and ‘%{...%}’ take arguments in the same form as prompt ex-

pansion. (Note that the sequence ‘%G’ is not available; an argument to ‘%{’ should be

used instead.) The sequence ‘%%’ produces a literal ‘%’.

These sequences are most often employed by users when customising the format style

(see zshcompsys(1)), but they must also be taken into account when writing completion

functions, as passing descriptions with unescaped ‘%’ characters to utility functions such

as _arguments and _message may produce unexpected results. If arbitrary text is to be

passed in a description, it can be escaped using e.g. ${my_str//\%/%%}.

zsh 5.8 February 14, 2020 7

ZSHCOMPWID(1) General Commands Manual ZSHCOMPWID(1)

−x message

Like −X, but the message will be printed even if there are no matches in the group.

−q The suffix given with −S will be automatically removed if the next character typed is a

blank or does not insert anything, or if the suffix consists of only one character and the

next character typed is the same character.

−r remove−chars

This is a more versatile form of the −q option. The suffix given with −S or the slash au-

tomatically added after completing directories will be automatically removed if the next

character typed inserts one of the characters given in the remove−chars. This string is

parsed as a characters class and understands the backslash sequences used by the print
command. For example, ‘−r "a−z\t"’ removes the suffix if the next character typed in-

serts a lower case character or a TAB, and ‘−r "ˆ0−9"’ removes the suffix if the next

character typed inserts anything but a digit. One extra backslash sequence is understood

in this string: ‘\−’ stands for all characters that insert nothing. Thus ‘−S "=" −q’ is the

same as ‘−S "=" −r "= \t\n\−"’.

This option may also be used without the −S option; then any automatically added space

will be removed when one of the characters in the list is typed.

−R remove−func

This is another form of the −r option. When a suffix has been inserted and the completion

accepted, the function remove−func will be called after the next character typed. It is

passed the length of the suffix as an argument and can use the special parameters avail-

able in ordinary (non−completion) zle widgets (see zshzle(1)) to analyse and modify the

command line.

−f If this flag is given, all of the matches built from words are marked as being the names of

files. They are not required to be actual filenames, but if they are, and the option

LIST_TYPES is set, the characters describing the types of the files in the completion

lists will be shown. This also forces a slash to be added when the name of a directory is

completed.

−e This flag can be used to tell the completion code that the matches added are parameter

names for a parameter expansion. This will make the AUTO_PARAM_SLASH and

AUTO_PARAM_KEYS options be used for the matches.

−W file−prefix

This string is a pathname that will be prepended to each of the matches formed by the

given words together with any prefix specified by the −p option to form a complete file-

name for testing. Hence it is only useful if combined with the −f flag, as the tests will not

otherwise be performed.

−F array

Specifies an array containing patterns. Words matching one of these patterns are ignored,

i.e. not considered to be possible matches.

The array may be the name of an array parameter or a list of literal patterns enclosed in

parentheses and quoted, as in ‘−F "(*?.o *?.h)"’. If the name of an array is given, the el-

ements of the array are taken as the patterns.

−Q This flag instructs the completion code not to quote any metacharacters in the words

when inserting them into the command line.

−M match−spec

This gives local match specifications as described below in the section ‘Completion

Matching Control’. This option may be given more than once. In this case all

match−specs giv en are concatenated with spaces between them to form the specification

string to use. Note that they will only be used if the −U option is not given.

zsh 5.8 February 14, 2020 8

ZSHCOMPWID(1) General Commands Manual ZSHCOMPWID(1)

−n Specifies that the words added are to be used as possible matches, but are not to appear in

the completion listing.

−U If this flag is given, all words given will be accepted and no matching will be done by the

completion code. Normally this is used in functions that do the matching themselves.

−O array

If this option is given, the words are not added to the set of possible completions. In-

stead, matching is done as usual and all of the words given as arguments that match the

string on the command line will be stored in the array parameter whose name is given as

array.

−A array

As the −O option, except that instead of those of the words which match being stored in

array, the strings generated internally by the completion code are stored. For example,

with a matching specification of ‘−M "L:|no="’, the string ‘nof’ on the command line

and the string ‘foo’ as one of the words, this option stores the string ‘nofoo’ in the array,

whereas the −O option stores the ‘foo’ originally given.

−D array

As with −O, the words are not added to the set of possible completions. Instead, the

completion code tests whether each word in turn matches what is on the line. If the nth

word does not match, the nth element of the array is removed. Elements for which the

corresponding word is matched are retained.

−C This option adds a special match which expands to all other matches when inserted into

the line, even those that are added after this option is used. Together with the −d option it

is possible to specify a string that should be displayed in the list for this special match. If

no string is given, it will be shown as a string containing the strings that would be in-

serted for the other matches, truncated to the width of the screen.

−E number

This option adds number empty matches after the words have been added. An empty

match takes up space in completion listings but will never be inserted in the line and can’t

be selected with menu completion or menu selection. This makes empty matches only

useful to format completion lists and to make explanatory string be shown in completion

lists (since empty matches can be given display strings with the −d option). And because

all but one empty string would otherwise be removed, this option implies the −V and −2
options (even if an explicit −J option is given). This can be important to note as it affects

the name space into which matches are added.

−
−− This flag ends the list of flags and options. All arguments after it will be taken as the

words to use as matches even if they begin with hyphens.

Except for the −M flag, if any of these flags is given more than once, the first one (and its argu-

ment) will be used.

compset −p number

compset −P [number] pattern

compset −s number

compset −S [number] pattern

compset −n begin [end]

compset −N beg−pat [end−pat]

compset −q
This command simplifies modification of the special parameters, while its return status allows tests

on them to be carried out.

The options are:

zsh 5.8 February 14, 2020 9

ZSHCOMPWID(1) General Commands Manual ZSHCOMPWID(1)

−p number

If the value of the PREFIX parameter is at least number characters long, the first number

characters are removed from it and appended to the contents of the IPREFIX parameter.

−P [number] pattern

If the value of the PREFIX parameter begins with anything that matches the pattern, the

matched portion is removed from PREFIX and appended to IPREFIX.

Without the optional number, the longest match is taken, but if number is given, anything

up to the numberth match is moved. If the number is negative, the numberth longest

match is moved. For example, if PREFIX contains the string ‘a=b=c’, then compset −P
’*\=’ will move the string ‘a=b=’ into the IPREFIX parameter, but compset −P 1 ’*\=’
will move only the string ‘a=’.

−s number

As −p, but transfer the last number characters from the value of SUFFIX to the front of

the value of ISUFFIX.

−S [number] pattern

As −P, but match the last portion of SUFFIX and transfer the matched portion to the

front of the value of ISUFFIX.

−n begin [end]

If the current word position as specified by the parameter CURRENT is greater than or

equal to begin, anything up to the beginth word is removed from the words array and the

value of the parameter CURRENT is decremented by begin.

If the optional end is given, the modification is done only if the current word position is

also less than or equal to end. In this case, the words from position end onwards are also

removed from the words array.

Both begin and end may be negative to count backwards from the last element of the

words array.

−N beg−pat [end−pat]

If one of the elements of the words array before the one at the index giv en by the value of

the parameter CURRENT matches the pattern beg−pat, all elements up to and including

the matching one are removed from the words array and the value of CURRENT is

changed to point to the same word in the changed array.

If the optional pattern end−pat is also given, and there is an element in the words array

matching this pattern, the parameters are modified only if the index of this word is higher

than the one given by the CURRENT parameter (so that the matching word has to be af-

ter the cursor). In this case, the words starting with the one matching end−pat are also re-

moved from the words array. If words contains no word matching end−pat, the testing

and modification is performed as if it were not given.

−q The word currently being completed is split on spaces into separate words, respecting the

usual shell quoting conventions. The resulting words are stored in the words array, and

CURRENT, PREFIX, SUFFIX, QIPREFIX, and QISUFFIX are modified to reflect

the word part that is completed.

In all the above cases the return status is zero if the test succeeded and the parameters were modi-

fied and non−zero otherwise. This allows one to use this builtin in tests such as:

if compset −P ’*\=’; then ...

This forces anything up to and including the last equal sign to be ignored by the completion code.

compcall [−TD]

This allows the use of completions defined with the compctl builtin from within completion wid-

gets. The list of matches will be generated as if one of the non−widget completion functions

(complete−word, etc.) had been called, except that only compctls giv en for specific commands

zsh 5.8 February 14, 2020 10

ZSHCOMPWID(1) General Commands Manual ZSHCOMPWID(1)

are used. To force the code to try completions defined with the −T option of compctl and/or the

default completion (whether defined by compctl −D or the builtin default) in the appropriate

places, the −T and/or −D flags can be passed to compcall.

The return status can be used to test if a matching compctl definition was found. It is non−zero if a

compctl was found and zero otherwise.

Note that this builtin is defined by the zsh/compctl module.

COMPLETION CONDITION CODES
The following additional condition codes for use within the [[...]] construct are available in completion

widgets. These work on the special parameters. All of these tests can also be performed by the compset
builtin, but in the case of the condition codes the contents of the special parameters are not modified.

−prefix [number] pattern

true if the test for the −P option of compset would succeed.

−suffix [number] pattern

true if the test for the −S option of compset would succeed.

−after beg−pat

true if the test of the −N option with only the beg−pat given would succeed.

−between beg−pat end−pat

true if the test for the −N option with both patterns would succeed.

COMPLETION MATCHING CONTROL
It is possible by use of the −M option of the compadd builtin command to specify how the characters in the

string to be completed (referred to here as the command line) map onto the characters in the list of matches

produced by the completion code (referred to here as the trial completions). Note that this is not used if the

command line contains a glob pattern and the GLOB_COMPLETE option is set or the pattern_match of

the compstate special association is set to a non−empty string.

The match−spec given as the argument to the −M option (see ‘Completion Builtin Commands’ above) con-

sists of one or more matching descriptions separated by whitespace. Each description consists of a letter

followed by a colon and then the patterns describing which character sequences on the line match which

character sequences in the trial completion. Any sequence of characters not handled in this fashion must

match exactly, as usual.

The forms of match−spec understood are as follows. In each case, the form with an upper case initial char-

acter retains the string already typed on the command line as the final result of completion, while with a

lower case initial character the string on the command line is changed into the corresponding part of the

trial completion.

m:lpat=tpat

M:lpat=tpat

Here, lpat is a pattern that matches on the command line, corresponding to tpat which matches in

the trial completion.

l:lanchor|lpat=tpat

L:lanchor|lpat=tpat

l:lanchor||ranchor=tpat

L:lanchor||ranchor=tpat

b:lpat=tpat

B:lpat=tpat

These letters are for patterns that are anchored by another pattern on the left side. Matching for

lpat and tpat is as for m and M, but the pattern lpat matched on the command line must be pre-

ceded by the pattern lanchor. The lanchor can be blank to anchor the match to the start of the

command line string; otherwise the anchor can occur anywhere, but must match in both the com-

mand line and trial completion strings.

If no lpat is given but a ranchor is, this matches the gap between substrings matched by lanchor

zsh 5.8 February 14, 2020 11

ZSHCOMPWID(1) General Commands Manual ZSHCOMPWID(1)

and ranchor. Unlike lanchor, the ranchor only needs to match the trial completion string.

The b and B forms are similar to l and L with an empty anchor, but need to match only the begin-

ning of the word on the command line or trial completion, respectively.

r:lpat|ranchor=tpat

R:lpat|ranchor=tpat

r:lanchor||ranchor=tpat

R:lanchor||ranchor=tpat

e:lpat=tpat

E:lpat=tpat

As l, L, b and B, with the difference that the command line and trial completion patterns are an-

chored on the right side. Here an empty ranchor and the e and E forms force the match to the end

of the command line or trial completion string.

x: This form is used to mark the end of matching specifications: subsequent specifications are ig-

nored. In a single standalone list of specifications this has no use but where matching specifica-

tions are accumulated, such as from nested function calls, it can allow one function to override an-

other.

Each lpat, tpat or anchor is either an empty string or consists of a sequence of literal characters (which may

be quoted with a backslash), question marks, character classes, and correspondence classes; ordinary shell

patterns are not used. Literal characters match only themselves, question marks match any character, and

character classes are formed as for globbing and match any character in the given set.

Correspondence classes are defined like character classes, but with two differences: they are delimited by a

pair of braces, and negated classes are not allowed, so the characters ! and ˆ have no special meaning di-

rectly after the opening brace. They indicate that a range of characters on the line match a range of charac-

ters in the trial completion, but (unlike ordinary character classes) paired according to the corresponding

position in the sequence. For example, to make any ASCII lower case letter on the line match the corre-

sponding upper case letter in the trial completion, you can use ‘m:{a−z}={A−Z}’ (however, see below for

the recommended form for this). More than one pair of classes can occur, in which case the first class be-

fore the = corresponds to the first after it, and so on. If one side has more such classes than the other side,

the superfluous classes behave like normal character classes. In anchor patterns correspondence classes

also behave like normal character classes.

The standard ‘[:name:]’ forms described for standard shell patterns (see the section FILENAME GENER-

ATION in zshexpn(1)) may appear in correspondence classes as well as normal character classes. The only

special behaviour in correspondence classes is if the form on the left and the form on the right are each one

of [:upper:], [:lower:]. In these cases the character in the word and the character on the line must be the

same up to a difference in case. Hence to make any lower case character on the line match the correspond-

ing upper case character in the trial completion you can use ‘m:{[:lower:]}={[:upper:]}’. Although the

matching system does not yet handle multibyte characters, this is likely to be a future extension, at which

point this syntax will handle arbitrary alphabets; hence this form, rather than the use of explicit ranges, is

the recommended form. In other cases ‘[:name:]’ forms are allowed. If the two forms on the left and right

are the same, the characters must match exactly. In remaining cases, the corresponding tests are applied to

both characters, but they are not otherwise constrained; any matching character in one set goes with any

matching character in the other set: this is equivalent to the behaviour of ordinary character classes.

The pattern tpat may also be one or two stars, ‘*’ or ‘**’. This means that the pattern on the command line

can match any number of characters in the trial completion. In this case the pattern must be anchored (on

either side); in the case of a single star, the anchor then determines how much of the trial completion is to

be included −− only the characters up to the next appearance of the anchor will be matched. With two stars,

substrings matched by the anchor can be matched, too.

Examples:

The keys of the options association defined by the parameter module are the option names in

all−lower−case form, without underscores, and without the optional no at the beginning even though the

builtins setopt and unsetopt understand option names with upper case letters, underscores, and the optional

zsh 5.8 February 14, 2020 12

ZSHCOMPWID(1) General Commands Manual ZSHCOMPWID(1)

no. The following alters the matching rules so that the prefix no and any underscore are ignored when try-

ing to match the trial completions generated and upper case letters on the line match the corresponding

lower case letters in the words:

compadd −M ’L:|[nN][oO]= M:_= M:{[:upper:]}={[:lower:]}’ − \
${(k)options}

The first part says that the pattern ‘[nN][oO]’ at the beginning (the empty anchor before the pipe symbol)

of the string on the line matches the empty string in the list of words generated by completion, so it will be

ignored if present. The second part does the same for an underscore anywhere in the command line string,

and the third part uses correspondence classes so that any upper case letter on the line matches the corre-

sponding lower case letter in the word. The use of the upper case forms of the specification characters (L
and M) guarantees that what has already been typed on the command line (in particular the prefix no) will

not be deleted.

Note that the use of L in the first part means that it matches only when at the beginning of both the com-

mand line string and the trial completion. I.e., the string ‘_NO_f’ would not be completed to ‘_NO_foo’,

nor would ‘NONO_f’ be completed to ‘NONO_foo’ because of the leading underscore or the second ‘NO’

on the line which makes the pattern fail even though they are otherwise ignored. To fix this, one would use

‘B:[nN][oO]=’ instead of the first part. As described above, this matches at the beginning of the trial com-

pletion, independent of other characters or substrings at the beginning of the command line word which are

ignored by the same or other match−specs.

The second example makes completion case insensitive. This is just the same as in the option example, ex-

cept here we wish to retain the characters in the list of completions:

compadd −M ’m:{[:lower:]}={[:upper:]}’ ...

This makes lower case letters match their upper case counterparts. To make upper case letters match the

lower case forms as well:

compadd −M ’m:{[:lower:][:upper:]}={[:upper:][:lower:]}’ ...

A nice example for the use of * patterns is partial word completion. Sometimes you would like to make

strings like ‘c.s.u’ complete to strings like ‘comp.source.unix’, i.e. the word on the command line consists

of multiple parts, separated by a dot in this example, where each part should be completed separately −−

note, however, that the case where each part of the word, i.e. ‘comp’, ‘source’ and ‘unix’ in this example,

is to be completed from separate sets of matches is a different problem to be solved by the implementation

of the completion widget. The example can be handled by:

compadd −M ’r:|.=* r:|=*’ \
− comp.sources.unix comp.sources.misc ...

The first specification says that lpat is the empty string, while anchor is a dot; tpat is *, so this can match

anything except for the ‘.’ from the anchor in the trial completion word. So in ‘c.s.u’, the matcher sees ‘c’,

followed by the empty string, followed by the anchor ‘.’, and likewise for the second dot, and replaces the

empty strings before the anchors, giving ‘c[omp].s[ources].u[nix]’, where the last part of the completion is

just as normal.

With the pattern shown above, the string ‘c.u’ could not be completed to ‘comp.sources.unix’ because the

single star means that no dot (matched by the anchor) can be skipped. By using two stars as in ‘r:|.=**’,

however, ‘c.u’ could be completed to ‘comp.sources.unix’. This also shows that in some cases, especially

if the anchor is a real pattern, like a character class, the form with two stars may result in more matches

than one would like.

The second specification is needed to make this work when the cursor is in the middle of the string on the

command line and the option COMPLETE_IN_WORD is set. In this case the completion code would

normally try to match trial completions that end with the string as typed so far, i.e. it will only insert new

characters at the cursor position rather than at the end. However in our example we would like the code to

recognise matches which contain extra characters after the string on the line (the ‘nix’ in the example).

Hence we say that the empty string at the end of the string on the line matches any characters at the end of

the trial completion.

zsh 5.8 February 14, 2020 13

ZSHCOMPWID(1) General Commands Manual ZSHCOMPWID(1)

More generally, the specification

compadd −M ’r:|[.,_−]=* r:|=*’ ...

allows one to complete words with abbreviations before any of the characters in the square brackets. For

example, to complete veryverylongfile.c rather than veryverylongheader.h with the above in effect, you

can just type very.c before attempting completion.

The specifications with both a left and a right anchor are useful to complete partial words whose parts are

not separated by some special character. For example, in some places strings have to be completed that are

formed ‘LikeThis’ (i.e. the separate parts are determined by a leading upper case letter) or maybe one has

to complete strings with trailing numbers. Here one could use the simple form with only one anchor as in:

compadd −M ’r:|[[:upper:]0−9]=* r:|=*’ LikeTHIS FooHoo 5foo123 5bar234

But with this, the string ‘H’ would neither complete to ‘FooHoo’ nor to ‘LikeTHIS’ because in each case

there is an upper case letter before the ‘H’ and that is matched by the anchor. Likewise, a ‘2’ would not be

completed. In both cases this could be changed by using ‘r:|[[:upper:]0−9]=**’, but then ‘H’ completes to

both ‘LikeTHIS’ and ‘FooHoo’ and a ‘2’ matches the other strings because characters can be inserted be-

fore every upper case letter and digit. To avoid this one would use:

compadd −M ’r:[ˆ[:upper:]0−9]||[[:upper:]0−9]=** r:|=*’ \
LikeTHIS FooHoo foo123 bar234

By using these two anchors, a ‘H’ matches only upper case ‘H’s that are immediately preceded by some-

thing matching the left anchor ‘[ˆ[:upper:]0−9]’. The effect is, of course, that ‘H’ matches only the string

‘FooHoo’, a ‘2’ matches only ‘bar234’ and so on.

When using the completion system (see zshcompsys(1)), users can define match specifications that are to be

used for specific contexts by using the matcher and matcher−list styles. The values for the latter will be

used everywhere.

COMPLETION WIDGET EXAMPLE
The first step is to define the widget:

zle −C complete complete−word complete−files

Then the widget can be bound to a key using the bindkey builtin command:

bindkey ’ˆX\t’ complete

After that the shell function complete−files will be invoked after typing control−X and TAB. The function

should then generate the matches, e.g.:

complete−files () { compadd − * }

This function will complete files in the current directory matching the current word.

zsh 5.8 February 14, 2020 14

