
TCPDUMP(8) System Manager’s Manual TCPDUMP(8)

NAME
tcpdump − dump traffic on a network

SYNOPSIS
tcpdump [−AbdDefhHIJKlLnNOpqStuUvxX#] [−B buffer_size]

[−c count]
[−C file_size] [−G rotate_seconds] [−F file]
[−i interface] [−j tstamp_type] [−m module] [−M secret]
[−−number] [−Q in|out|inout]
[−r file] [−V file] [−s snaplen] [−T type] [−w file]
[−W filecount]
[−E spi@ipaddr algo:secret,...]
[−y datalinktype] [−z postrotate-command] [−Z user]
[−−time−stamp−precision=tstamp_precision]
[−−immediate−mode] [−−version]
[expression]

DESCRIPTION
Tcpdump prints out a description of the contents of packets on a network interface that match the boolean
expression; the description is preceded by a time stamp, printed, by default, as hours, minutes, seconds, and
fractions of a second since midnight. It can also be run with the −w flag, which causes it to save the packet
data to a file for later analysis, and/or with the −r flag, which causes it to read from a saved packet file
rather than to read packets from a network interface. It can also be run with the −V flag, which causes it to
read a list of saved packet files. In all cases, only packets that match expression will be processed by tcp-
dump.

Tcpdump will, if not run with the −c flag, continue capturing packets until it is interrupted by a SIGINT sig-
nal (generated, for example, by typing your interrupt character, typically control-C) or a SIGTERM signal
(typically generated with the kill(1) command); if run with the −c flag, it will capture packets until it is in-
terrupted by a SIGINT or SIGTERM signal or the specified number of packets have been processed.

When tcpdump finishes capturing packets, it will report counts of:

packets ‘‘captured’’ (this is the number of packets that tcpdump has received and processed);

packets ‘‘received by filter’’ (the meaning of this depends on the OS on which you’re running tcp-
dump, and possibly on the way the OS was configured - if a filter was specified on the command
line, on some OSes it counts packets regardless of whether they were matched by the filter expres-
sion and, even if they were matched by the filter expression, regardless of whether tcpdump has
read and processed them yet, on other OSes it counts only packets that were matched by the filter
expression regardless of whether tcpdump has read and processed them yet, and on other OSes it
counts only packets that were matched by the filter expression and were processed by tcpdump);

packets ‘‘dropped by kernel’’ (this is the number of packets that were dropped, due to a lack of
buffer space, by the packet capture mechanism in the OS on which tcpdump is running, if the OS
reports that information to applications; if not, it will be reported as 0).

On platforms that support the SIGINFO signal, such as most BSDs (including Mac OS X) and Digi-
tal/Tru64 UNIX, it will report those counts when it receives a SIGINFO signal (generated, for example, by
typing your ‘‘status’’ character, typically control-T, although on some platforms, such as Mac OS X, the
‘‘status’’ character is not set by default, so you must set it with stty(1) in order to use it) and will continue
capturing packets. On platforms that do not support the SIGINFO signal, the same can be achieved by using
the SIGUSR1 signal.

Reading packets from a network interface may require that you have special privileges; see the pcap
(3PCAP) man page for details. Reading a saved packet file doesn’t require special privileges.

OPTIONS
−A Print each packet (minus its link level header) in ASCII. Handy for capturing web pages.

2 February 2017 1

TCPDUMP(8) System Manager’s Manual TCPDUMP(8)

−b Print the AS number in BGP packets in ASDOT notation rather than ASPLAIN notation.

−B buffer_size
−−buffer−size=buffer_size

Set the operating system capture buffer size to buffer_size, in units of KiB (1024 bytes).

−c count
Exit after receiving count packets.

−C file_size
Before writing a raw packet to a savefile, check whether the file is currently larger than file_size
and, if so, close the current savefile and open a new one. Savefiles after the first savefile will have
the name specified with the −w flag, with a number after it, starting at 1 and continuing upward.
The units of file_size are millions of bytes (1,000,000 bytes, not 1,048,576 bytes).

Note that when used with −Z option (enabled by default), privileges are dropped before opening
first savefile.

−d Dump the compiled packet-matching code in a human readable form to standard output and stop.

−dd Dump packet-matching code as a C program fragment.

−ddd Dump packet-matching code as decimal numbers (preceded with a count).

−D
−−list−interfaces

Print the list of the network interfaces available on the system and on which tcpdump can capture
packets. For each network interface, a number and an interface name, possibly followed by a text
description of the interface, is printed. The interface name or the number can be supplied to the −i
flag to specify an interface on which to capture.

This can be useful on systems that don’t hav e a command to list them (e.g., Windows systems, or
UNIX systems lacking ifconfig −a); the number can be useful on Windows 2000 and later sys-
tems, where the interface name is a somewhat complex string.

The −D flag will not be supported if tcpdump was built with an older version of libpcap that lacks
the pcap_findalldevs() function.

−e Print the link-level header on each dump line. This can be used, for example, to print MAC layer
addresses for protocols such as Ethernet and IEEE 802.11.

−E Use spi@ipaddr algo:secret for decrypting IPsec ESP packets that are addressed to addr and con-
tain Security Parameter Index value spi. This combination may be repeated with comma or new-
line separation.

Note that setting the secret for IPv4 ESP packets is supported at this time.

Algorithms may be des-cbc, 3des-cbc, blowfish-cbc, rc3-cbc, cast128-cbc, or none. The default
is des-cbc. The ability to decrypt packets is only present if tcpdump was compiled with cryptogra-
phy enabled.

secret is the ASCII text for ESP secret key. If preceded by 0x, then a hex value will be read.

The option assumes RFC2406 ESP, not RFC1827 ESP. The option is only for debugging pur-
poses, and the use of this option with a true ‘secret’ key is discouraged. By presenting IPsec secret
key onto command line you make it visible to others, via ps(1) and other occasions.

In addition to the above syntax, the syntax file name may be used to have tcpdump read the pro-
vided file in. The file is opened upon receiving the first ESP packet, so any special permissions that
tcpdump may have been given should already have been given up.

−f Print ‘foreign’ IPv4 addresses numerically rather than symbolically (this option is intended to get
around serious brain damage in Sun’s NIS server — usually it hangs forever translating non-local
internet numbers).

2 February 2017 2

TCPDUMP(8) System Manager’s Manual TCPDUMP(8)

The test for ‘foreign’ IPv4 addresses is done using the IPv4 address and netmask of the interface
on which capture is being done. If that address or netmask are not available, available, either be-
cause the interface on which capture is being done has no address or netmask or because the cap-
ture is being done on the Linux "any" interface, which can capture on more than one interface, this
option will not work correctly.

−F file Use file as input for the filter expression. An additional expression given on the command line is
ignored.

−G rotate_seconds
If specified, rotates the dump file specified with the −w option every rotate_seconds seconds.
Savefiles will have the name specified by −w which should include a time format as defined by
strftime(3). If no time format is specified, each new file will overwrite the previous.

If used in conjunction with the −C option, filenames will take the form of ‘file<count>’.

−h
−−help Print the tcpdump and libpcap version strings, print a usage message, and exit.

−−version
Print the tcpdump and libpcap version strings and exit.

−H Attempt to detect 802.11s draft mesh headers.

−i interface
−−interface=interface

Listen on interface. If unspecified, tcpdump searches the system interface list for the lowest num-
bered, configured up interface (excluding loopback), which may turn out to be, for example,
‘‘eth0’’.

On Linux systems with 2.2 or later kernels, an interface argument of ‘‘any’’ can be used to capture
packets from all interfaces. Note that captures on the ‘‘any’’ device will not be done in promiscu-
ous mode.

If the −D flag is supported, an interface number as printed by that flag can be used as the interface
argument, if no interface on the system has that number as a name.

−I
−−monitor−mode

Put the interface in "monitor mode"; this is supported only on IEEE 802.11 Wi-Fi interfaces, and
supported only on some operating systems.

Note that in monitor mode the adapter might disassociate from the network with which it’s associ-
ated, so that you will not be able to use any wireless networks with that adapter. This could pre-
vent accessing files on a network server, or resolving host names or network addresses, if you are
capturing in monitor mode and are not connected to another network with another adapter.

This flag will affect the output of the −L flag. If −I isn’t specified, only those link-layer types
available when not in monitor mode will be shown; if −I is specified, only those link-layer types
available when in monitor mode will be shown.

−−immediate−mode
Capture in "immediate mode". In this mode, packets are delivered to tcpdump as soon as they ar-
rive, rather than being buffered for efficiency. This is the default when printing packets rather than
saving packets to a ‘‘savefile’’ if the packets are being printed to a terminal rather than to a file or
pipe.

−j tstamp_type
−−time−stamp−type=tstamp_type

Set the time stamp type for the capture to tstamp_type. The names to use for the time stamp types
are given in pcap-tstamp(7); not all the types listed there will necessarily be valid for any giv en
interface.

2 February 2017 3

TCPDUMP(8) System Manager’s Manual TCPDUMP(8)

−J
−−list−time−stamp−types

List the supported time stamp types for the interface and exit. If the time stamp type cannot be set
for the interface, no time stamp types are listed.

−−time−stamp−precision=tstamp_precision
When capturing, set the time stamp precision for the capture to tstamp_precision. Note that avail-
ability of high precision time stamps (nanoseconds) and their actual accuracy is platform and hard-
ware dependent. Also note that when writing captures made with nanosecond accuracy to a sav e-
file, the time stamps are written with nanosecond resolution, and the file is written with a different
magic number, to indicate that the time stamps are in seconds and nanoseconds; not all programs
that read pcap savefiles will be able to read those captures.

When reading a savefile, convert time stamps to the precision specified by timestamp_precision, and dis-
play them with that resolution. If the precision specified is less than the precision of time stamps in the file,
the conversion will lose precision.

The supported values for timestamp_precision are micro for microsecond resolution and nano for nanosec-
ond resolution. The default is microsecond resolution.

−K
−−dont−verify−checksums

Don’t attempt to verify IP, TCP, or UDP checksums. This is useful for interfaces that perform
some or all of those checksum calculation in hardware; otherwise, all outgoing TCP checksums
will be flagged as bad.

−l Make stdout line buffered. Useful if you want to see the data while capturing it. E.g.,

tcpdump −l | tee dat

or

tcpdump −l > dat & tail −f dat

Note that on Windows,‘‘line buffered’’ means ‘‘unbuffered’’, so that WinDump will write each
character individually if −l is specified.

−U is similar to −l in its behavior, but it will cause output to be ‘‘packet-buffered’’, so that the out-
put is written to stdout at the end of each packet rather than at the end of each line; this is buffered
on all platforms, including Windows.

−L
−−list−data−link−types

List the known data link types for the interface, in the specified mode, and exit. The list of known
data link types may be dependent on the specified mode; for example, on some platforms, a Wi-Fi
interface might support one set of data link types when not in monitor mode (for example, it might
support only fake Ethernet headers, or might support 802.11 headers but not support 802.11 head-
ers with radio information) and another set of data link types when in monitor mode (for example,
it might support 802.11 headers, or 802.11 headers with radio information, only in monitor mode).

−m module
Load SMI MIB module definitions from file module. This option can be used several times to load
several MIB modules into tcpdump.

−M secret
Use secret as a shared secret for validating the digests found in TCP segments with the TCP-MD5
option (RFC 2385), if present.

−n Don’t convert addresses (i.e., host addresses, port numbers, etc.) to names.

−N Don’t print domain name qualification of host names. E.g., if you give this flag then tcpdump will
print ‘‘nic’’ instead of ‘‘nic.ddn.mil’’.

2 February 2017 4

TCPDUMP(8) System Manager’s Manual TCPDUMP(8)

−#
−−number

Print an optional packet number at the beginning of the line.

−O
−−no−optimize

Do not run the packet-matching code optimizer. This is useful only if you suspect a bug in the op-
timizer.

−p
−−no−promiscuous−mode

Don’t put the interface into promiscuous mode. Note that the interface might be in promiscuous
mode for some other reason; hence, ‘-p’ cannot be used as an abbreviation for ‘ether host {local-
hw-addr} or ether broadcast’.

−Q direction
−−direction=direction

Choose send/receive direction direction for which packets should be captured. Possible values are
‘in’, ‘out’ and ‘inout’. Not available on all platforms.

−q Quick (quiet?) output. Print less protocol information so output lines are shorter.

−r file Read packets from file (which was created with the −w option or by other tools that write pcap or
pcap-ng files). Standard input is used if file is ‘‘-’’.

−S
−−absolute−tcp−sequence−numbers

Print absolute, rather than relative, TCP sequence numbers.

−s snaplen
−−snapshot−length=snaplen

Snarf snaplen bytes of data from each packet rather than the default of 262144 bytes. Packets
truncated because of a limited snapshot are indicated in the output with ‘‘[|proto]’’, where proto is
the name of the protocol level at which the truncation has occurred. Note that taking larger snap-
shots both increases the amount of time it takes to process packets and, effectively, decreases the
amount of packet buffering. This may cause packets to be lost. You should limit snaplen to the
smallest number that will capture the protocol information you’re interested in. Setting snaplen to
0 sets it to the default of 262144, for backwards compatibility with recent older versions of tcp-
dump.

−T type
Force packets selected by "expression" to be interpreted the specified type. Currently known types
are aodv (Ad-hoc On-demand Distance Vector protocol), carp (Common Address Redundancy
Protocol), cnfp (Cisco NetFlow protocol), lmp (Link Management Protocol), pgm (Pragmatic
General Multicast), pgm_zmtp1 (ZMTP/1.0 inside PGM/EPGM), resp (REdis Serialization Pro-
tocol), radius (RADIUS), rpc (Remote Procedure Call), rtp (Real-Time Applications protocol),
rtcp (Real-Time Applications control protocol), snmp (Simple Network Management Protocol),
tftp (Trivial File Transfer Protocol), vat (Visual Audio Tool), wb (distributed White Board),
zmtp1 (ZeroMQ Message Transport Protocol 1.0) and vxlan (Virtual eXtensible Local Area Net-
work).

Note that the pgm type above affects UDP interpretation only, the native PGM is always recog-
nised as IP protocol 113 regardless. UDP-encapsulated PGM is often called "EPGM" or
"PGM/UDP".

Note that the pgm_zmtp1 type above affects interpretation of both native PGM and UDP at once.
During the native PGM decoding the application data of an ODAT A/RDAT A packet would be de-
coded as a ZeroMQ datagram with ZMTP/1.0 frames. During the UDP decoding in addition to
that any UDP packet would be treated as an encapsulated PGM packet.

2 February 2017 5

TCPDUMP(8) System Manager’s Manual TCPDUMP(8)

−t Don’t print a timestamp on each dump line.

−tt Print the timestamp, as seconds since January 1, 1970, 00:00:00, UTC, and fractions of a second
since that time, on each dump line.

−ttt Print a delta (micro-second resolution) between current and previous line on each dump line.

−tttt Print a timestamp, as hours, minutes, seconds, and fractions of a second since midnight, preceded
by the date, on each dump line.

−ttttt Print a delta (micro-second resolution) between current and first line on each dump line.

−u Print undecoded NFS handles.

−U
−−packet−buffered

If the −w option is not specified, make the printed packet output ‘‘packet-buffered’’; i.e., as the de-
scription of the contents of each packet is printed, it will be written to the standard output, rather
than, when not writing to a terminal, being written only when the output buffer fills.

If the −w option is specified, make the saved raw packet output ‘‘packet-buffered’’; i.e., as each
packet is saved, it will be written to the output file, rather than being written only when the output
buffer fills.

The −U flag will not be supported if tcpdump was built with an older version of libpcap that lacks
the pcap_dump_flush() function.

−v When parsing and printing, produce (slightly more) verbose output. For example, the time to live,
identification, total length and options in an IP packet are printed. Also enables additional packet
integrity checks such as verifying the IP and ICMP header checksum.

When writing to a file with the −w option, report, every 10 seconds, the number of packets cap-
tured.

−vv Even more verbose output. For example, additional fields are printed from NFS reply packets, and
SMB packets are fully decoded.

−vvv Even more verbose output. For example, telnet SB ... SE options are printed in full. With −X Tel-
net options are printed in hex as well.

−V file Read a list of filenames from file. Standard input is used if file is ‘‘-’’.

−w file Write the raw packets to file rather than parsing and printing them out. They can later be printed
with the −r option. Standard output is used if file is ‘‘-’’.

This output will be buffered if written to a file or pipe, so a program reading from the file or pipe
may not see packets for an arbitrary amount of time after they are received. Use the −U flag to
cause packets to be written as soon as they are received.

The MIME type application/vnd.tcpdump.pcap has been registered with IANA for pcap files. The
filename extension .pcap appears to be the most commonly used along with .cap and .dmp. Tcp-
dump itself doesn’t check the extension when reading capture files and doesn’t add an extension
when writing them (it uses magic numbers in the file header instead). However, many operating
systems and applications will use the extension if it is present and adding one (e.g. .pcap) is rec-
ommended.

See pcap-savefile(5) for a description of the file format.

−W Used in conjunction with the −C option, this will limit the number of files created to the specified
number, and begin overwriting files from the beginning, thus creating a ’rotating’ buffer. In addi-
tion, it will name the files with enough leading 0s to support the maximum number of files, allow-
ing them to sort correctly.

Used in conjunction with the −G option, this will limit the number of rotated dump files that get
created, exiting with status 0 when reaching the limit. If used with −C as well, the behavior will
result in cyclical files per timeslice.

2 February 2017 6

TCPDUMP(8) System Manager’s Manual TCPDUMP(8)

−x When parsing and printing, in addition to printing the headers of each packet, print the data of
each packet (minus its link level header) in hex. The smaller of the entire packet or snaplen bytes
will be printed. Note that this is the entire link-layer packet, so for link layers that pad (e.g. Ether-
net), the padding bytes will also be printed when the higher layer packet is shorter than the re-
quired padding.

−xx When parsing and printing, in addition to printing the headers of each packet, print the data of
each packet, including its link level header, in hex.

−X When parsing and printing, in addition to printing the headers of each packet, print the data of
each packet (minus its link level header) in hex and ASCII. This is very handy for analysing new
protocols.

−XX When parsing and printing, in addition to printing the headers of each packet, print the data of
each packet, including its link level header, in hex and ASCII.

−y datalinktype
−−linktype=datalinktype

Set the data link type to use while capturing packets to datalinktype.

−z postrotate-command
Used in conjunction with the -C or -G options, this will make tcpdump run " postrotate-command
file " where file is the savefile being closed after each rotation. For example, specifying −z gzip or
−z bzip2 will compress each savefile using gzip or bzip2.

Note that tcpdump will run the command in parallel to the capture, using the lowest priority so that
this doesn’t disturb the capture process.

And in case you would like to use a command that itself takes flags or different arguments, you
can always write a shell script that will take the savefile name as the only argument, make the flags
& arguments arrangements and execute the command that you want.

−Z user
−−relinquish−privileges=user

If tcpdump is running as root, after opening the capture device or input savefile, change the user
ID to user and the group ID to the primary group of user.

This behavior is enabled by default (−Z tcpdump), and can be disabled by −Z root.

expression
selects which packets will be dumped. If no expression is given, all packets on the net will be
dumped. Otherwise, only packets for which expression is ‘true’ will be dumped.

For the expression syntax, see pcap-filter(7).

The expression argument can be passed to tcpdump as either a single Shell argument, or as multi-
ple Shell arguments, whichever is more convenient. Generally, if the expression contains Shell
metacharacters, such as backslashes used to escape protocol names, it is easier to pass it as a sin-
gle, quoted argument rather than to escape the Shell metacharacters. Multiple arguments are con-
catenated with spaces before being parsed.

EXAMPLES
To print all packets arriving at or departing from sundown:

tcpdump host sundown

To print traffic between helios and either hot or ace:
tcpdump host helios and \(hot or ace \)

To print all IP packets between ace and any host except helios:
tcpdump ip host ace and not helios

To print all traffic between local hosts and hosts at Berkeley:
tcpdump net ucb-ether

2 February 2017 7

TCPDUMP(8) System Manager’s Manual TCPDUMP(8)

To print all ftp traffic through internet gateway snup: (note that the expression is quoted to prevent the shell
from (mis-)interpreting the parentheses):

tcpdump ’gateway snup and (port ftp or ftp-data)’

To print traffic neither sourced from nor destined for local hosts (if you gateway to one other net, this stuff
should never make it onto your local net).

tcpdump ip and not net localnet

To print the start and end packets (the SYN and FIN packets) of each TCP conversation that involves a non-
local host.

tcpdump ’tcp[tcpflags] & (tcp-syn|tcp-fin) != 0 and not src and dst net localnet’

To print all IPv4 HTTP packets to and from port 80, i.e. print only packets that contain data, not, for exam-
ple, SYN and FIN packets and ACK-only packets. (IPv6 is left as an exercise for the reader.)

tcpdump ’tcp port 80 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)’

To print IP packets longer than 576 bytes sent through gateway snup:
tcpdump ’gateway snup and ip[2:2] > 576’

To print IP broadcast or multicast packets that were not sent via Ethernet broadcast or multicast:
tcpdump ’ether[0] & 1 = 0 and ip[16] >= 224’

To print all ICMP packets that are not echo requests/replies (i.e., not ping packets):
tcpdump ’icmp[icmptype] != icmp-echo and icmp[icmptype] != icmp-echoreply’

OUTPUT FORMAT
The output of tcpdump is protocol dependent. The following gives a brief description and examples of
most of the formats.

Timestamps

By default, all output lines are preceded by a timestamp. The timestamp is the current clock time in the
form

hh:mm:ss.frac
and is as accurate as the kernel’s clock. The timestamp reflects the time the kernel applied a time stamp to
the packet. No attempt is made to account for the time lag between when the network interface finished re-
ceiving the packet from the network and when the kernel applied a time stamp to the packet; that time lag
could include a delay between the time when the network interface finished receiving a packet from the net-
work and the time when an interrupt was delivered to the kernel to get it to read the packet and a delay be-
tween the time when the kernel serviced the ‘new packet’ interrupt and the time when it applied a time
stamp to the packet.

Link Level Headers

If the ’-e’ option is given, the link level header is printed out. On Ethernets, the source and destination ad-
dresses, protocol, and packet length are printed.

On FDDI networks, the ’-e’ option causes tcpdump to print the ‘frame control’ field, the source and desti-
nation addresses, and the packet length. (The ‘frame control’ field governs the interpretation of the rest of
the packet. Normal packets (such as those containing IP datagrams) are ‘async’ packets, with a priority
value between 0 and 7; for example, ‘async4’. Such packets are assumed to contain an 802.2 Logical Link
Control (LLC) packet; the LLC header is printed if it is not an ISO datagram or a so-called SNAP packet.

On Token Ring networks, the ’-e’ option causes tcpdump to print the ‘access control’ and ‘frame control’
fields, the source and destination addresses, and the packet length. As on FDDI networks, packets are as-
sumed to contain an LLC packet. Regardless of whether the ’-e’ option is specified or not, the source rout-
ing information is printed for source-routed packets.

On 802.11 networks, the ’-e’ option causes tcpdump to print the ‘frame control’ fields, all of the addresses
in the 802.11 header, and the packet length. As on FDDI networks, packets are assumed to contain an LLC
packet.

2 February 2017 8

TCPDUMP(8) System Manager’s Manual TCPDUMP(8)

(N.B.: The following description assumes familiarity with the SLIP compression algorithm described in
RFC-1144.)

On SLIP links, a direction indicator (‘‘I’’ for inbound, ‘‘O’’ for outbound), packet type, and compression in-
formation are printed out. The packet type is printed first. The three types are ip, utcp, and ctcp. No fur-
ther link information is printed for ip packets. For TCP packets, the connection identifier is printed follow-
ing the type. If the packet is compressed, its encoded header is printed out. The special cases are printed
out as *S+n and *SA+n, where n is the amount by which the sequence number (or sequence number and
ack) has changed. If it is not a special case, zero or more changes are printed. A change is indicated by U
(urgent pointer), W (window), A (ack), S (sequence number), and I (packet ID), followed by a delta (+n or
-n), or a new value (=n). Finally, the amount of data in the packet and compressed header length are
printed.

For example, the following line shows an outbound compressed TCP packet, with an implicit connection
identifier; the ack has changed by 6, the sequence number by 49, and the packet ID by 6; there are 3 bytes
of data and 6 bytes of compressed header:

O ctcp * A+6 S+49 I+6 3 (6)

ARP/RARP Packets

Arp/rarp output shows the type of request and its arguments. The format is intended to be self explanatory.
Here is a short sample taken from the start of an ‘rlogin’ from host rtsg to host csam:

arp who-has csam tell rtsg

arp reply csam is-at CSAM

The first line says that rtsg sent an arp packet asking for the Ethernet address of internet host csam. Csam
replies with its Ethernet address (in this example, Ethernet addresses are in caps and internet addresses in
lower case).

This would look less redundant if we had done tcpdump −n:

arp who-has 128.3.254.6 tell 128.3.254.68

arp reply 128.3.254.6 is-at 02:07:01:00:01:c4

If we had done tcpdump −e, the fact that the first packet is broadcast and the second is point-to-point would
be visible:

RTSG Broadcast 0806 64: arp who-has csam tell rtsg

CSAM RTSG 0806 64: arp reply csam is-at CSAM

For the first packet this says the Ethernet source address is RTSG, the destination is the Ethernet broadcast
address, the type field contained hex 0806 (type ETHER_ARP) and the total length was 64 bytes.

IPv4 Packets

If the link-layer header is not being printed, for IPv4 packets, IP is printed after the time stamp.

If the −v flag is specified, information from the IPv4 header is shown in parentheses after the IP or the link-
layer header. The general format of this information is:

tos tos, ttl ttl, id id, offset offset, flags [flags], proto proto, length length, options (options)

tos is the type of service field; if the ECN bits are non-zero, those are reported as ECT(1), ECT(0), or CE.
ttl is the time-to-live; it is not reported if it is zero. id is the IP identification field. offset is the fragment
offset field; it is printed whether this is part of a fragmented datagram or not. flags are the MF and DF
flags; + is reported if MF is set, and DFP is reported if F is set. If neither are set, . is reported. proto is
the protocol ID field. length is the total length field. options are the IP options, if any.

Next, for TCP and UDP packets, the source and destination IP addresses and TCP or UDP ports, with a dot
between each IP address and its corresponding port, will be printed, with a > separating the source and des-
tination. For other protocols, the addresses will be printed, with a > separating the source and destination.

2 February 2017 9

TCPDUMP(8) System Manager’s Manual TCPDUMP(8)

Higher level protocol information, if any, will be printed after that.

For fragmented IP datagrams, the first fragment contains the higher level protocol header; fragments after
the first contain no higher level protocol header. Fragmentation information will be printed only with the
−v flag, in the IP header information, as described above.

TCP Packets

(N.B.:The following description assumes familiarity with the TCP protocol described in RFC-793. If you
are not familiar with the protocol, this description will not be of much use to you.)

The general format of a TCP protocol line is:

src > dst: Flags [tcpflags], seq data-seqno, ack ackno, win window, urg urgent, options [opts], length len

Src and dst are the source and destination IP addresses and ports. Tcpflags are some combination of S
(SYN), F (FIN), P (PUSH), R (RST), U (URG), W (ECN CWR), E (ECN-Echo) or ‘.’ (ACK), or ‘none’ if
no flags are set. Data-seqno describes the portion of sequence space covered by the data in this packet (see
example below). Ackno is sequence number of the next data expected the other direction on this connec-
tion. Window is the number of bytes of receive buffer space available the other direction on this connection.
Urg indicates there is ‘urgent’ data in the packet. Opts are TCP options (e.g., mss 1024). Len is the length
of payload data.

Iptype, Src, dst, and flags are always present. The other fields depend on the contents of the packet’s TCP
protocol header and are output only if appropriate.

Here is the opening portion of an rlogin from host rtsg to host csam.

IP rtsg.1023 > csam.login: Flags [S], seq 768512:768512, win 4096, opts [mss 1024]

IP csam.login > rtsg.1023: Flags [S.], seq, 947648:947648, ack 768513, win 4096, opts [mss 1024]

IP rtsg.1023 > csam.login: Flags [.], ack 1, win 4096

IP rtsg.1023 > csam.login: Flags [P.], seq 1:2, ack 1, win 4096, length 1

IP csam.login > rtsg.1023: Flags [.], ack 2, win 4096

IP rtsg.1023 > csam.login: Flags [P.], seq 2:21, ack 1, win 4096, length 19

IP csam.login > rtsg.1023: Flags [P.], seq 1:2, ack 21, win 4077, length 1

IP csam.login > rtsg.1023: Flags [P.], seq 2:3, ack 21, win 4077, urg 1, length 1

IP csam.login > rtsg.1023: Flags [P.], seq 3:4, ack 21, win 4077, urg 1, length 1

The first line says that TCP port 1023 on rtsg sent a packet to port login on csam. The S indicates that the
SYN flag was set. The packet sequence number was 768512 and it contained no data. (The notation is
‘first:last’ which means ‘sequence numbers first up to but not including last.) There was no piggy-backed
ack, the available receive window was 4096 bytes and there was a max-segment-size option requesting an
mss of 1024 bytes.

Csam replies with a similar packet except it includes a piggy-backed ack for rtsg’s SYN. Rtsg then acks
csam’s SYN. The ‘.’ means the ACK flag was set. The packet contained no data so there is no data se-
quence number or length. Note that the ack sequence number is a small integer (1). The first time tcpdump
sees a TCP ‘conversation’, it prints the sequence number from the packet. On subsequent packets of the
conversation, the difference between the current packet’s sequence number and this initial sequence number
is printed. This means that sequence numbers after the first can be interpreted as relative byte positions in
the conversation’s data stream (with the first data byte each direction being ‘1’). ‘-S’ will override this fea-
ture, causing the original sequence numbers to be output.

On the 6th line, rtsg sends csam 19 bytes of data (bytes 2 through 20 in the rtsg → csam side of the conver-
sation). The PUSH flag is set in the packet. On the 7th line, csam says it’s received data sent by rtsg up to
but not including byte 21. Most of this data is apparently sitting in the socket buffer since csam’s receive
window has gotten 19 bytes smaller. Csam also sends one byte of data to rtsg in this packet. On the 8th
and 9th lines, csam sends two bytes of urgent, pushed data to rtsg.

If the snapshot was small enough that tcpdump didn’t capture the full TCP header, it interprets as much of
the header as it can and then reports ‘‘[|tcp]’’ to indicate the remainder could not be interpreted. If the

2 February 2017 10

TCPDUMP(8) System Manager’s Manual TCPDUMP(8)

header contains a bogus option (one with a length that’s either too small or beyond the end of the header),
tcpdump reports it as ‘‘[bad opt]’’ and does not interpret any further options (since it’s impossible to tell
where they start). If the header length indicates options are present but the IP datagram length is not long
enough for the options to actually be there, tcpdump reports it as ‘‘[bad hdr length]’’.

Capturing TCP packets with particular flag combinations (SYN-ACK, URG-ACK, etc.)

There are 8 bits in the control bits section of the TCP header:

CWR | ECE | URG | ACK | PSH | RST | SYN | FIN

Let’s assume that we want to watch packets used in establishing a TCP connection. Recall that TCP uses a
3-way handshake protocol when it initializes a new connection; the connection sequence with regard to the
TCP control bits is

1) Caller sends SYN
2) Recipient responds with SYN, ACK
3) Caller sends ACK

Now we’re interested in capturing packets that have only the SYN bit set (Step 1). Note that we don’t want
packets from step 2 (SYN-ACK), just a plain initial SYN. What we need is a correct filter expression for
tcpdump.

Recall the structure of a TCP header without options:

0 15 31

| source port | destination port |

sequence number
acknowledgment number

| HL | rsvd |C|E|U|A|P|R|S|F| window size |

| TCP checksum | urgent pointer |

A TCP header usually holds 20 octets of data, unless options are present. The first line of the graph con-
tains octets 0 - 3, the second line shows octets 4 - 7 etc.

Starting to count with 0, the relevant TCP control bits are contained in octet 13:

0 7	15	23	31
HL	rsvd	C	E
----------------	---------------	---------------	----------------
	13th octet		

Let’s hav e a closer look at octet no. 13:

C

7 5 3 0

These are the TCP control bits we are interested in. We hav e numbered the bits in this octet from 0 to 7,
right to left, so the PSH bit is bit number 3, while the URG bit is number 5.

Recall that we want to capture packets with only SYN set. Let’s see what happens to octet 13 if a TCP
datagram arrives with the SYN bit set in its header:

2 February 2017 11

TCPDUMP(8) System Manager’s Manual TCPDUMP(8)

|C|E|U|A|P|R|S|F|
|---------------|
0 0 0 0 0 0 1 0
7 6 5 4 3 2 1 0

Looking at the control bits section we see that only bit number 1 (SYN) is set.

Assuming that octet number 13 is an 8-bit unsigned integer in network byte order, the binary value of this
octet is

00000010

and its decimal representation is

7 6 5 4 3 2 1 0
0*2 + 0*2 + 0*2 + 0*2 + 0*2 + 0*2 + 1*2 + 0*2 = 2

We’re almost done, because now we know that if only SYN is set, the value of the 13th octet in the TCP
header, when interpreted as a 8-bit unsigned integer in network byte order, must be exactly 2.

This relationship can be expressed as
tcp[13] == 2

We can use this expression as the filter for tcpdump in order to watch packets which have only SYN set:
tcpdump -i xl0 tcp[13] == 2

The expression says "let the 13th octet of a TCP datagram have the decimal value 2", which is exactly what
we want.

Now, let’s assume that we need to capture SYN packets, but we don’t care if ACK or any other TCP control
bit is set at the same time. Let’s see what happens to octet 13 when a TCP datagram with SYN-ACK set ar-
rives:

|C|E|U|A|P|R|S|F|
|---------------|
0 0 0 1 0 0 1 0
7 6 5 4 3 2 1 0

Now bits 1 and 4 are set in the 13th octet. The binary value of octet 13 is

00010010

which translates to decimal

7 6 5 4 3 2 1 0
0*2 + 0*2 + 0*2 + 1*2 + 0*2 + 0*2 + 1*2 + 0*2 = 18

Now we can’t just use ’tcp[13] == 18’ in the tcpdump filter expression, because that would select only those
packets that have SYN-ACK set, but not those with only SYN set. Remember that we don’t care if ACK or
any other control bit is set as long as SYN is set.

In order to achieve our goal, we need to logically AND the binary value of octet 13 with some other value
to preserve the SYN bit. We know that we want SYN to be set in any case, so we’ll logically AND the
value in the 13th octet with the binary value of a SYN:

00010010 SYN-ACK 00000010 SYN
AND 00000010 (we want SYN) AND 00000010 (we want SYN)

-------- --------
= 00000010 = 00000010

We see that this AND operation delivers the same result regardless whether ACK or another TCP control
bit is set. The decimal representation of the AND value as well as the result of this operation is 2 (binary
00000010), so we know that for packets with SYN set the following relation must hold true:

2 February 2017 12

TCPDUMP(8) System Manager’s Manual TCPDUMP(8)

((value of octet 13) AND (2)) == (2)

This points us to the tcpdump filter expression
tcpdump -i xl0 ’tcp[13] & 2 == 2’

Some offsets and field values may be expressed as names rather than as numeric values. For example
tcp[13] may be replaced with tcp[tcpflags]. The following TCP flag field values are also available: tcp-fin,
tcp-syn, tcp-rst, tcp-push, tcp-act, tcp-urg.

This can be demonstrated as:
tcpdump -i xl0 ’tcp[tcpflags] & tcp-push != 0’

Note that you should use single quotes or a backslash in the expression to hide the AND (’&’) special char-
acter from the shell.

UDP Packets

UDP format is illustrated by this rwho packet:

actinide.who > broadcast.who: udp 84

This says that port who on host actinide sent a udp datagram to port who on host broadcast, the Internet
broadcast address. The packet contained 84 bytes of user data.

Some UDP services are recognized (from the source or destination port number) and the higher level proto-
col information printed. In particular, Domain Name service requests (RFC-1034/1035) and Sun RPC calls
(RFC-1050) to NFS.

UDP Name Server Requests

(N.B.:The following description assumes familiarity with the Domain Service protocol described in
RFC-1035. If you are not familiar with the protocol, the following description will appear to be written in
greek.)

Name server requests are formatted as

src > dst: id op? flags qtype qclass name (len)

h2opolo.1538 > helios.domain: 3+ A? ucbvax.berkeley.edu. (37)

Host h2opolo asked the domain server on helios for an address record (qtype=A) associated with the name
ucbvax.berkeley.edu. The query id was ‘3’. The ‘+’ indicates the recursion desired flag was set. The query
length was 37 bytes, not including the UDP and IP protocol headers. The query operation was the normal
one, Query, so the op field was omitted. If the op had been anything else, it would have been printed be-
tween the ‘3’ and the ‘+’. Similarly, the qclass was the normal one, C_IN, and omitted. Any other qclass
would have been printed immediately after the ‘A’.

A few anomalies are checked and may result in extra fields enclosed in square brackets: If a query contains
an answer, authority records or additional records section, ancount, nscount, or arcount are printed as
‘[na]’, ‘[nn]’ or ‘[nau]’ where n is the appropriate count. If any of the response bits are set (AA, RA or
rcode) or any of the ‘must be zero’ bits are set in bytes two and three, ‘[b2&3=x]’ is printed, where x is the
hex value of header bytes two and three.

UDP Name Server Responses

Name server responses are formatted as

src > dst: id op rcode flags a/n/au type class data (len)

helios.domain > h2opolo.1538: 3 3/3/7 A 128.32.137.3 (273)

helios.domain > h2opolo.1537: 2 NXDomain* 0/1/0 (97)

In the first example, helios responds to query id 3 from h2opolo with 3 answer records, 3 name server

2 February 2017 13

TCPDUMP(8) System Manager’s Manual TCPDUMP(8)

records and 7 additional records. The first answer record is type A (address) and its data is internet address
128.32.137.3. The total size of the response was 273 bytes, excluding UDP and IP headers. The op
(Query) and response code (NoError) were omitted, as was the class (C_IN) of the A record.

In the second example, helios responds to query 2 with a response code of non-existent domain (NXDo-
main) with no answers, one name server and no authority records. The ‘*’ indicates that the authoritative
answer bit was set. Since there were no answers, no type, class or data were printed.

Other flag characters that might appear are ‘−’ (recursion available, RA, not set) and ‘|’ (truncated message,
TC, set). If the ‘question’ section doesn’t contain exactly one entry, ‘[nq]’ is printed.

SMB/CIFS decoding

tcpdump now includes fairly extensive SMB/CIFS/NBT decoding for data on UDP/137, UDP/138 and
TCP/139. Some primitive decoding of IPX and NetBEUI SMB data is also done.

By default a fairly minimal decode is done, with a much more detailed decode done if -v is used. Be
warned that with -v a single SMB packet may take up a page or more, so only use -v if you really want all
the gory details.

For information on SMB packet formats and what all the fields mean see www.cifs.org or the
pub/samba/specs/ directory on your favorite samba.org mirror site. The SMB patches were written by An-
drew Tridgell (tridge@samba.org).

NFS Requests and Replies

Sun NFS (Network File System) requests and replies are printed as:

src.sport > dst.nfs: NFS request xid xid len op args
src.nfs > dst.dport: NFS reply xid xid reply stat len op results

sushi.1023 > wrl.nfs: NFS request xid 26377

112 readlink fh 21,24/10.73165

wrl.nfs > sushi.1023: NFS reply xid 26377

reply ok 40 readlink "../var"

sushi.1022 > wrl.nfs: NFS request xid 8219

144 lookup fh 9,74/4096.6878 "xcolors"

wrl.nfs > sushi.1022: NFS reply xid 8219

reply ok 128 lookup fh 9,74/4134.3150

In the first line, host sushi sends a transaction with id 26377 to wrl. The request was 112 bytes, excluding
the UDP and IP headers. The operation was a readlink (read symbolic link) on file handle (fh)
21,24/10.731657119. (If one is lucky, as in this case, the file handle can be interpreted as a major,minor de-
vice number pair, followed by the inode number and generation number.) In the second line, wrl replies
‘ok’ with the same transaction id and the contents of the link.

In the third line, sushi asks (using a new transaction id) wrl to lookup the name ‘xcolors’ in directory file
9,74/4096.6878. In the fourth line, wrl sends a reply with the respective transaction id.

Note that the data printed depends on the operation type. The format is intended to be self explanatory if
read in conjunction with an NFS protocol spec. Also note that older versions of tcpdump printed NFS
packets in a slightly different format: the transaction id (xid) would be printed instead of the non-NFS port
number of the packet.

If the −v (verbose) flag is given, additional information is printed. For example:

sushi.1023 > wrl.nfs: NFS request xid 79658

148 read fh 21,11/12.195 8192 bytes @ 24576

wrl.nfs > sushi.1023: NFS reply xid 79658

reply ok 1472 read REG 100664 ids 417/0 sz 29388

2 February 2017 14

TCPDUMP(8) System Manager’s Manual TCPDUMP(8)

(−v also prints the IP header TTL, ID, length, and fragmentation fields, which have been omitted from this
example.) In the first line, sushi asks wrl to read 8192 bytes from file 21,11/12.195, at byte offset 24576.
Wrl replies ‘ok’; the packet shown on the second line is the first fragment of the reply, and hence is only
1472 bytes long (the other bytes will follow in subsequent fragments, but these fragments do not have NFS
or even UDP headers and so might not be printed, depending on the filter expression used). Because the −v
flag is given, some of the file attributes (which are returned in addition to the file data) are printed: the file
type (‘‘REG’’, for regular file), the file mode (in octal), the uid and gid, and the file size.

If the −v flag is given more than once, even more details are printed.

Note that NFS requests are very large and much of the detail won’t be printed unless snaplen is increased.
Try using ‘−s 192’ to watch NFS traffic.

NFS reply packets do not explicitly identify the RPC operation. Instead, tcpdump keeps track of ‘‘recent’’
requests, and matches them to the replies using the transaction ID. If a reply does not closely follow the
corresponding request, it might not be parsable.

AFS Requests and Replies

Transarc AFS (Andrew File System) requests and replies are printed as:

src.sport > dst.dport: rx packet-type
src.sport > dst.dport: rx packet-type service call call-name args
src.sport > dst.dport: rx packet-type service reply call-name args

elvis.7001 > pike.afsfs:

rx data fs call rename old fid 536876964/1/1 ".newsrc.new"

new fid 536876964/1/1 ".newsrc"

pike.afsfs > elvis.7001: rx data fs reply rename

In the first line, host elvis sends a RX packet to pike. This was a RX data packet to the fs (fileserver) ser-
vice, and is the start of an RPC call. The RPC call was a rename, with the old directory file id of
536876964/1/1 and an old filename of ‘.newsrc.new’, and a new directory file id of 536876964/1/1 and a
new filename of ‘.newsrc’. The host pike responds with a RPC reply to the rename call (which was suc-
cessful, because it was a data packet and not an abort packet).

In general, all AFS RPCs are decoded at least by RPC call name. Most AFS RPCs have at least some of
the arguments decoded (generally only the ‘interesting’ arguments, for some definition of interesting).

The format is intended to be self-describing, but it will probably not be useful to people who are not famil-
iar with the workings of AFS and RX.

If the -v (verbose) flag is given twice, acknowledgement packets and additional header information is
printed, such as the RX call ID, call number, sequence number, serial number, and the RX packet flags.

If the -v flag is given twice, additional information is printed, such as the RX call ID, serial number, and the
RX packet flags. The MTU negotiation information is also printed from RX ack packets.

If the -v flag is given three times, the security index and service id are printed.

Error codes are printed for abort packets, with the exception of Ubik beacon packets (because abort packets
are used to signify a yes vote for the Ubik protocol).

Note that AFS requests are very large and many of the arguments won’t be printed unless snaplen is in-
creased. Try using ‘-s 256’ to watch AFS traffic.

AFS reply packets do not explicitly identify the RPC operation. Instead, tcpdump keeps track of ‘‘recent’’
requests, and matches them to the replies using the call number and service ID. If a reply does not closely
follow the corresponding request, it might not be parsable.

2 February 2017 15

TCPDUMP(8) System Manager’s Manual TCPDUMP(8)

KIP AppleTalk (DDP in UDP)

AppleTalk DDP packets encapsulated in UDP datagrams are de-encapsulated and dumped as DDP packets
(i.e., all the UDP header information is discarded). The file /etc/atalk.names is used to translate AppleTalk
net and node numbers to names. Lines in this file have the form

number name

1.254 ether

16.1 icsd-net

1.254.110 ace

The first two lines give the names of AppleTalk networks. The third line gives the name of a particular host
(a host is distinguished from a net by the 3rd octet in the number − a net number must have two octets and a
host number must have three octets.) The number and name should be separated by whitespace (blanks or
tabs). The /etc/atalk.names file may contain blank lines or comment lines (lines starting with a ‘#’).

AppleTalk addresses are printed in the form

net.host.port

144.1.209.2 > icsd-net.112.220

office.2 > icsd-net.112.220

jssmag.149.235 > icsd-net.2

(If the /etc/atalk.names doesn’t exist or doesn’t contain an entry for some AppleTalk host/net number, ad-
dresses are printed in numeric form.) In the first example, NBP (DDP port 2) on net 144.1 node 209 is
sending to whatever is listening on port 220 of net icsd node 112. The second line is the same except the
full name of the source node is known (‘office’). The third line is a send from port 235 on net jssmag node
149 to broadcast on the icsd-net NBP port (note that the broadcast address (255) is indicated by a net name
with no host number − for this reason it’s a good idea to keep node names and net names distinct in
/etc/atalk.names).

NBP (name binding protocol) and ATP (AppleTalk transaction protocol) packets have their contents inter-
preted. Other protocols just dump the protocol name (or number if no name is registered for the protocol)
and packet size.

NBP packets are formatted like the following examples:

icsd-net.112.220 > jssmag.2: nbp-lkup 190: "=:LaserWriter@*"

jssmag.209.2 > icsd-net.112.220: nbp-reply 190: "RM1140:LaserWriter@*" 250

techpit.2 > icsd-net.112.220: nbp-reply 190: "techpit:LaserWriter@*" 186

The first line is a name lookup request for laserwriters sent by net icsd host 112 and broadcast on net jss-
mag. The nbp id for the lookup is 190. The second line shows a reply for this request (note that it has the
same id) from host jssmag.209 saying that it has a laserwriter resource named "RM1140" registered on port
250. The third line is another reply to the same request saying host techpit has laserwriter "techpit" regis-
tered on port 186.

ATP packet formatting is demonstrated by the following example:

jssmag.209.165 > helios.132: atp-req 12266<0-7> 0xae030001

helios.132 > jssmag.209.165: atp-resp 12266:0 (512) 0xae040000

helios.132 > jssmag.209.165: atp-resp 12266:1 (512) 0xae040000

helios.132 > jssmag.209.165: atp-resp 12266:2 (512) 0xae040000

helios.132 > jssmag.209.165: atp-resp 12266:3 (512) 0xae040000

helios.132 > jssmag.209.165: atp-resp 12266:4 (512) 0xae040000

helios.132 > jssmag.209.165: atp-resp 12266:5 (512) 0xae040000

helios.132 > jssmag.209.165: atp-resp 12266:6 (512) 0xae040000

helios.132 > jssmag.209.165: atp-resp*12266:7 (512) 0xae040000

2 February 2017 16

TCPDUMP(8) System Manager’s Manual TCPDUMP(8)

jssmag.209.165 > helios.132: atp-req 12266<3,5> 0xae030001

helios.132 > jssmag.209.165: atp-resp 12266:3 (512) 0xae040000

helios.132 > jssmag.209.165: atp-resp 12266:5 (512) 0xae040000

jssmag.209.165 > helios.132: atp-rel 12266<0-7> 0xae030001

jssmag.209.133 > helios.132: atp-req* 12267<0-7> 0xae030002

Jssmag.209 initiates transaction id 12266 with host helios by requesting up to 8 packets (the ‘<0-7>’). The
hex number at the end of the line is the value of the ‘userdata’ field in the request.

Helios responds with 8 512-byte packets. The ‘:digit’ following the transaction id gives the packet se-
quence number in the transaction and the number in parens is the amount of data in the packet, excluding
the atp header. The ‘*’ on packet 7 indicates that the EOM bit was set.

Jssmag.209 then requests that packets 3 & 5 be retransmitted. Helios resends them then jssmag.209 re-
leases the transaction. Finally, jssmag.209 initiates the next request. The ‘*’ on the request indicates that
XO (‘exactly once’) was not set.

SEE ALSO
stty(1), pcap(3PCAP), bpf(4), nit(4P), pcap-savefile(5), pcap-filter(7), pcap-tstamp(7)

http://www.iana.org/assignments/media-types/application/vnd.tcpdump.pcap

AUTHORS
The original authors are:

Van Jacobson, Craig Leres and Steven McCanne, all of the Lawrence Berkeley National Laboratory, Uni-
versity of California, Berkeley, CA.

It is currently being maintained by tcpdump.org.

The current version is available via http:

https://www.tcpdump.org/

The original distribution is available via anonymous ftp:

ftp://ftp.ee.lbl.gov/old/tcpdump.tar.Z

IPv6/IPsec support is added by WIDE/KAME project. This program uses Eric Young’s SSLeay library, un-
der specific configurations.

BUGS
To report a security issue please send an e-mail to security@tcpdump.org.

To report bugs and other problems, contribute patches, request a feature, provide generic feedback etc
please see the file CONTRIBUTING in the tcpdump source tree root.

NIT doesn’t let you watch your own outbound traffic, BPF will. We recommend that you use the latter.

On Linux systems with 2.0[.x] kernels:

packets on the loopback device will be seen twice;

packet filtering cannot be done in the kernel, so that all packets must be copied from the kernel in
order to be filtered in user mode;

all of a packet, not just the part that’s within the snapshot length, will be copied from the kernel
(the 2.0[.x] packet capture mechanism, if asked to copy only part of a packet to userland, will not
report the true length of the packet; this would cause most IP packets to get an error from tcp-
dump);

capturing on some PPP devices won’t work correctly.

We recommend that you upgrade to a 2.2 or later kernel.

Some attempt should be made to reassemble IP fragments or, at least to compute the right length for the
higher level protocol.

2 February 2017 17

TCPDUMP(8) System Manager’s Manual TCPDUMP(8)

Name server inverse queries are not dumped correctly: the (empty) question section is printed rather than
real query in the answer section. Some believe that inverse queries are themselves a bug and prefer to fix
the program generating them rather than tcpdump.

A packet trace that crosses a daylight savings time change will give skewed time stamps (the time change is
ignored).

Filter expressions on fields other than those in Token Ring headers will not correctly handle source-routed
Token Ring packets.

Filter expressions on fields other than those in 802.11 headers will not correctly handle 802.11 data packets
with both To DS and From DS set.

ip6 proto should chase header chain, but at this moment it does not. ip6 protochain is supplied for this be-
havior.

Arithmetic expression against transport layer headers, like tcp[0], does not work against IPv6 packets. It
only looks at IPv4 packets.

2 February 2017 18

