
VDSO(7) Linux Programmer’s Manual VDSO(7)

NAME
vdso − overview of the virtual ELF dynamic shared object

SYNOPSIS
#include <sys/auxv.h>

void *vdso = (uintptr_t) getauxval(AT_SYSINFO_EHDR);

DESCRIPTION
The "vDSO" (virtual dynamic shared object) is a small shared library that the kernel automatically maps

into the address space of all user-space applications. Applications usually do not need to concern them-

selves with these details as the vDSO is most commonly called by the C library. This way you can code in

the normal way using standard functions and the C library will take care of using any functionality that is

available via the vDSO.

Why does the vDSO exist at all? There are some system calls the kernel provides that user-space code ends

up using frequently, to the point that such calls can dominate overall performance. This is due both to the

frequency of the call as well as the context-switch overhead that results from exiting user space and enter-

ing the kernel.

The rest of this documentation is geared toward the curious and/or C library writers rather than general de-

velopers. If you’re trying to call the vDSO in your own application rather than using the C library, you’re

most likely doing it wrong.

Example background

Making system calls can be slow. In x86 32-bit systems, you can trigger a software interrupt (int $0x80) to

tell the kernel you wish to make a system call. However, this instruction is expensive: it goes through the

full interrupt-handling paths in the processor’s microcode as well as in the kernel. Newer processors have

faster (but backward incompatible) instructions to initiate system calls. Rather than require the C library to

figure out if this functionality is available at run time, the C library can use functions provided by the kernel

in the vDSO.

Note that the terminology can be confusing. On x86 systems, the vDSO function used to determine the

preferred method of making a system call is named "__kernel_vsyscall", but on x86-64, the term "vsyscall"

also refers to an obsolete way to ask the kernel what time it is or what CPU the caller is on.

One frequently used system call is gettimeofday(2). This system call is called both directly by user-space

applications as well as indirectly by the C library. Think timestamps or timing loops or polling—all of

these frequently need to know what time it is right now. This information is also not secret—any applica-

tion in any privilege mode (root or any unprivileged user) will get the same answer. Thus the kernel ar-

ranges for the information required to answer this question to be placed in memory the process can access.

Now a call to gettimeofday(2) changes from a system call to a normal function call and a few memory ac-

cesses.

Finding the vDSO

The base address of the vDSO (if one exists) is passed by the kernel to each program in the initial auxiliary

vector (see getauxval(3)), via the AT_SYSINFO_EHDR tag.

You must not assume the vDSO is mapped at any particular location in the user’s memory map. The base

address will usually be randomized at run time every time a new process image is created (at execve(2)

time). This is done for security reasons, to prevent "return-to-libc" attacks.

For some architectures, there is also an AT_SYSINFO tag. This is used only for locating the vsyscall entry

point and is frequently omitted or set to 0 (meaning it’s not available). This tag is a throwback to the initial

vDSO work (see History below) and its use should be avoided.

File format

Since the vDSO is a fully formed ELF image, you can do symbol lookups on it. This allows new symbols

to be added with newer kernel releases, and allows the C library to detect available functionality at run time

when running under different kernel versions. Oftentimes the C library will do detection with the first call

and then cache the result for subsequent calls.

Linux 2019-08-02 1

VDSO(7) Linux Programmer’s Manual VDSO(7)

All symbols are also versioned (using the GNU version format). This allows the kernel to update the func-

tion signature without breaking backward compatibility. This means changing the arguments that the func-

tion accepts as well as the return value. Thus, when looking up a symbol in the vDSO, you must always in-

clude the version to match the ABI you expect.

Typically the vDSO follows the naming convention of prefixing all symbols with "__vdso_" or "__kernel_"

so as to distinguish them from other standard symbols. For example, the "gettimeofday" function is named

"__vdso_gettimeofday".

You use the standard C calling conventions when calling any of these functions. No need to worry about

weird register or stack behavior.

NOTES
Source

When you compile the kernel, it will automatically compile and link the vDSO code for you. You will fre-

quently find it under the architecture-specific directory:

find arch/$ARCH/ −name '*vdso*.so*' −o −name '*gate*.so*'

vDSO names

The name of the vDSO varies across architectures. It will often show up in things like glibc’s ldd(1) out-

put. The exact name should not matter to any code, so do not hardcode it.

user ABI vDSO name

aarch64 linux−vdso.so.1

arm linux−vdso.so.1

ia64 linux−gate.so.1

mips linux−vdso.so.1

ppc/32 linux−vdso32.so.1

ppc/64 linux−vdso64.so.1

riscv linux−vdso.so.1

s390 linux−vdso32.so.1

s390x linux−vdso64.so.1

sh linux−gate.so.1

i386 linux−gate.so.1

x86-64 linux−vdso.so.1

x86/x32 linux−vdso.so.1

strace(1), seccomp(2), and the vDSO

When tracing systems calls with strace(1), symbols (system calls) that are exported by the vDSO will not

appear in the trace output. Those system calls will likewise not be visible to seccomp(2) filters.

ARCHITECTURE-SPECIFIC NOTES
The subsections below provide architecture-specific notes on the vDSO.

Note that the vDSO that is used is based on the ABI of your user-space code and not the ABI of the kernel.

Thus, for example, when you run an i386 32-bit ELF binary, you’ll get the same vDSO regardless of

whether you run it under an i386 32-bit kernel or under an x86-64 64-bit kernel. Therefore, the name of the

user-space ABI should be used to determine which of the sections below is relevant.

ARM functions

The table below lists the symbols exported by the vDSO.

symbol version

__vdso_gettimeofday LINUX_2.6 (exported since Linux 4.1)

__vdso_clock_gettime LINUX_2.6 (exported since Linux 4.1)

Additionally, the ARM port has a code page full of utility functions. Since it’s just a raw page of code,

there is no ELF information for doing symbol lookups or versioning. It does provide support for different

Linux 2019-08-02 2

VDSO(7) Linux Programmer’s Manual VDSO(7)

versions though.

For information on this code page, it’s best to refer to the kernel documentation as it’s extremely detailed

and covers everything you need to know: Documentation/arm/kernel_user_helpers.txt.

aarch64 functions

The table below lists the symbols exported by the vDSO.

symbol version

__kernel_rt_sigreturn LINUX_2.6.39

__kernel_gettimeofday LINUX_2.6.39

__kernel_clock_gettime LINUX_2.6.39

__kernel_clock_getres LINUX_2.6.39

bfin (Blackfin) functions (port removed in Linux 4.17)

As this CPU lacks a memory management unit (MMU), it doesn’t set up a vDSO in the normal sense. In-

stead, it maps at boot time a few raw functions into a fixed location in memory. User-space applications

then call directly into that region. There is no provision for backward compatibility beyond sniffing raw

opcodes, but as this is an embedded CPU, it can get away with things—some of the object formats it runs

aren’t even ELF based (they’re bFLT/FLAT).

For information on this code page, it’s best to refer to the public documentation:

http://docs.blackfin.uclinux.org/doku.php?id=linux−kernel:fixed−code

mips functions

The table below lists the symbols exported by the vDSO.

symbol version

__kernel_gettimeofday LINUX_2.6 (exported since Linux 4.4)

__kernel_clock_gettime LINUX_2.6 (exported since Linux 4.4)

ia64 (Itanium) functions

The table below lists the symbols exported by the vDSO.

symbol version

__kernel_sigtramp LINUX_2.5

__kernel_syscall_via_break LINUX_2.5

__kernel_syscall_via_epc LINUX_2.5

The Itanium port is somewhat tricky. In addition to the vDSO above, it also has "light-weight system calls"

(also known as "fast syscalls" or "fsys"). You can invoke these via the __kernel_syscall_via_epc vDSO

helper. The system calls listed here have the same semantics as if you called them directly via syscall(2),

so refer to the relevant documentation for each. The table below lists the functions available via this mech-

anism.

function

clock_gettime

getcpu

getpid

getppid

gettimeofday

set_tid_address

parisc (hppa) functions

The parisc port has a code page with utility functions called a gateway page. Rather than use the normal

ELF auxiliary vector approach, it passes the address of the page to the process via the SR2 register. The

permissions on the page are such that merely executing those addresses automatically executes with kernel

Linux 2019-08-02 3

VDSO(7) Linux Programmer’s Manual VDSO(7)

privileges and not in user space. This is done to match the way HP-UX works.

Since it’s just a raw page of code, there is no ELF information for doing symbol lookups or versioning.

Simply call into the appropriate offset via the branch instruction, for example:

ble <offset>(%sr2, %r0)

offset function

00b0 lws_entry (CAS operations)

00e0 set_thread_pointer (used by glibc)

0100 linux_gateway_entry (syscall)

ppc/32 functions

The table below lists the symbols exported by the vDSO. The functions marked with a * are available only

when the kernel is a PowerPC64 (64-bit) kernel.

symbol version

__kernel_clock_getres LINUX_2.6.15

__kernel_clock_gettime LINUX_2.6.15

__kernel_datapage_offset LINUX_2.6.15

__kernel_get_syscall_map LINUX_2.6.15

__kernel_get_tbfreq LINUX_2.6.15

__kernel_getcpu * LINUX_2.6.15

__kernel_gettimeofday LINUX_2.6.15

__kernel_sigtramp_rt32 LINUX_2.6.15

__kernel_sigtramp32 LINUX_2.6.15

__kernel_sync_dicache LINUX_2.6.15

__kernel_sync_dicache_p5 LINUX_2.6.15

The CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE clocks are not sup-

ported by the __kernel_clock_getres and __kernel_clock_gettime interfaces; the kernel falls back to the real

system call.

ppc/64 functions

The table below lists the symbols exported by the vDSO.

symbol version

__kernel_clock_getres LINUX_2.6.15

__kernel_clock_gettime LINUX_2.6.15

__kernel_datapage_offset LINUX_2.6.15

__kernel_get_syscall_map LINUX_2.6.15

__kernel_get_tbfreq LINUX_2.6.15

__kernel_getcpu LINUX_2.6.15

__kernel_gettimeofday LINUX_2.6.15

__kernel_sigtramp_rt64 LINUX_2.6.15

__kernel_sync_dicache LINUX_2.6.15

__kernel_sync_dicache_p5 LINUX_2.6.15

The CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE clocks are not sup-

ported by the __kernel_clock_getres and __kernel_clock_gettime interfaces; the kernel falls back to the real

system call.

riscv functions

The table below lists the symbols exported by the vDSO.

symbol version

Linux 2019-08-02 4

VDSO(7) Linux Programmer’s Manual VDSO(7)

__kernel_rt_sigreturn LINUX_4.15

__kernel_gettimeofday LINUX_4.15

__kernel_clock_gettime LINUX_4.15

__kernel_clock_getres LINUX_4.15

__kernel_getcpu LINUX_4.15

__kernel_flush_icache LINUX_4.15

s390 functions

The table below lists the symbols exported by the vDSO.

symbol version

__kernel_clock_getres LINUX_2.6.29

__kernel_clock_gettime LINUX_2.6.29

__kernel_gettimeofday LINUX_2.6.29

s390x functions

The table below lists the symbols exported by the vDSO.

symbol version

__kernel_clock_getres LINUX_2.6.29

__kernel_clock_gettime LINUX_2.6.29

__kernel_gettimeofday LINUX_2.6.29

sh (SuperH) functions

The table below lists the symbols exported by the vDSO.

symbol version

__kernel_rt_sigreturn LINUX_2.6

__kernel_sigreturn LINUX_2.6

__kernel_vsyscall LINUX_2.6

i386 functions

The table below lists the symbols exported by the vDSO.

symbol version

__kernel_sigreturn LINUX_2.5

__kernel_rt_sigreturn LINUX_2.5

__kernel_vsyscall LINUX_2.5

__vdso_clock_gettime LINUX_2.6 (exported since Linux 3.15)

__vdso_gettimeofday LINUX_2.6 (exported since Linux 3.15)

__vdso_time LINUX_2.6 (exported since Linux 3.15)

x86-64 functions

The table below lists the symbols exported by the vDSO. All of these symbols are also available without

the "__vdso_" prefix, but you should ignore those and stick to the names below.

symbol version

__vdso_clock_gettime LINUX_2.6

__vdso_getcpu LINUX_2.6

__vdso_gettimeofday LINUX_2.6

__vdso_time LINUX_2.6

Linux 2019-08-02 5

VDSO(7) Linux Programmer’s Manual VDSO(7)

x86/x32 functions

The table below lists the symbols exported by the vDSO.

symbol version

__vdso_clock_gettime LINUX_2.6

__vdso_getcpu LINUX_2.6

__vdso_gettimeofday LINUX_2.6

__vdso_time LINUX_2.6

History

The vDSO was originally just a single function—the vsyscall. In older kernels, you might see that name in

a process’s memory map rather than "vdso". Over time, people realized that this mechanism was a great

way to pass more functionality to user space, so it was reconceived as a vDSO in the current format.

SEE ALSO
syscalls(2), getauxval(3), proc(5)

The documents, examples, and source code in the Linux source code tree:

Documentation/ABI/stable/vdso

Documentation/ia64/fsys.txt

Documentation/vDSO/* (includes examples of using the vDSO)

find arch/ −iname '*vdso*' −o −iname '*gate*'

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-08-02 6

