
VFORK(2) Linux Programmer’s Manual VFORK(2)

NAME
vfork − create a child process and block parent

SYNOPSIS
#include <sys/types.h>

#include <unistd.h>

pid_t vfork(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

vfork():
Since glibc 2.12:

(_XOPEN_SOURCE >= 500) && ! (_POSIX_C_SOURCE >= 200809L)
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* Glibc versions <= 2.19: */ _BSD_SOURCE

Before glibc 2.12:
_BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
Standard description

(From POSIX.1) The vfork() function has the same effect as fork(2), except that the behavior is undefined
if the process created by vfork() either modifies any data other than a variable of type pid_t used to store
the return value from vfork(), or returns from the function in which vfork() was called, or calls any other
function before successfully calling _exit(2) or one of the exec(3) family of functions.

Linux description

vfork(), just like fork(2), creates a child process of the calling process. For details and return value and er-
rors, see fork(2).

vfork() is a special case of clone(2). It is used to create new processes without copying the page tables of
the parent process. It may be useful in performance-sensitive applications where a child is created which
then immediately issues an execve(2).

vfork() differs from fork(2) in that the calling thread is suspended until the child terminates (either nor-
mally, by calling _exit(2), or abnormally, after delivery of a fatal signal), or it makes a call to execve(2).
Until that point, the child shares all memory with its parent, including the stack. The child must not return
from the current function or call exit(3) (which would have the effect of calling exit handlers established by
the parent process and flushing the parent’s stdio(3) buffers), but may call _exit(2).

As with fork(2), the child process created by vfork() inherits copies of various of the caller’s process at-
tributes (e.g., file descriptors, signal dispositions, and current working directory); the vfork() call differs
only in the treatment of the virtual address space, as described above.

Signals sent to the parent arrive after the child releases the parent’s memory (i.e., after the child terminates
or calls execve(2)).

Historic description

Under Linux, fork(2) is implemented using copy-on-write pages, so the only penalty incurred by fork(2) is
the time and memory required to duplicate the parent’s page tables, and to create a unique task structure for
the child. However, in the bad old days a fork(2) would require making a complete copy of the caller’s
data space, often needlessly, since usually immediately afterward an exec(3) is done. Thus, for greater effi-
ciency, BSD introduced the vfork() system call, which did not fully copy the address space of the parent
process, but borrowed the parent’s memory and thread of control until a call to execve(2) or an exit oc-
curred. The parent process was suspended while the child was using its resources. The use of vfork() was
tricky: for example, not modifying data in the parent process depended on knowing which variables were
held in a register.

CONFORMING TO
4.3BSD; POSIX.1-2001 (but marked OBSOLETE). POSIX.1-2008 removes the specification of vfork().

The requirements put on vfork() by the standards are weaker than those put on fork(2), so an

Linux 2017-09-15 1



VFORK(2) Linux Programmer’s Manual VFORK(2)

implementation where the two are synonymous is compliant. In particular, the programmer cannot rely on
the parent remaining blocked until the child either terminates or calls execve(2), and cannot rely on any
specific behavior with respect to shared memory.

NOTES
Some consider the semantics of vfork() to be an architectural blemish, and the 4.2BSD man page stated:
"This system call will be eliminated when proper system sharing mechanisms are implemented. Users
should not depend on the memory sharing semantics of vfork() as it will, in that case, be made synonymous
to fork(2)." However, even though modern memory management hardware has decreased the performance
difference between fork(2) and vfork(), there are various reasons why Linux and other systems have re-
tained vfork():

* Some performance-critical applications require the small performance advantage conferred by vfork().

* vfork() can be implemented on systems that lack a memory-management unit (MMU), but fork(2)
can’t be implemented on such systems. (POSIX.1-2008 removed vfork() from the standard; the POSIX
rationale for the posix_spawn(3) function notes that that function, which provides functionality equiva-
lent to fork(2)+exec(3), is designed to be implementable on systems that lack an MMU.)

* On systems where memory is constrained, vfork() avoids the need to temporarily commit memory (see
the description of /proc/sys/vm/overcommit_memory in proc(5)) in order to execute a new program.
(This can be especially beneficial where a large parent process wishes to execute a small helper pro-
gram in a child process.) By contrast, using fork(2) in this scenario requires either committing an
amount of memory equal to the size of the parent process (if strict overcommitting is in force) or over-
committing memory with the risk that a process is terminated by the out-of-memory (OOM) killer.

Caveats

The child process should take care not to modify the memory in unintended ways, since such changes will
be seen by the parent process once the child terminates or executes another program. In this regard, signal
handlers can be especially problematic: if a signal handler that is invoked in the child of vfork() changes
memory, those changes may result in an inconsistent process state from the perspective of the parent
process (e.g., memory changes would be visible in the parent, but changes to the state of open file descrip-
tors would not be visible).

When vfork() is called in a multithreaded process, only the calling thread is suspended until the child ter-
minates or executes a new program. This means that the child is sharing an address space with other run-
ning code. This can be dangerous if another thread in the parent process changes credentials (using se-

tuid(2) or similar), since there are now two processes with different privilege levels running in the same ad-
dress space. As an example of the dangers, suppose that a multithreaded program running as root creates a
child using vfork(). After the vfork(), a thread in the parent process drops the process to an unprivileged
user in order to run some untrusted code (e.g., perhaps via plug-in opened with dlopen(3)). In this case, at-
tacks are possible where the parent process uses mmap(2) to map in code that will be executed by the privi-
leged child process.

Linux notes

Fork handlers established using pthread_atfork(3) are not called when a multithreaded program employ-
ing the NPTL threading library calls vfork(). Fork handlers are called in this case in a program using the
LinuxThreads threading library. (See pthreads(7) for a description of Linux threading libraries.)

A call to vfork() is equivalent to calling clone(2) with flags specified as:

CLONE_VM | CLONE_VFORK | SIGCHLD

History

The vfork() system call appeared in 3.0BSD. In 4.4BSD it was made synonymous to fork(2) but NetBSD
introduced it again; see 〈http://www.netbsd.org/Documentation/kernel/vfork.html〉 . In Linux, it has been
equivalent to fork(2) until 2.2.0-pre6 or so. Since 2.2.0-pre9 (on i386, somewhat later on other architec-
tures) it is an independent system call. Support was added in glibc 2.0.112.

Linux 2017-09-15 2



VFORK(2) Linux Programmer’s Manual VFORK(2)

BUGS
Details of the signal handling are obscure and differ between systems. The BSD man page states: "To
avoid a possible deadlock situation, processes that are children in the middle of a vfork() are never sent
SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed and input attempts result in an end-of-
file indication."

SEE ALSO
clone(2), execve(2), _exit(2), fork(2), unshare(2), wait(2)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man−pages/.

Linux 2017-09-15 3


