
TIMER_CREATE(2) Linux Programmer’s Manual TIMER_CREATE(2)

NAME
timer_create − create a POSIX per-process timer

SYNOPSIS
#include <signal.h>

#include <time.h>

int timer_create(clockid_t clockid , struct sigevent *sevp,

timer_t *timerid);

Link with −lrt.

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

timer_create(): _POSIX_C_SOURCE >= 199309L

DESCRIPTION
timer_create() creates a new per-process interval timer. The ID of the new timer is returned in the buffer

pointed to by timerid , which must be a non-null pointer. This ID is unique within the process, until the

timer is deleted. The new timer is initially disarmed.

The clockid argument specifies the clock that the new timer uses to measure time. It can be specified as

one of the following values:

CLOCK_REALTIME

A settable system-wide real-time clock.

CLOCK_MONOTONIC

A nonsettable monotonically increasing clock that measures time from some unspecified point in

the past that does not change after system startup.

CLOCK_PROCESS_CPUTIME_ID (since Linux 2.6.12)

A clock that measures (user and system) CPU time consumed by (all of the threads in) the calling

process.

CLOCK_THREAD_CPUTIME_ID (since Linux 2.6.12)

A clock that measures (user and system) CPU time consumed by the calling thread.

CLOCK_BOOTTIME (Since Linux 2.6.39)

Like CLOCK_MONOTONIC, this is a monotonically increasing clock. However, whereas the

CLOCK_MONOTONIC clock does not measure the time while a system is suspended, the

CLOCK_BOOTTIME clock does include the time during which the system is suspended. This

is useful for applications that need to be suspend-aware. CLOCK_REALTIME is not suitable

for such applications, since that clock is affected by discontinuous changes to the system clock.

CLOCK_REALTIME_ALARM (since Linux 3.0)

This clock is like CLOCK_REALTIME, but will wake the system if it is suspended. The caller

must have the CAP_WAKE_ALARM capability in order to set a timer against this clock.

CLOCK_BOOTTIME_ALARM (since Linux 3.0)

This clock is like CLOCK_BOOTTIME, but will wake the system if it is suspended. The caller

must have the CAP_WAKE_ALARM capability in order to set a timer against this clock.

As well as the above values, clockid can be specified as the clockid returned by a call to clock_getcpu-

clockid(3) or pthread_getcpuclockid(3).

The sevp argument points to a sigevent structure that specifies how the caller should be notified when the

timer expires. For the definition and general details of this structure, see sigevent(7).

The sevp.sigev_notify field can have the following values:

SIGEV_NONE

Don’t asynchronously notify when the timer expires. Progress of the timer can be monitored using

timer_gettime(2).

Linux 2019-03-06 1

TIMER_CREATE(2) Linux Programmer’s Manual TIMER_CREATE(2)

SIGEV_SIGNAL

Upon timer expiration, generate the signal sigev_signo for the process. See sigevent(7) for gen-

eral details. The si_code field of the siginfo_t structure will be set to SI_TIMER. At any point in

time, at most one signal is queued to the process for a given timer; see timer_getoverrun(2) for

more details.

SIGEV_THREAD

Upon timer expiration, invoke sigev_notify_function as if it were the start function of a new thread.

See sigevent(7) for details.

SIGEV_THREAD_ID (Linux-specific)

As for SIGEV_SIGNAL, but the signal is targeted at the thread whose ID is given in sigev_no-

tify_thread_id , which must be a thread in the same process as the caller. The sigev_no-

tify_thread_id field specifies a kernel thread ID, that is, the value returned by clone(2) or gettid(2).

This flag is intended only for use by threading libraries.

Specifying sevp as NULL is equivalent to specifying a pointer to a sigevent structure in which sigev_notify

is SIGEV_SIGNAL, sigev_signo is SIGALRM, and sigev_value.sival_int is the timer ID.

RETURN VALUE
On success, timer_create() returns 0, and the ID of the new timer is placed in *timerid . On failure, −1 is

returned, and errno is set to indicate the error.

ERRORS
EAGAIN

Temporary error during kernel allocation of timer structures.

EINVAL

Clock ID, sigev_notify, sigev_signo, or sigev_notify_thread_id is invalid.

ENOMEM

Could not allocate memory.

VERSIONS
This system call is available since Linux 2.6.

CONFORMING TO
POSIX.1-2001, POSIX.1-2008.

NOTES
A program may create multiple interval timers using timer_create().

Timers are not inherited by the child of a fork(2), and are disarmed and deleted during an execve(2).

The kernel preallocates a "queued real-time signal" for each timer created using timer_create(). Conse-

quently, the number of timers is limited by the RLIMIT_SIGPENDING resource limit (see setrlimit(2)).

The timers created by timer_create() are commonly known as "POSIX (interval) timers". The POSIX

timers API consists of the following interfaces:

* timer_create(): Create a timer.

* timer_settime(2): Arm (start) or disarm (stop) a timer.

* timer_gettime(2): Fetch the time remaining until the next expiration of a timer, along with the interval

setting of the timer.

* timer_getoverrun(2): Return the overrun count for the last timer expiration.

* timer_delete(2): Disarm and delete a timer.

Since Linux 3.10, the /proc/[pid]/timers file can be used to list the POSIX timers for the process with PID

pid . See proc(5) for further information.

Since Linux 4.10, support for POSIX timers is a configurable option that is enabled by default. Kernel sup-

port can be disabled via the CONFIG_POSIX_TIMERS option.

Linux 2019-03-06 2

TIMER_CREATE(2) Linux Programmer’s Manual TIMER_CREATE(2)

C library/kernel differences

Part of the implementation of the POSIX timers API is provided by glibc. In particular:

* Much of the functionality for SIGEV_THREAD is implemented within glibc, rather than the kernel.

(This is necessarily so, since the thread involved in handling the notification is one that must be man-

aged by the C library POSIX threads implementation.) Although the notification delivered to the

process is via a thread, internally the NPTL implementation uses a sigev_notify value of

SIGEV_THREAD_ID along with a real-time signal that is reserved by the implementation (see

nptl(7)).

* The implementation of the default case where evp is NULL is handled inside glibc, which invokes the

underlying system call with a suitably populated sigevent structure.

* The timer IDs presented at user level are maintained by glibc, which maps these IDs to the timer IDs

employed by the kernel.

The POSIX timers system calls first appeared in Linux 2.6. Prior to this, glibc provided an incomplete

user-space implementation (CLOCK_REALTIME timers only) using POSIX threads, and in glibc ver-

sions before 2.17, the implementation falls back to this technique on systems running pre-2.6 Linux ker-

nels.

EXAMPLE
The program below takes two arguments: a sleep period in seconds, and a timer frequency in nanoseconds.

The program establishes a handler for the signal it uses for the timer, blocks that signal, creates and arms a

timer that expires with the given frequency, sleeps for the specified number of seconds, and then unblocks

the timer signal. Assuming that the timer expired at least once while the program slept, the signal handler

will be invoked, and the handler displays some information about the timer notification. The program ter-

minates after one invocation of the signal handler.

In the following example run, the program sleeps for 1 second, after creating a timer that has a frequency of

100 nanoseconds. By the time the signal is unblocked and delivered, there have been around ten million

overruns.

$./a.out 1 100

Establishing handler for signal 34

Blocking signal 34

timer ID is 0x804c008

Sleeping for 1 seconds

Unblocking signal 34

Caught signal 34

sival_ptr = 0xbfb174f4; *sival_ptr = 0x804c008

overrun count = 10004886

Program source

#include <stdlib.h>

#include <unistd.h>

#include <stdio.h>

#include <signal.h>

#include <time.h>

#define CLOCKID CLOCK_REALTIME

#define SIG SIGRTMIN

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

} while (0)

static void

print_siginfo(siginfo_t *si)

Linux 2019-03-06 3

TIMER_CREATE(2) Linux Programmer’s Manual TIMER_CREATE(2)

{

timer_t *tidp;

int or;

tidp = si−>si_value.sival_ptr;

printf(" sival_ptr = %p; ", si−>si_value.sival_ptr);

printf(" *sival_ptr = 0x%lx\n", (long) *tidp);

or = timer_getoverrun(*tidp);

if (or == −1)

errExit("timer_getoverrun");

else

printf(" overrun count = %d\n", or);

}

static void

handler(int sig, siginfo_t *si, void *uc)

{

/* Note: calling printf() from a signal handler is not safe

(and should not be done in production programs), since

printf() is not async−signal−safe; see signal-safety(7).

Nevertheless, we use printf() here as a simple way of

showing that the handler was called. */

printf("Caught signal %d\n", sig);

print_siginfo(si);

signal(sig, SIG_IGN);

}

int

main(int argc, char *argv[])

{

timer_t timerid;

struct sigevent sev;

struct itimerspec its;

long long freq_nanosecs;

sigset_t mask;

struct sigaction sa;

if (argc != 3) {

fprintf(stderr, "Usage: %s <sleep−secs> <freq−nanosecs>\n",

argv[0]);

exit(EXIT_FAILURE);

}

/* Establish handler for timer signal */

printf("Establishing handler for signal %d\n", SIG);

sa.sa_flags = SA_SIGINFO;

sa.sa_sigaction = handler;

sigemptyset(&sa.sa_mask);

if (sigaction(SIG, &sa, NULL) == −1)

errExit("sigaction");

Linux 2019-03-06 4

TIMER_CREATE(2) Linux Programmer’s Manual TIMER_CREATE(2)

/* Block timer signal temporarily */

printf("Blocking signal %d\n", SIG);

sigemptyset(&mask);

sigaddset(&mask, SIG);

if (sigprocmask(SIG_SETMASK, &mask, NULL) == −1)

errExit("sigprocmask");

/* Create the timer */

sev.sigev_notify = SIGEV_SIGNAL;

sev.sigev_signo = SIG;

sev.sigev_value.sival_ptr = &timerid;

if (timer_create(CLOCKID, &sev, &timerid) == −1)

errExit("timer_create");

printf("timer ID is 0x%lx\n", (long) timerid);

/* Start the timer */

freq_nanosecs = atoll(argv[2]);

its.it_value.tv_sec = freq_nanosecs / 1000000000;

its.it_value.tv_nsec = freq_nanosecs % 1000000000;

its.it_interval.tv_sec = its.it_value.tv_sec;

its.it_interval.tv_nsec = its.it_value.tv_nsec;

if (timer_settime(timerid, 0, &its, NULL) == −1)

errExit("timer_settime");

/* Sleep for a while; meanwhile, the timer may expire

multiple times */

printf("Sleeping for %d seconds\n", atoi(argv[1]));

sleep(atoi(argv[1]));

/* Unlock the timer signal, so that timer notification

can be delivered */

printf("Unblocking signal %d\n", SIG);

if (sigprocmask(SIG_UNBLOCK, &mask, NULL) == −1)

errExit("sigprocmask");

exit(EXIT_SUCCESS);

}

SEE ALSO
clock_gettime(2), setitimer(2), timer_delete(2), timer_getoverrun(2), timer_settime(2),

timerfd_create(2), clock_getcpuclockid(3), pthread_getcpuclockid(3), pthreads(7), sigevent(7),

signal(7), time(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-03-06 5

