
TSEARCH(3) Linux Programmer’s Manual TSEARCH(3)

NAME
tsearch, tfind, tdelete, twalk, tdestroy − manage a binary search tree

SYNOPSIS
#include <search.h>

typedef enum { preorder, postorder, endorder, leaf } VISIT;

void *tsearch(const void *key, void **rootp,

int (*compar)(const void *, const void *));

void *tfind(const void *key, void *const *rootp,

int (*compar)(const void *, const void *));

void *tdelete(const void *key, void **rootp,

int (*compar)(const void *, const void *));

void twalk(const void *root,

void (*action)(const void *nodep, VISIT which,

int depth));

#define _GNU_SOURCE /* See feature_test_macros(7) */

#include <search.h>

void twalk_r(const void *root,

void (*action)(const void *nodep, VISIT which,

void *closure),

void *closure);

void tdestroy(void *root, void (* free_node)(void *nodep));

DESCRIPTION
tsearch(), tfind(), twalk(), and tdelete() manage a binary search tree. They are generalized from Knuth

(6.2.2) Algorithm T. The first field in each node of the tree is a pointer to the corresponding data item.

(The calling program must store the actual data.) compar points to a comparison routine, which takes

pointers to two items. It should return an integer which is negative, zero, or positive, depending on whether

the first item is less than, equal to, or greater than the second.

tsearch() searches the tree for an item. key points to the item to be searched for. rootp points to a variable

which points to the root of the tree. If the tree is empty, then the variable that rootp points to should be set

to NULL. If the item is found in the tree, then tsearch() returns a pointer to the corresponding tree node.

(In other words, tsearch() returns a pointer to a pointer to the data item.) If the item is not found, then

tsearch() adds it, and returns a pointer to the corresponding tree node.

tfind() is like tsearch(), except that if the item is not found, then tfind() returns NULL.

tdelete() deletes an item from the tree. Its arguments are the same as for tsearch().

twalk() performs depth-first, left-to-right traversal of a binary tree. root points to the starting node for the

traversal. If that node is not the root, then only part of the tree will be visited. twalk() calls the user func-

tion action each time a node is visited (that is, three times for an internal node, and once for a leaf). action,

in turn, takes three arguments. The first argument is a pointer to the node being visited. The structure of

the node is unspecified, but it is possible to cast the pointer to a pointer-to-pointer-to-element in order to ac-

cess the element stored within the node. The application must not modify the structure pointed to by this

argument. The second argument is an integer which takes one of the values preorder, postorder, or en-

dorder depending on whether this is the first, second, or third visit to the internal node, or the value leaf if

this is the single visit to a leaf node. (These symbols are defined in <search.h>.) The third argument is the

depth of the node; the root node has depth zero.

(More commonly, preorder, postorder, and endorder are known as preorder, inorder, and postorder:

before visiting the children, after the first and before the second, and after visiting the children. Thus, the

choice of name postorder is rather confusing.)

twalk_r() is similar to twalk(), but instead of the depth argument, the closure argument pointer is passed to

GNU 2019-05-09 1

TSEARCH(3) Linux Programmer’s Manual TSEARCH(3)

each invocation of the action callback, unchanged. This pointer can be used to pass information to and

from the callback function in a thread-safe fashion, without resorting to global variables.

tdestroy() removes the whole tree pointed to by root, freeing all resources allocated by the tsearch() func-

tion. For the data in each tree node the function free_node is called. The pointer to the data is passed as

the argument to the function. If no such work is necessary, free_node must point to a function doing noth-

ing.

RETURN VALUE
tsearch() returns a pointer to a matching node in the tree, or to the newly added node, or NULL if there was

insufficient memory to add the item. tfind() returns a pointer to the node, or NULL if no match is found. If

there are multiple items that match the key, the item whose node is returned is unspecified.

tdelete() returns a pointer to the parent of the node deleted, or NULL if the item was not found. If the

deleted node was the root node, tdelete() returns a dangling pointer that must not be accessed.

tsearch(), tfind(), and tdelete() also return NULL if rootp was NULL on entry.

VERSIONS
twalk_r() is available in glibc since version 2.30.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value

Thread safety MT-Safe race:rootptsearch(), tfind(),

tdelete()

Thread safety MT-Safe race:roottwalk()

Thread safety MT-Safe race:roottwalk_r()

Thread safety MT-Safetdestroy()

CONFORMING TO
POSIX.1-2001, POSIX.1-2008, SVr4. The functions tdestroy() and twalk_r() are GNU extensions.

NOTES
twalk() takes a pointer to the root, while the other functions take a pointer to a variable which points to the

root.

tdelete() frees the memory required for the node in the tree. The user is responsible for freeing the memory

for the corresponding data.

The example program depends on the fact that twalk() makes no further reference to a node after calling

the user function with argument "endorder" or "leaf". This works with the GNU library implementation,

but is not in the System V documentation.

EXAMPLE
The following program inserts twelve random numbers into a binary tree, where duplicate numbers are col-

lapsed, then prints the numbers in order.

#define _GNU_SOURCE /* Expose declaration of tdestroy() */

#include <search.h>

#include <stdlib.h>

#include <stdio.h>

#include <time.h>

static void *root = NULL;

static void *

xmalloc(unsigned n)

{

void *p;

GNU 2019-05-09 2

TSEARCH(3) Linux Programmer’s Manual TSEARCH(3)

p = malloc(n);

if (p)

return p;

fprintf(stderr, "insufficient memory\n");

exit(EXIT_FAILURE);

}

static int

compare(const void *pa, const void *pb)

{

if (*(int *) pa < *(int *) pb)

return −1;

if (*(int *) pa > *(int *) pb)

return 1;

return 0;

}

static void

action(const void *nodep, VISIT which, int depth)

{

int *datap;

switch (which) {

case preorder:

break;

case postorder:

datap = *(int **) nodep;

printf("%6d\n", *datap);

break;

case endorder:

break;

case leaf:

datap = *(int **) nodep;

printf("%6d\n", *datap);

break;

}

}

int

main(void)

{

int i, *ptr;

void *val;

srand(time(NULL));

for (i = 0; i < 12; i++) {

ptr = xmalloc(sizeof(int));

*ptr = rand() & 0xff;

val = tsearch((void *) ptr, &root, compare);

if (val == NULL)

exit(EXIT_FAILURE);

else if ((*(int **) val) != ptr)

free(ptr);

}

GNU 2019-05-09 3

TSEARCH(3) Linux Programmer’s Manual TSEARCH(3)

twalk(root, action);

tdestroy(root, free);

exit(EXIT_SUCCESS);

}

SEE ALSO
bsearch(3), hsearch(3), lsearch(3), qsort(3)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

GNU 2019-05-09 4

