
TRUNCATE(2) Linux Programmer’s Manual TRUNCATE(2)

NAME
truncate, ftruncate − truncate a file to a specified length

SYNOPSIS
#include <unistd.h>

#include <sys/types.h>

int truncate(const char *path, off_t length);

int ftruncate(int fd , off_t length);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

truncate():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| /* Glibc versions <= 2.19: */ _BSD_SOURCE

ftruncate():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.3.5: */ _POSIX_C_SOURCE >= 200112L
|| /* Glibc versions <= 2.19: */ _BSD_SOURCE

DESCRIPTION
The truncate() and ftruncate() functions cause the regular file named by path or referenced by fd to be
truncated to a size of precisely length bytes.

If the file previously was larger than this size, the extra data is lost. If the file previously was shorter, it is
extended, and the extended part reads as null bytes ('\0').

The file offset is not changed.

If the size changed, then the st_ctime and st_mtime fields (respectively, time of last status change and time
of last modification; see inode(7)) for the file are updated, and the set-user-ID and set-group-ID mode bits
may be cleared.

With ftruncate(), the file must be open for writing; with truncate(), the file must be writable.

RETURN VALUE
On success, zero is returned. On error, −1 is returned, and errno is set appropriately.

ERRORS
For truncate():

EACCES

Search permission is denied for a component of the path prefix, or the named file is not writable by
the user. (See also path_resolution(7).)

EFAULT

The argument path points outside the process’s allocated address space.

EFBIG

The argument length is larger than the maximum file size. (XSI)

EINTR

While blocked waiting to complete, the call was interrupted by a signal handler; see fcntl(2) and
signal(7).

EINVAL

The argument length is negative or larger than the maximum file size.

EIO An I/O error occurred updating the inode.

EISDIR

The named file is a directory.

Linux 2019-03-06 1

TRUNCATE(2) Linux Programmer’s Manual TRUNCATE(2)

ELOOP

Too many symbolic links were encountered in translating the pathname.

ENAMETOOLONG

A component of a pathname exceeded 255 characters, or an entire pathname exceeded 1023 char-
acters.

ENOENT

The named file does not exist.

ENOTDIR

A component of the path prefix is not a directory.

EPERM

The underlying filesystem does not support extending a file beyond its current size.

EPERM

The operation was prevented by a file seal; see fcntl(2).

EROFS

The named file resides on a read-only filesystem.

ETXTBSY

The file is an executable file that is being executed.

For ftruncate() the same errors apply, but instead of things that can be wrong with path, we now hav e
things that can be wrong with the file descriptor, fd:

EBADF

fd is not a valid file descriptor.

EBADF or EINVAL

fd is not open for writing.

EINVAL

fd does not reference a regular file or a POSIX shared memory object.

EINVAL or EBADF

The file descriptor fd is not open for writing. POSIX permits, and portable applications should
handle, either error for this case. (Linux produces EINVAL.)

CONFORMING TO
POSIX.1-2001, POSIX.1-2008, 4.4BSD, SVr4 (these calls first appeared in 4.2BSD).

NOTES
ftruncate() can also be used to set the size of a POSIX shared memory object; see shm_open(7).

The details in DESCRIPTION are for XSI-compliant systems. For non-XSI-compliant systems, the POSIX
standard allows two behaviors for ftruncate() when length exceeds the file length (note that truncate() is
not specified at all in such an environment): either returning an error, or extending the file. Like most
UNIX implementations, Linux follows the XSI requirement when dealing with native filesystems. How-
ev er, some nonnative filesystems do not permit truncate() and ftruncate() to be used to extend a file be-
yond its current length: a notable example on Linux is VFAT .

The original Linux truncate() and ftruncate() system calls were not designed to handle large file offsets.
Consequently, Linux 2.4 added truncate64() and ftruncate64() system calls that handle large files. How-
ev er, these details can be ignored by applications using glibc, whose wrapper functions transparently em-
ploy the more recent system calls where they are available.

On some 32-bit architectures, the calling signature for these system calls differ, for the reasons described in
syscall(2).

BUGS
A header file bug in glibc 2.12 meant that the minimum value of _POSIX_C_SOURCE required to expose
the declaration of ftruncate() was 200809L instead of 200112L. This has been fixed in later glibc versions.

Linux 2019-03-06 2

TRUNCATE(2) Linux Programmer’s Manual TRUNCATE(2)

SEE ALSO
truncate(1), open(2), stat(2), path_resolution(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man−pages/.

Linux 2019-03-06 3

