
X509V3_CONFIG(5SSL) OpenSSL X509V3_CONFIG(5SSL)

NAME
x509v3_config − X509 V3 certificate extension configuration format

DESCRIPTION
Several of the OpenSSL utilities can add extensions to a certificate or certificate request based on the

contents of a configuration file.

Typically the application will contain an option to point to an extension section. Each line of the extension

section takes the form:

extension_name=[critical,] extension_options

If critical is present then the extension will be critical.

The format of extension_options depends on the value of extension_name.

There are four main types of extension: string extensions, multi-valued extensions, raw and arbitrary

extensions.

String extensions simply have a string which contains either the value itself or how it is obtained.

For example:

nsComment="This is a Comment"

Multi-valued extensions have a short form and a long form. The short form is a list of names and values:

basicConstraints=critical,CA:true,pathlen:1

The long form allows the values to be placed in a separate section:

basicConstraints=critical,@bs_section

[bs_section]

CA=true

pathlen=1

Both forms are equivalent.

The syntax of raw extensions is governed by the extension code: it can for example contain data in multiple

sections. The correct syntax to use is defined by the extension code itself: check out the certificate policies

extension for an example.

If an extension type is unsupported then the arbitrary extension syntax must be used, see the ARBITRARY

EXTENSIONS section for more details.

STANDARD EXTENSIONS
The following sections describe each supported extension in detail.

Basic Constraints.

This is a multi valued extension which indicates whether a certificate is a CA certificate. The first

(mandatory) name is CA followed by TRUE or FALSE. If CA is TRUE then an optional pathlen name

followed by an non-negative value can be included.

For example:

basicConstraints=CA:TRUE

basicConstraints=CA:FALSE

basicConstraints=critical,CA:TRUE, pathlen:0

A CA certificate must include the basicConstraints value with the CA field set to TRUE. An end user

certificate must either set CA to FALSE or exclude the extension entirely. Some software may require the

inclusion of basicConstraints with CA set to FALSE for end entity certificates.

The pathlen parameter indicates the maximum number of CAs that can appear below this one in a chain. So

1.1.1f 2023-02-06 1



X509V3_CONFIG(5SSL) OpenSSL X509V3_CONFIG(5SSL)

if you have a CA with a pathlen of zero it can only be used to sign end user certificates and not further CAs.

Key Usage.

Ke y usage is a multi valued extension consisting of a list of names of the permitted key usages.

The supported names are: digitalSignature, nonRepudiation, keyEncipherment, dataEncipherment,

keyAgreement, keyCertSign, cRLSign, encipherOnly and decipherOnly.

Examples:

keyUsage=digitalSignature, nonRepudiation

keyUsage=critical, keyCertSign

Extended Key Usage.

This extensions consists of a list of usages indicating purposes for which the certificate public key can be

used for,

These can either be object short names or the dotted numerical form of OIDs. While any OID can be used

only certain values make sense. In particular the following PKIX, NS and MS values are meaningful:

Value Meaning

−−−−− −−−−−−−

serverAuth SSL/TLS Web Server Authentication.

clientAuth SSL/TLS Web Client Authentication.

codeSigning Code signing.

emailProtection E−mail Protection (S/MIME).

timeStamping Trusted Timestamping

OCSPSigning OCSP Signing

ipsecIKE ipsec Internet Key Exchange

msCodeInd Microsoft Individual Code Signing (authenticode)

msCodeCom Microsoft Commercial Code Signing (authenticode)

msCTLSign Microsoft Trust List Signing

msEFS Microsoft Encrypted File System

Examples:

extendedKeyUsage=critical,codeSigning,1.2.3.4

extendedKeyUsage=serverAuth,clientAuth

Subject Key Identifier.

This is really a string extension and can take two possible values. Either the word hash which will

automatically follow the guidelines in RFC3280 or a hex string giving the extension value to include. The

use of the hex string is strongly discouraged.

Example:

subjectKeyIdentifier=hash

Authority Key Identifier.

The authority key identifier extension permits two options. keyid and issuer: both can take the optional

value ‘‘always’’.

If the keyid option is present an attempt is made to copy the subject key identifier from the parent

certificate. If the value ‘‘always’’ is present then an error is returned if the option fails.

The issuer option copies the issuer and serial number from the issuer certificate. This will only be done if

the keyid option fails or is not included unless the ‘‘always’’ flag will always include the value.

Example:

authorityKeyIdentifier=keyid,issuer

1.1.1f 2023-02-06 2



X509V3_CONFIG(5SSL) OpenSSL X509V3_CONFIG(5SSL)

Subject Alternative Name.

The subject alternative name extension allows various literal values to be included in the configuration file.

These include email (an email address) URI a uniform resource indicator, DNS (a DNS domain name), RID

(a registered ID: OBJECT IDENTIFIER), IP (an IP address), dirName (a distinguished name) and

otherName.

The email option include a special ’copy’ value. This will automatically include any email addresses

contained in the certificate subject name in the extension.

The IP address used in the IP options can be in either IPv4 or IPv6 format.

The value of dirName should point to a section containing the distinguished name to use as a set of name

value pairs. Multi values AVAs can be formed by prefacing the name with a + character.

otherName can include arbitrary data associated with an OID: the value should be the OID followed by a

semicolon and the content in standard ASN1_generate_nconf (3) format.

Examples:

subjectAltName=email:copy,email:my@other.address,URI:http://my.url.here/

subjectAltName=IP:192.168.7.1

subjectAltName=IP:13::17

subjectAltName=email:my@other.address,RID:1.2.3.4

subjectAltName=otherName:1.2.3.4;UTF8:some other identifier

subjectAltName=dirName:dir_sect

[dir_sect]

C=UK

O=My Organization

OU=My Unit

CN=My Name

Issuer Alternative Name.

The issuer alternative name option supports all the literal options of subject alternative name. It does not

support the email:copy option because that would not make sense. It does support an additional issuer:copy

option that will copy all the subject alternative name values from the issuer certificate (if possible).

Example:

issuerAltName = issuer:copy

Authority Info Access.

The authority information access extension gives details about how to access certain information relating to

the CA. Its syntax is accessOID;location where location has the same syntax as subject alternative name

(except that email:copy is not supported). accessOID can be any valid OID but only certain values are

meaningful, for example OCSP and caIssuers.

Example:

authorityInfoAccess = OCSP;URI:http://ocsp.my.host/

authorityInfoAccess = caIssuers;URI:http://my.ca/ca.html

CRL distribution points

This is a multi-valued extension whose options can be either in name:value pair using the same form as

subject alternative name or a single value representing a section name containing all the distribution point

fields.

For a name:value pair a new DistributionPoint with the fullName field set to the given value both the

cRLissuer and reasons fields are omitted in this case.

In the single option case the section indicated contains values for each field. In this section:

If the name is ‘‘fullname’’ the value field should contain the full name of the distribution point in the same

1.1.1f 2023-02-06 3



X509V3_CONFIG(5SSL) OpenSSL X509V3_CONFIG(5SSL)

format as subject alternative name.

If the name is ‘‘relativename’’ then the value field should contain a section name whose contents represent a

DN fragment to be placed in this field.

The name ‘‘CRLIssuer’’ if present should contain a value for this field in subject alternative name format.

If the name is ‘‘reasons’’ the value field should consist of a comma separated field containing the reasons.

Valid reasons are: ‘‘keyCompromise’’, ‘‘CACompromise’’, ‘‘affiliationChanged’’, ‘‘superseded’’,

‘‘cessationOfOperation’’, ‘‘certificateHold’’, ‘‘privilegeWithdrawn’’ and ‘‘AACompromise’’.

Simple examples:

crlDistributionPoints=URI:http://myhost.com/myca.crl

crlDistributionPoints=URI:http://my.com/my.crl,URI:http://oth.com/my.crl

Full distribution point example:

crlDistributionPoints=crldp1_section

[crldp1_section]

fullname=URI:http://myhost.com/myca.crl

CRLissuer=dirName:issuer_sect

reasons=keyCompromise, CACompromise

[issuer_sect]

C=UK

O=Organisation

CN=Some Name

Issuing Distribution Point

This extension should only appear in CRLs. It is a multi valued extension whose syntax is similar to the

‘‘section’’ pointed to by the CRL distribution points extension with a few differences.

The names ‘‘reasons’’ and ‘‘CRLissuer’’ are not recognized.

The name ‘‘onlysomereasons’’ is accepted which sets this field. The value is in the same format as the CRL

distribution point ‘‘reasons’’ field.

The names ‘‘onlyuser’’, ‘‘onlyCA’’, ‘‘onlyAA’’ and ‘‘indirectCRL’’ are also accepted the values should be a

boolean value (TRUE or FALSE) to indicate the value of the corresponding field.

Example:

issuingDistributionPoint=critical, @idp_section

[idp_section]

fullname=URI:http://myhost.com/myca.crl

indirectCRL=TRUE

onlysomereasons=keyCompromise, CACompromise

[issuer_sect]

C=UK

O=Organisation

CN=Some Name

Certificate Policies.

This is a raw extension. All the fields of this extension can be set by using the appropriate syntax.

If you follow the PKIX recommendations and just using one OID then you just include the value of that OID.

Multiple OIDs can be set separated by commas, for example:

1.1.1f 2023-02-06 4



X509V3_CONFIG(5SSL) OpenSSL X509V3_CONFIG(5SSL)

certificatePolicies= 1.2.4.5, 1.1.3.4

If you wish to include qualifiers then the policy OID and qualifiers need to be specified in a separate

section: this is done by using the @section syntax instead of a literal OID value.

The section referred to must include the policy OID using the name policyIdentifier, cPSuri qualifiers can be

included using the syntax:

CPS.nnn=value

userNotice qualifiers can be set using the syntax:

userNotice.nnn=@notice

The value of the userNotice qualifier is specified in the relevant section. This section can include

explicitText, organization and noticeNumbers options. explicitText and organization are text strings,

noticeNumbers is a comma separated list of numbers. The organization and noticeNumbers options (if

included) must BOTH be present. If you use the userNotice option with IE5 then you need the ’ia5org’

option at the top level to modify the encoding: otherwise it will not be interpreted properly.

Example:

certificatePolicies=ia5org,1.2.3.4,1.5.6.7.8,@polsect

[polsect]

policyIdentifier = 1.3.5.8

CPS.1="http://my.host.name/"

CPS.2="http://my.your.name/"

userNotice.1=@notice

[notice]

explicitText="Explicit Text Here"

organization="Organisation Name"

noticeNumbers=1,2,3,4

The ia5org option changes the type of the organization field. In RFC2459 it can only be of type

DisplayText. In RFC3280 IA5String is also permissible. Some software (for example some versions of

MSIE) may require ia5org.

ASN1 type of explicitText can be specified by prepending UTF8, BMP or VISIBLE prefix followed by

colon. For example:

[notice]

explicitText="UTF8:Explicit Text Here"

Policy Constraints

This is a multi-valued extension which consisting of the names requireExplicitPolicy or

inhibitPolicyMapping and a non negative integer value. At least one component must be present.

Example:

policyConstraints = requireExplicitPolicy:3

Inhibit Any Policy

This is a string extension whose value must be a non negative integer.

Example:

inhibitAnyPolicy = 2

Name Constraints

The name constraints extension is a multi-valued extension. The name should begin with the word

permitted or excluded followed by a ;. The rest of the name and the value follows the syntax of

1.1.1f 2023-02-06 5



X509V3_CONFIG(5SSL) OpenSSL X509V3_CONFIG(5SSL)

subjectAltName except email:copy is not supported and the IP form should consist of an IP addresses and

subnet mask separated by a /.

Examples:

nameConstraints=permitted;IP:192.168.0.0/255.255.0.0

nameConstraints=permitted;email:.somedomain.com

nameConstraints=excluded;email:.com

OCSP No Check

The OCSP No Check extension is a string extension but its value is ignored.

Example:

noCheck = ignored

TLS Feature (aka Must Staple)

This is a multi-valued extension consisting of a list of TLS extension identifiers. Each identifier may be a

number (0..65535) or a supported name. When a TLS client sends a listed extension, the TLS server is

expected to include that extension in its reply.

The supported names are: status_request and status_request_v2.

Example:

tlsfeature = status_request

DEPRECATED EXTENSIONS
The following extensions are non standard, Netscape specific and largely obsolete. Their use in new

applications is discouraged.

Netscape String extensions.

Netscape Comment (nsComment) is a string extension containing a comment which will be displayed

when the certificate is viewed in some browsers.

Example:

nsComment = "Some Random Comment"

Other supported extensions in this category are: nsBaseUrl, nsRevocationUrl, nsCaRevocationUrl,

nsRenewalUrl, nsCaPolicyUrl and nsSslServerName.

Netscape Certificate Type

This is a multi-valued extensions which consists of a list of flags to be included. It was used to indicate the

purposes for which a certificate could be used. The basicConstraints, keyUsage and extended key usage

extensions are now used instead.

Acceptable values for nsCertType are: client, server, email, objsign, reserved, sslCA, emailCA, objCA.

ARBITRARY EXTENSIONS
If an extension is not supported by the OpenSSL code then it must be encoded using the arbitrary extension

format. It is also possible to use the arbitrary format for supported extensions. Extreme care should be taken

to ensure that the data is formatted correctly for the given extension type.

There are two ways to encode arbitrary extensions.

The first way is to use the word ASN1 followed by the extension content using the same syntax as

ASN1_generate_nconf (3). For example:

1.2.3.4=critical,ASN1:UTF8String:Some random data

1.2.3.4=ASN1:SEQUENCE:seq_sect

[seq_sect]

1.1.1f 2023-02-06 6



X509V3_CONFIG(5SSL) OpenSSL X509V3_CONFIG(5SSL)

field1 = UTF8:field1

field2 = UTF8:field2

It is also possible to use the word DER to include the raw encoded data in any extension.

1.2.3.4=critical,DER:01:02:03:04

1.2.3.4=DER:01020304

The value following DER is a hex dump of the DER encoding of the extension Any extension can be placed

in this form to override the default behaviour. For example:

basicConstraints=critical,DER:00:01:02:03

WARNINGS
There is no guarantee that a specific implementation will process a given extension. It may therefore be

sometimes possible to use certificates for purposes prohibited by their extensions because a specific

application does not recognize or honour the values of the relevant extensions.

The DER and ASN1 options should be used with caution. It is possible to create totally invalid extensions if

they are not used carefully.

NOTES
If an extension is multi-value and a field value must contain a comma the long form must be used otherwise

the comma would be misinterpreted as a field separator. For example:

subjectAltName=URI:ldap://somehost.com/CN=foo,OU=bar

will produce an error but the equivalent form:

subjectAltName=@subject_alt_section

[subject_alt_section]

subjectAltName=URI:ldap://somehost.com/CN=foo,OU=bar

is valid.

Due to the behaviour of the OpenSSL conf library the same field name can only occur once in a section.

This means that:

subjectAltName=@alt_section

[alt_section]

email=steve@here

email=steve@there

will only recognize the last value. This can be worked around by using the form:

[alt_section]

email.1=steve@here

email.2=steve@there

SEE ALSO
req (1), ca (1), x509 (1), ASN1_generate_nconf (3)

COPYRIGHT
Copyright 2004−2019 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the OpenSSL license (the ‘‘License’’). You may not use this file except in compliance with

the License. You can obtain a copy in the file LICENSE in the source distribution or at

<https://www.openssl.org/source/license.html>.

1.1.1f 2023-02-06 7


