
ZSH(1) General Commands Manual ZSH(1)

NAME
zsh − the Z shell

OVERVIEW
Because zsh contains many features, the zsh manual has been split into a number of sections:

zsh Zsh overview (this section)

zshroadmap Informal introduction to the manual

zshmisc Anything not fitting into the other sections

zshexpn Zsh command and parameter expansion

zshparam Zsh parameters

zshoptions Zsh options

zshbuiltins Zsh built−in functions

zshzle Zsh command line editing

zshcompwid Zsh completion widgets

zshcompsys Zsh completion system

zshcompctl Zsh completion control

zshmodules Zsh loadable modules

zshcalsys Zsh built−in calendar functions

zshtcpsys Zsh built−in TCP functions

zshzftpsys Zsh built−in FTP client

zshcontrib Additional zsh functions and utilities

zshall Meta−man page containing all of the above

DESCRIPTION
Zsh is a UNIX command interpreter (shell) usable as an interactive login shell and as a shell script com-

mand processor. Of the standard shells, zsh most closely resembles ksh but includes many enhancements.

It does not provide compatibility with POSIX or other shells in its default operating mode: see the section

‘Compatibility’ below.

Zsh has command line editing, builtin spelling correction, programmable command completion, shell func-

tions (with autoloading), a history mechanism, and a host of other features.

AUTHOR
Zsh was originally written by Paul Falstad. Zsh is now maintained by the members of the zsh−workers

mailing list <zsh−workers@zsh.org>. The development is currently coordinated by Peter Stephenson

<pws@zsh.org>. The coordinator can be contacted at <coordinator@zsh.org>, but matters relating to the

code should generally go to the mailing list.

AV AILABILITY
Zsh is available from the following HTTP and anonymous FTP site.

ftp://ftp.zsh.org/pub/

https://www.zsh.org/pub/

The up−to−date source code is available via Git from Sourceforge. See https://source-

forge.net/projects/zsh/ for details. A summary of instructions for the archive can be found at

https://zsh.sourceforge.io/.

MAILING LISTS
Zsh has several mailing lists:

<zsh−announce@zsh.org>

Announcements about releases, major changes in the shell and the monthly posting of the Zsh

FA Q. (moderated)

<zsh−users@zsh.org>

User discussions.

<zsh−workers@zsh.org>

Hacking, development, bug reports and patches.

zsh 5.9 May 14, 2022 1

ZSH(1) General Commands Manual ZSH(1)

<zsh−security@zsh.org>

Private mailing list (the general public cannot subscribe to it) for discussing bug reports with secu-

rity implications, i.e., potential vulnerabilities.

If you find a security problem in zsh itself, please mail this address.

To subscribe or unsubscribe, send mail to the associated administrative address for the mailing list.

<zsh−announce−subscribe@zsh.org>

<zsh−users−subscribe@zsh.org>

<zsh−workers−subscribe@zsh.org>

<zsh−announce−unsubscribe@zsh.org>

<zsh−users−unsubscribe@zsh.org>

<zsh−workers−unsubscribe@zsh.org>

YOU ONLY NEED TO JOIN ONE OF THE MAILING LISTS AS THEY ARE NESTED. All submis-

sions to zsh−announce are automatically forwarded to zsh−users. All submissions to zsh−users are auto-

matically forwarded to zsh−workers.

If you have problems subscribing/unsubscribing to any of the mailing lists, send mail to <listmas-

ter@zsh.org>.

The mailing lists are archived; the archives can be accessed via the administrative addresses listed above.

There is also a hypertext archive available at https://www.zsh.org/mla/.

THE ZSH FAQ
Zsh has a list of Frequently Asked Questions (FAQ), maintained by Peter Stephenson <pws@zsh.org>. It

is regularly posted to the newsgroup comp.unix.shell and the zsh−announce mailing list. The latest ver-

sion can be found at any of the Zsh FTP sites, or at https://www.zsh.org/FAQ/. The contact address for

FA Q−related matters is <faqmaster@zsh.org>.

THE ZSH WEB PAGE
Zsh has a web page which is located at https://www.zsh.org/. The contact address for web−related matters

is <webmaster@zsh.org>.

THE ZSH USERGUIDE
A userguide is currently in preparation. It is intended to complement the manual, with explanations and

hints on issues where the manual can be cabbalistic, hierographic, or downright mystifying (for example,

the word ‘hierographic’ does not exist). It can be viewed in its current state at https://zsh.source-

forge.io/Guide/. At the time of writing, chapters dealing with startup files and their contents and the new

completion system were essentially complete.

INVOCATION
The following flags are interpreted by the shell when invoked to determine where the shell will read com-

mands from:

−c Take the first argument as a command to execute, rather than reading commands from a script or

standard input. If any further arguments are given, the first one is assigned to $0, rather than being

used as a positional parameter.

−i Force shell to be interactive. It is still possible to specify a script to execute.

−s Force shell to read commands from the standard input. If the −s flag is not present and an argu-

ment is given, the first argument is taken to be the pathname of a script to execute.

If there are any remaining arguments after option processing, and neither of the options −c or −s was sup-

plied, the first argument is taken as the file name of a script containing shell commands to be executed. If

the option PATH_SCRIPT is set, and the file name does not contain a directory path (i.e. there is no ‘/’ in

the name), first the current directory and then the command path given by the variable PATH are searched

for the script. If the option is not set or the file name contains a ‘/’ it is used directly.

After the first one or two arguments have been appropriated as described above, the remaining arguments

are assigned to the positional parameters.

zsh 5.9 May 14, 2022 2

ZSH(1) General Commands Manual ZSH(1)

For further options, which are common to invocation and the set builtin, see zshoptions(1).

The long option ‘−−emulate’ followed (in a separate word) by an emulation mode may be passed to the

shell. The emulation modes are those described for the emulate builtin, see zshbuiltins(1). The ‘−−emu-

late’ option must precede any other options (which might otherwise be overridden), but following options

are honoured, so may be used to modify the requested emulation mode. Note that certain extra steps are

taken to ensure a smooth emulation when this option is used compared with the emulate command within

the shell: for example, variables that conflict with POSIX usage such as path are not defined within the

shell.

Options may be specified by name using the −o option. −o acts like a single−letter option, but takes a fol-

lowing string as the option name. For example,

zsh −x −o shwordsplit scr

runs the script scr, setting the XTRACE option by the corresponding letter ‘−x’ and the

SH_WORD_SPLIT option by name. Options may be turned off by name by using +o instead of −o. −o

can be stacked up with preceding single−letter options, so for example ‘−xo shwordsplit’ or ‘−xoshword-

split’ is equivalent to ‘−x −o shwordsplit’.

Options may also be specified by name in GNU long option style, ‘−−option−name’. When this is done,

‘−’ characters in the option name are permitted: they are translated into ‘_’, and thus ignored. So, for ex-

ample, ‘zsh −−sh−word−split’ inv okes zsh with the SH_WORD_SPLIT option turned on. Like other op-

tion syntaxes, options can be turned off by replacing the initial ‘−’ with a ‘+’; thus ‘+−sh−word−split’ is

equivalent to ‘−−no−sh−word−split’. Unlike other option syntaxes, GNU−style long options cannot be

stacked with any other options, so for example ‘−x−shwordsplit’ is an error, rather than being treated like

‘−x −−shwordsplit’.

The special GNU−style option ‘−−version’ is handled; it sends to standard output the shell’s version infor-

mation, then exits successfully. ‘−−help’ is also handled; it sends to standard output a list of options that

can be used when invoking the shell, then exits successfully.

Option processing may be finished, allowing following arguments that start with ‘−’ or ‘+’ to be treated as

normal arguments, in two ways. Firstly, a lone ‘−’ (or ‘+’) as an argument by itself ends option processing.

Secondly, a special option ‘−−’ (or ‘+−’), which may be specified on its own (which is the standard POSIX

usage) or may be stacked with preceding options (so ‘−x−’ is equivalent to ‘−x −−’). Options are not per-

mitted to be stacked after ‘−−’ (so ‘−x−f’ is an error), but note the GNU−style option form discussed above,

where ‘−−shwordsplit’ is permitted and does not end option processing.

Except when the sh/ksh emulation single−letter options are in effect, the option ‘−b’ (or ‘+b’) ends option

processing. ‘−b’ is like ‘−−’, except that further single−letter options can be stacked after the ‘−b’ and will

take effect as normal.

COMPATIBILITY
Zsh tries to emulate sh or ksh when it is invoked as sh or ksh respectively; more precisely, it looks at the

first letter of the name by which it was invoked, excluding any initial ‘r’ (assumed to stand for ‘restricted’),

and if that is ‘b’, ‘s’ or ‘k’ it will emulate sh or ksh. Furthermore, if invoked as su (which happens on cer-

tain systems when the shell is executed by the su command), the shell will try to find an alternative name

from the SHELL environment variable and perform emulation based on that.

In sh and ksh compatibility modes the following parameters are not special and not initialized by the shell:

ARGC, argv, cdpath, fignore, fpath, HISTCHARS, mailpath, MANPATH, manpath, path, prompt,

PROMPT, PROMPT2, PROMPT3, PROMPT4, psvar, status.

The usual zsh startup/shutdown scripts are not executed. Login shells source /etc/profile followed by

$HOME/.profile. If the ENV environment variable is set on invocation, $ENV is sourced after the profile

scripts. The value of ENV is subjected to parameter expansion, command substitution, and arithmetic ex-

pansion before being interpreted as a pathname. Note that the PRIVILEGED option also affects the exe-

cution of startup files.

The following options are set if the shell is invoked as sh or ksh: NO_BAD_PATTERN,

NO_BANG_HIST, NO_BG_NICE, NO_EQUALS, NO_FUNCTION_ARGZERO, GLOB_SUBST,

zsh 5.9 May 14, 2022 3

ZSH(1) General Commands Manual ZSH(1)

NO_GLOBAL_EXPORT, NO_HUP, INTERACTIVE_COMMENTS, KSH_ARRAYS, NO_MUL-

TIOS, NO_NOMATCH, NO_NOTIFY, POSIX_BUILTINS, NO_PROMPT_PERCENT,

RM_STAR_SILENT, SH_FILE_EXPANSION, SH_GLOB, SH_OPTION_LETTERS,

SH_WORD_SPLIT. Additionally the BSD_ECHO and IGNORE_BRACES options are set if zsh is in-

voked as sh. Also, the KSH_OPTION_PRINT, LOCAL_OPTIONS, PROMPT_BANG,

PROMPT_SUBST and SINGLE_LINE_ZLE options are set if zsh is invoked as ksh.

Please note that, whilst reasonable efforts are taken to address incompatibilities when they arise, zsh does

not guarantee complete emulation of other shells, nor POSIX compliance. For more information on the dif-

ferences between zsh and other shells, please refer to chapter 2 of the shell FAQ,

https://www.zsh.org/FAQ/.

RESTRICTED SHELL
When the basename of the command used to invoke zsh starts with the letter ‘r’ or the ‘−r’ command line

option is supplied at invocation, the shell becomes restricted. Emulation mode is determined after stripping

the letter ‘r’ from the invocation name. The following are disabled in restricted mode:

• changing directories with the cd builtin

• changing or unsetting the EGID, EUID, GID, HISTFILE, HISTSIZE, IFS, LD_AOUT_LI-

BRARY_PATH, LD_AOUT_PRELOAD, LD_LIBRARY_PATH, LD_PRELOAD, MOD-

ULE_PATH, module_path, PATH, path, SHELL, UID and USERNAME parameters

• specifying command names containing /

• specifying command pathnames using hash

• redirecting output to files

• using the exec builtin command to replace the shell with another command

• using jobs −Z to overwrite the shell process’ argument and environment space

• using the ARGV0 parameter to override argv[0] for external commands

• turning off restricted mode with set +r or unsetopt RESTRICTED

These restrictions are enforced after processing the startup files. The startup files should set up PATH to

point to a directory of commands which can be safely invoked in the restricted environment. They may

also add further restrictions by disabling selected builtins.

Restricted mode can also be activated any time by setting the RESTRICTED option. This immediately

enables all the restrictions described above even if the shell still has not processed all startup files.

A shell Restricted Mode is an outdated way to restrict what users may do: modern systems have better,

safer and more reliable ways to confine user actions, such as chroot jails, containers and zones.

A restricted shell is very difficult to implement safely. The feature may be removed in a future version of

zsh.

It is important to realise that the restrictions only apply to the shell, not to the commands it runs (except for

some shell builtins). While a restricted shell can only run the restricted list of commands accessible via the

predefined ‘PATH’ variable, it does not prevent those commands from running any other command.

As an example, if ‘env’ is among the list of allowed commands, then it allows the user to run any command

as ‘env’ is not a shell builtin command and can run arbitrary executables.

So when implementing a restricted shell framework it is important to be fully aware of what actions each of

the allowed commands or features (which may be regarded as modules) can perform.

Many commands can have their behaviour affected by environment variables. Except for the few listed

above, zsh does not restrict the setting of environment variables.

If a ‘perl’, ‘python’, ‘bash’, or other general purpose interpreted script it treated as a restricted command,

the user can work around the restriction by setting specially crafted ‘PERL5LIB’, ‘PYTHONPATH’,

‘BASHENV’ (etc.) environment variables. On GNU systems, any command can be made to run arbitrary

zsh 5.9 May 14, 2022 4

ZSH(1) General Commands Manual ZSH(1)

code when performing character set conversion (including zsh itself) by setting a ‘GCONV_PATH’ envi-

ronment variable. Those are only a few examples.

Bear in mind that, contrary to some other shells, ‘readonly’ is not a security feature in zsh as it can be un-

done and so cannot be used to mitigate the above.

A restricted shell only works if the allowed commands are few and carefully written so as not to grant more

access to users than intended. It is also important to restrict what zsh module the user may load as some of

them, such as ‘zsh/system’, ‘zsh/mapfile’ and ‘zsh/files’, allow bypassing most of the restrictions.

STARTUP/SHUTDOWN FILES
Commands are first read from /etc/zsh/zshenv; this cannot be overridden. Subsequent behaviour is modi-

fied by the RCS and GLOBAL_RCS options; the former affects all startup files, while the second only af-

fects global startup files (those shown here with an path starting with a /). If one of the options is unset at

any point, any subsequent startup file(s) of the corresponding type will not be read. It is also possible for a

file in $ZDOTDIR to re−enable GLOBAL_RCS. Both RCS and GLOBAL_RCS are set by default.

Commands are then read from $ZDOTDIR/.zshenv. If the shell is a login shell, commands are read from

/etc/zsh/zprofile and then $ZDOTDIR/.zprofile. Then, if the shell is interactive, commands are read from

/etc/zsh/zshrc and then $ZDOTDIR/.zshrc. Finally, if the shell is a login shell, /etc/zsh/zlogin and

$ZDOTDIR/.zlogin are read.

When a login shell exits, the files $ZDOTDIR/.zlogout and then /etc/zsh/zlogout are read. This happens

with either an explicit exit via the exit or logout commands, or an implicit exit by reading end−of−file from

the terminal. However, if the shell terminates due to exec’ing another process, the logout files are not read.

These are also affected by the RCS and GLOBAL_RCS options. Note also that the RCS option affects

the saving of history files, i.e. if RCS is unset when the shell exits, no history file will be saved.

If ZDOTDIR is unset, HOME is used instead. Files listed above as being in /etc may be in another direc-

tory, depending on the installation.

As /etc/zsh/zshenv is run for all instances of zsh, it is important that it be kept as small as possible. In par-

ticular, it is a good idea to put code that does not need to be run for every single shell behind a test of the

form ‘if [[−o rcs]]; then ...’ so that it will not be executed when zsh is invoked with the ‘−f’ option.

Any of these files may be pre−compiled with the zcompile builtin command (see zshbuiltins(1)). If a com-

piled file exists (named for the original file plus the .zwc extension) and it is newer than the original file, the

compiled file will be used instead.

FILES
$ZDOTDIR/.zshenv

$ZDOTDIR/.zprofile

$ZDOTDIR/.zshrc

$ZDOTDIR/.zlogin

$ZDOTDIR/.zlogout

${TMPPREFIX}* (default is /tmp/zsh*)

/etc/zsh/zshenv

/etc/zsh/zprofile

/etc/zsh/zshrc

/etc/zsh/zlogin

/etc/zsh/zlogout (installation−specific − /etc is the default)

SEE ALSO
sh(1), csh(1), tcsh(1), rc(1), bash(1), ksh(1), zshall(1), zshbuiltins(1), zshcalsys(1), zshcompwid(1), zsh-

compsys(1), zshcompctl(1), zshcontrib(1), zshexpn(1), zshmisc(1), zshmodules(1), zshoptions(1), zsh-

param(1), zshroadmap(1), zshtcpsys(1), zshzftpsys(1), zshzle(1)

IEEE Standard for information Technology − Portable Operating System Interface (POSIX) − Part

2: Shell and Utilities, IEEE Inc, 1993, ISBN 1−55937−255−9.

zsh 5.9 May 14, 2022 5

