
WRITE(2) Linux Programmer’s Manual WRITE(2)

NAME
write − write to a file descriptor

SYNOPSIS
#include <unistd.h>

ssize_t write(int fd , const void *buf , size_t count);

DESCRIPTION
write() writes up to count bytes from the buffer starting at buf to the file referred to by the file descriptor

fd .

The number of bytes written may be less than count if, for example, there is insufficient space on the under-

lying physical medium, or the RLIMIT_FSIZE resource limit is encountered (see setrlimit(2)), or the call

was interrupted by a signal handler after having written less than count bytes. (See also pipe(7).)

For a seekable file (i.e., one to which lseek(2) may be applied, for example, a regular file) writing takes

place at the file offset, and the file offset is incremented by the number of bytes actually written. If the file

was open(2)ed with O_APPEND, the file offset is first set to the end of the file before writing. The adjust-

ment of the file offset and the write operation are performed as an atomic step.

POSIX requires that a read(2) that can be proved to occur after a write() has returned will return the new

data. Note that not all filesystems are POSIX conforming.

According to POSIX.1, if count is greater than SSIZE_MAX, the result is implementation-defined; see

NOTES for the upper limit on Linux.

RETURN VALUE
On success, the number of bytes written is returned. On error, −1 is returned, and errno is set to indicate

the cause of the error.

Note that a successful write() may transfer fewer than count bytes. Such partial writes can occur for vari-

ous reasons; for example, because there was insufficient space on the disk device to write all of the re-

quested bytes, or because a blocked write() to a socket, pipe, or similar was interrupted by a signal handler

after it had transferred some, but before it had transferred all of the requested bytes. In the event of a partial

write, the caller can make another write() call to transfer the remaining bytes. The subsequent call will ei-

ther transfer further bytes or may result in an error (e.g., if the disk is now full).

If count is zero and fd refers to a regular file, then write() may return a failure status if one of the errors be-

low is detected. If no errors are detected, or error detection is not performed, 0 will be returned without

causing any other effect. If count is zero and fd refers to a file other than a regular file, the results are not

specified.

ERRORS
EAGAIN

The file descriptor fd refers to a file other than a socket and has been marked nonblocking

(O_NONBLOCK), and the write would block. See open(2) for further details on the O_NON-

BLOCK flag.

EAGAIN or EWOULDBLOCK

The file descriptor fd refers to a socket and has been marked nonblocking (O_NONBLOCK), and

the write would block. POSIX.1-2001 allows either error to be returned for this case, and does not

require these constants to have the same value, so a portable application should check for both

possibilities.

EBADF

fd is not a valid file descriptor or is not open for writing.

EDESTADDRREQ

fd refers to a datagram socket for which a peer address has not been set using connect(2).

Linux 2019-10-10 1



WRITE(2) Linux Programmer’s Manual WRITE(2)

EDQUOT

The user’s quota of disk blocks on the filesystem containing the file referred to by fd has been ex-

hausted.

EFAULT

buf is outside your accessible address space.

EFBIG

An attempt was made to write a file that exceeds the implementation-defined maximum file size or

the process’s file size limit, or to write at a position past the maximum allowed offset.

EINTR

The call was interrupted by a signal before any data was written; see signal(7).

EINVAL

fd is attached to an object which is unsuitable for writing; or the file was opened with the O_DI-

RECT flag, and either the address specified in buf , the value specified in count, or the file offset is

not suitably aligned.

EIO A low-level I/O error occurred while modifying the inode. This error may relate to the write-back

of data written by an earlier write(), which may have been issued to a different file descriptor on

the same file. Since Linux 4.13, errors from write-back come with a promise that they may be re-

ported by subsequent. write() requests, and will be reported by a subsequent fsync(2) (whether or

not they were also reported by write()). An alternate cause of EIO on networked filesystems is

when an advisory lock had been taken out on the file descriptor and this lock has been lost. See

the Lost locks section of fcntl(2) for further details.

ENOSPC

The device containing the file referred to by fd has no room for the data.

EPERM

The operation was prevented by a file seal; see fcntl(2).

EPIPE fd is connected to a pipe or socket whose reading end is closed. When this happens the writing

process will also receive a SIGPIPE signal. (Thus, the write return value is seen only if the pro-

gram catches, blocks or ignores this signal.)

Other errors may occur, depending on the object connected to fd .

CONFORMING TO
SVr4, 4.3BSD, POSIX.1-2001.

Under SVr4 a write may be interrupted and return EINTR at any point, not just before any data is written.

NOTES
The types size_t and ssize_t are, respectively, unsigned and signed integer data types specified by POSIX.1.

A successful return from write() does not make any guarantee that data has been committed to disk. On

some filesystems, including NFS, it does not even guarantee that space has successfully been reserved for

the data. In this case, some errors might be delayed until a future write(), fsync(2), or even close(2). The

only way to be sure is to call fsync(2) after you are done writing all your data.

If a write() is interrupted by a signal handler before any bytes are written, then the call fails with the error

EINTR; if it is interrupted after at least one byte has been written, the call succeeds, and returns the num-

ber of bytes written.

On Linux, write() (and similar system calls) will transfer at most 0x7ffff000 (2,147,479,552) bytes, return-

ing the number of bytes actually transferred. (This is true on both 32-bit and 64-bit systems.)

An error return value while performing write() using direct I/O does not mean the entire write has failed.

Partial data may be written and the data at the file offset on which the write() was attempted should be con-

sidered inconsistent.

Linux 2019-10-10 2



WRITE(2) Linux Programmer’s Manual WRITE(2)

BUGS
According to POSIX.1-2008/SUSv4 Section XSI 2.9.7 ("Thread Interactions with Regular File Opera-

tions"):

All of the following functions shall be atomic with respect to each other in the effects specified in

POSIX.1-2008 when they operate on regular files or symbolic links: ...

Among the APIs subsequently listed are write() and writev(2). And among the effects that should be

atomic across threads (and processes) are updates of the file offset. However, on Linux before version 3.14,

this was not the case: if two processes that share an open file description (see open(2)) perform a write()

(or writev(2)) at the same time, then the I/O operations were not atomic with respect updating the file off-

set, with the result that the blocks of data output by the two processes might (incorrectly) overlap. This

problem was fixed in Linux 3.14.

SEE ALSO
close(2), fcntl(2), fsync(2), ioctl(2), lseek(2), open(2), pwrite(2), read(2), select(2), writev(2), fwrite(3)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-10-10 3


