
TIMER_GETOVERRUN(2) Linux Programmer’s Manual TIMER_GETOVERRUN(2)

NAME
timer_getoverrun − get overrun count for a POSIX per-process timer

SYNOPSIS
#include <time.h>

int timer_getoverrun(timer_t timerid);

Link with −lrt.

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

timer_getoverrun(): _POSIX_C_SOURCE >= 199309L

DESCRIPTION
timer_getoverrun() returns the "overrun count" for the timer referred to by timerid . An application can

use the overrun count to accurately calculate the number of timer expirations that would have occurred over

a giv en time interval. Timer overruns can occur both when receiving expiration notifications via signals

(SIGEV_SIGNAL), and via threads (SIGEV_THREAD).

When expiration notifications are delivered via a signal, overruns can occur as follows. Regardless of

whether or not a real-time signal is used for timer notifications, the system queues at most one signal per

timer. (This is the behavior specified by POSIX.1. The alternative, queuing one signal for each timer expi-

ration, could easily result in overflowing the allowed limits for queued signals on the system.) Because of

system scheduling delays, or because the signal may be temporarily blocked, there can be a delay between

the time when the notification signal is generated and the time when it is delivered (e.g., caught by a signal

handler) or accepted (e.g., using sigwaitinfo(2)). In this interval, further timer expirations may occur. The

timer overrun count is the number of additional timer expirations that occurred between the time when the

signal was generated and when it was delivered or accepted.

Timer overruns can also occur when expiration notifications are delivered via invocation of a thread, since

there may be an arbitrary delay between an expiration of the timer and the invocation of the notification

thread, and in that delay interval, additional timer expirations may occur.

RETURN VALUE
On success, timer_getoverrun() returns the overrun count of the specified timer; this count may be 0 if no

overruns have occurred. On failure, −1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

timerid is not a valid timer ID.

VERSIONS
This system call is available since Linux 2.6.

CONFORMING TO
POSIX.1-2001, POSIX.1-2008.

NOTES
When timer notifications are delivered via signals (SIGEV_SIGNAL), on Linux it is also possible to ob-

tain the overrun count via the si_overrun field of the siginfo_t structure (see sigaction(2)). This allows an

application to avoid the overhead of making a system call to obtain the overrun count, but is a nonportable

extension to POSIX.1.

POSIX.1 discusses timer overruns only in the context of timer notifications using signals.

BUGS
POSIX.1 specifies that if the timer overrun count is equal to or greater than an implementation-defined

maximum, DELAYTIMER_MAX, then timer_getoverrun() should return DELAYTIMER_MAX.

However, Linux does not implement this feature: instead, if the timer overrun value exceeds the maximum

representable integer, the counter cycles, starting once more from low values.

Linux 2017-09-15 1



TIMER_GETOVERRUN(2) Linux Programmer’s Manual TIMER_GETOVERRUN(2)

EXAMPLE
See timer_create(2).

SEE ALSO
clock_gettime(2), sigaction(2), signalfd(2), sigwaitinfo(2), timer_create(2), timer_delete(2), timer_set-

time(2), signal(7), time(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2017-09-15 2


