
TCP(7) Linux Programmer’s Manual TCP(7)

NAME
tcp − TCP protocol

SYNOPSIS
#include <sys/socket.h>

#include <netinet/in.h>

#include <netinet/tcp.h>

tcp_socket = socket(AF_INET, SOCK_STREAM, 0);

DESCRIPTION
This is an implementation of the TCP protocol defined in RFC 793, RFC 1122 and RFC 2001 with the

NewReno and SACK extensions. It provides a reliable, stream-oriented, full-duplex connection between

two sockets on top of ip(7), for both v4 and v6 versions. TCP guarantees that the data arrives in order and

retransmits lost packets. It generates and checks a per-packet checksum to catch transmission errors. TCP

does not preserve record boundaries.

A newly created TCP socket has no remote or local address and is not fully specified. To create an outgo-

ing TCP connection use connect(2) to establish a connection to another TCP socket. To receive new in-

coming connections, first bind(2) the socket to a local address and port and then call listen(2) to put the

socket into the listening state. After that a new socket for each incoming connection can be accepted using

accept(2). A socket which has had accept(2) or connect(2) successfully called on it is fully specified and

may transmit data. Data cannot be transmitted on listening or not yet connected sockets.

Linux supports RFC 1323 TCP high performance extensions. These include Protection Against Wrapped

Sequence Numbers (PAWS), Window Scaling and Timestamps. Window scaling allows the use of large (>

64 kB) TCP windows in order to support links with high latency or bandwidth. To make use of them, the

send and receive buffer sizes must be increased. They can be set globally with the

/proc/sys/net/ipv4/tcp_wmem and /proc/sys/net/ipv4/tcp_rmem files, or on individual sockets by using the

SO_SNDBUF and SO_RCVBUF socket options with the setsockopt(2) call.

The maximum sizes for socket buffers declared via the SO_SNDBUF and SO_RCVBUF mechanisms are

limited by the values in the /proc/sys/net/core/rmem_max and /proc/sys/net/core/wmem_max files. Note

that TCP actually allocates twice the size of the buffer requested in the setsockopt(2) call, and so a suc-

ceeding getsockopt(2) call will not return the same size of buffer as requested in the setsockopt(2) call.

TCP uses the extra space for administrative purposes and internal kernel structures, and the /proc file values

reflect the larger sizes compared to the actual TCP windows. On individual connections, the socket buffer

size must be set prior to the listen(2) or connect(2) calls in order to have it take effect. See socket(7) for

more information.

TCP supports urgent data. Urgent data is used to signal the receiver that some important message is part of

the data stream and that it should be processed as soon as possible. To send urgent data specify the

MSG_OOB option to send(2). When urgent data is received, the kernel sends a SIGURG signal to the

process or process group that has been set as the socket "owner" using the SIOCSPGRP or FIOSETOWN

ioctls (or the POSIX.1-specified fcntl(2) F_SETOWN operation). When the SO_OOBINLINE socket op-

tion is enabled, urgent data is put into the normal data stream (a program can test for its location using the

SIOCATMARK ioctl described below), otherwise it can be received only when the MSG_OOB flag is set

for recv(2) or recvmsg(2).

When out-of-band data is present, select(2) indicates the file descriptor as having an exceptional condition

and poll (2) indicates a POLLPRI ev ent.

Linux 2.4 introduced a number of changes for improved throughput and scaling, as well as enhanced func-

tionality. Some of these features include support for zero-copy sendfile(2), Explicit Congestion Notifica-

tion, new management of TIME_WAIT sockets, keep-alive socket options and support for Duplicate SACK

extensions.

Address formats

TCP is built on top of IP (see ip(7)). The address formats defined by ip(7) apply to TCP. TCP supports

point-to-point communication only; broadcasting and multicasting are not supported.

Linux 2020-02-09 1

TCP(7) Linux Programmer’s Manual TCP(7)

/proc interfaces

System-wide TCP parameter settings can be accessed by files in the directory /proc/sys/net/ipv4/ . In addi-

tion, most IP /proc interfaces also apply to TCP; see ip(7). Variables described as Boolean take an integer

value, with a nonzero value ("true") meaning that the corresponding option is enabled, and a zero value

("false") meaning that the option is disabled.

tcp_abc (Integer; default: 0; Linux 2.6.15 to Linux 3.8)

Control the Appropriate Byte Count (ABC), defined in RFC 3465. ABC is a way of increasing the

congestion window (cwnd) more slowly in response to partial acknowledgments. Possible values

are:

0 increase cwnd once per acknowledgment (no ABC)

1 increase cwnd once per acknowledgment of full sized segment

2 allow increase cwnd by two if acknowledgment is of two segments to compensate for delayed

acknowledgments.

tcp_abort_on_overflow (Boolean; default: disabled; since Linux 2.4)

Enable resetting connections if the listening service is too slow and unable to keep up and accept

them. It means that if overflow occurred due to a burst, the connection will recover. Enable this

option only if you are really sure that the listening daemon cannot be tuned to accept connections

faster. Enabling this option can harm the clients of your server.

tcp_adv_win_scale (integer; default: 2; since Linux 2.4)

Count buffering overhead as bytes/2ˆtcp_adv_win_scale, if tcp_adv_win_scale is greater than 0; or

bytes-bytes/2ˆ(−tcp_adv_win_scale), if tcp_adv_win_scale is less than or equal to zero.

The socket receive buffer space is shared between the application and kernel. TCP maintains part

of the buffer as the TCP window, this is the size of the receive window advertised to the other end.

The rest of the space is used as the "application" buffer, used to isolate the network from schedul-

ing and application latencies. The tcp_adv_win_scale default value of 2 implies that the space

used for the application buffer is one fourth that of the total.

tcp_allowed_congestion_control (String; default: see text; since Linux 2.4.20)

Show/set the congestion control algorithm choices available to unprivileged processes (see the de-

scription of the TCP_CONGESTION socket option). The items in the list are separated by white

space and terminated by a newline character. The list is a subset of those listed in tcp_avail-

able_congestion_control. The default value for this list is "reno" plus the default setting of

tcp_congestion_control.

tcp_autocorking (Boolean; default: enabled; since Linux 3.14)

If this option is enabled, the kernel tries to coalesce small writes (from consecutive write(2) and

sendmsg(2) calls) as much as possible, in order to decrease the total number of sent packets. Coa-

lescing is done if at least one prior packet for the flow is waiting in Qdisc queues or device trans-

mit queue. Applications can still use the TCP_CORK socket option to obtain optimal behavior

when they know how/when to uncork their sockets.

tcp_available_congestion_control (String; read-only; since Linux 2.4.20)

Show a list of the congestion-control algorithms that are registered. The items in the list are sepa-

rated by white space and terminated by a newline character. This list is a limiting set for the list in

tcp_allowed_congestion_control. More congestion-control algorithms may be available as mod-

ules, but not loaded.

tcp_app_win (integer; default: 31; since Linux 2.4)

This variable defines how many bytes of the TCP window are reserved for buffering overhead.

A maximum of (window/2ˆtcp_app_win, mss) bytes in the window are reserved for the application

buffer. A value of 0 implies that no amount is reserved.

Linux 2020-02-09 2

TCP(7) Linux Programmer’s Manual TCP(7)

tcp_base_mss (Integer; default: 512; since Linux 2.6.17)

The initial value of search_low to be used by the packetization layer Path MTU discovery (MTU

probing). If MTU probing is enabled, this is the initial MSS used by the connection.

tcp_bic (Boolean; default: disabled; Linux 2.4.27/2.6.6 to 2.6.13)

Enable BIC TCP congestion control algorithm. BIC-TCP is a sender-side-only change that en-

sures a linear RTT fairness under large windows while offering both scalability and bounded TCP-

friendliness. The protocol combines two schemes called additive increase and binary search in-

crease. When the congestion window is large, additive increase with a large increment ensures lin-

ear RTT fairness as well as good scalability. Under small congestion windows, binary search in-

crease provides TCP friendliness.

tcp_bic_low_window (integer; default: 14; Linux 2.4.27/2.6.6 to 2.6.13)

Set the threshold window (in packets) where BIC TCP starts to adjust the congestion window. Be-

low this threshold BIC TCP behaves the same as the default TCP Reno.

tcp_bic_fast_convergence (Boolean; default: enabled; Linux 2.4.27/2.6.6 to 2.6.13)

Force BIC TCP to more quickly respond to changes in congestion window. Allows two flows

sharing the same connection to converge more rapidly.

tcp_congestion_control (String; default: see text; since Linux 2.4.13)

Set the default congestion-control algorithm to be used for new connections. The algorithm "reno"

is always available, but additional choices may be available depending on kernel configuration.

The default value for this file is set as part of kernel configuration.

tcp_dma_copybreak (integer; default: 4096; since Linux 2.6.24)

Lower limit, in bytes, of the size of socket reads that will be offloaded to a DMA copy engine, if

one is present in the system and the kernel was configured with the CONFIG_NET_DMA option.

tcp_dsack (Boolean; default: enabled; since Linux 2.4)

Enable RFC 2883 TCP Duplicate SACK support.

tcp_ecn (Integer; default: see below; since Linux 2.4)

Enable RFC 3168 Explicit Congestion Notification.

This file can have one of the following values:

0 Disable ECN. Neither initiate nor accept ECN. This was the default up to and including

Linux 2.6.30.

1 Enable ECN when requested by incoming connections and also request ECN on outgoing

connection attempts.

2 Enable ECN when requested by incoming connections, but do not request ECN on outgo-

ing connections. This value is supported, and is the default, since Linux 2.6.31.

When enabled, connectivity to some destinations could be affected due to older, misbehaving mid-

dle boxes along the path, causing connections to be dropped. However, to facilitate and encourage

deployment with option 1, and to work around such buggy equipment, the tcp_ecn_fallback op-

tion has been introduced.

tcp_ecn_fallback (Boolean; default: enabled; since Linux 4.1)

Enable RFC 3168, Section 6.1.1.1. fallback. When enabled, outgoing ECN-setup SYNs that time

out within the normal SYN retransmission timeout will be resent with CWR and ECE cleared.

tcp_fack (Boolean; default: enabled; since Linux 2.2)

Enable TCP Forward Acknowledgement support.

tcp_fin_timeout (integer; default: 60; since Linux 2.2)

This specifies how many seconds to wait for a final FIN packet before the socket is forcibly closed.

This is strictly a violation of the TCP specification, but required to prevent denial-of-service at-

tacks. In Linux 2.2, the default value was 180.

Linux 2020-02-09 3

TCP(7) Linux Programmer’s Manual TCP(7)

tcp_frto (integer; default: see below; since Linux 2.4.21/2.6)

Enable F-RTO, an enhanced recovery algorithm for TCP retransmission timeouts (RTOs). It is

particularly beneficial in wireless environments where packet loss is typically due to random radio

interference rather than intermediate router congestion. See RFC 4138 for more details.

This file can have one of the following values:

0 Disabled. This was the default up to and including Linux 2.6.23.

1 The basic version F-RTO algorithm is enabled.

2 Enable SACK-enhanced F-RTO if flow uses SACK. The basic version can be used also when

SACK is in use though in that case scenario(s) exists where F-RTO interacts badly with the

packet counting of the SACK-enabled TCP flow. This value is the default since Linux 2.6.24.

Before Linux 2.6.22, this parameter was a Boolean value, supporting just values 0 and 1 above.

tcp_frto_response (integer; default: 0; since Linux 2.6.22)

When F-RTO has detected that a TCP retransmission timeout was spurious (i.e., the timeout would

have been avoided had TCP set a longer retransmission timeout), TCP has several options con-

cerning what to do next. Possible values are:

0 Rate halving based; a smooth and conservative response, results in halved congestion window

(cwnd) and slow-start threshold (ssthresh) after one RTT.

1 Very conservative response; not recommended because even though being valid, it interacts

poorly with the rest of Linux TCP; halves cwnd and ssthresh immediately.

2 Aggressive response; undoes congestion-control measures that are now known to be unneces-

sary (ignoring the possibility of a lost retransmission that would require TCP to be more cau-

tious); cwnd and ssthresh are restored to the values prior to timeout.

tcp_keepalive_intvl (integer; default: 75; since Linux 2.4)

The number of seconds between TCP keep-alive probes.

tcp_keepalive_probes (integer; default: 9; since Linux 2.2)

The maximum number of TCP keep-alive probes to send before giving up and killing the connec-

tion if no response is obtained from the other end.

tcp_keepalive_time (integer; default: 7200; since Linux 2.2)

The number of seconds a connection needs to be idle before TCP begins sending out keep-alive

probes. Keep-alives are sent only when the SO_KEEPALIVE socket option is enabled. The de-

fault value is 7200 seconds (2 hours). An idle connection is terminated after approximately an ad-

ditional 11 minutes (9 probes an interval of 75 seconds apart) when keep-alive is enabled.

Note that underlying connection tracking mechanisms and application timeouts may be much

shorter.

tcp_low_latency (Boolean; default: disabled; since Linux 2.4.21/2.6; obsolete since Linux 4.14)

If enabled, the TCP stack makes decisions that prefer lower latency as opposed to higher through-

put. It this option is disabled, then higher throughput is preferred. An example of an application

where this default should be changed would be a Beowulf compute cluster. Since Linux 4.14, this

file still exists, but its value is ignored.

tcp_max_orphans (integer; default: see below; since Linux 2.4)

The maximum number of orphaned (not attached to any user file handle) TCP sockets allowed in

the system. When this number is exceeded, the orphaned connection is reset and a warning is

printed. This limit exists only to prevent simple denial-of-service attacks. Lowering this limit is

not recommended. Network conditions might require you to increase the number of orphans al-

lowed, but note that each orphan can eat up to ˜64 kB of unswappable memory. The default initial

value is set equal to the kernel parameter NR_FILE. This initial default is adjusted depending on

the memory in the system.

Linux 2020-02-09 4

TCP(7) Linux Programmer’s Manual TCP(7)

tcp_max_syn_backlog (integer; default: see below; since Linux 2.2)

The maximum number of queued connection requests which have still not received an acknowl-

edgement from the connecting client. If this number is exceeded, the kernel will begin dropping

requests. The default value of 256 is increased to 1024 when the memory present in the system is

adequate or greater (>= 128 MB), and reduced to 128 for those systems with very low memory

(<= 32 MB).

Prior to Linux 2.6.20, it was recommended that if this needed to be increased above 1024, the size

of the SYNACK hash table (TCP_SYNQ_HSIZE) in include/net/tcp.h should be modified to

keep

TCP_SYNQ_HSIZE * 16 <= tcp_max_syn_backlog

and the kernel should be recompiled. In Linux 2.6.20, the fixed sized TCP_SYNQ_HSIZE was

removed in favor of dynamic sizing.

tcp_max_tw_buckets (integer; default: see below; since Linux 2.4)

The maximum number of sockets in TIME_WAIT state allowed in the system. This limit exists

only to prevent simple denial-of-service attacks. The default value of NR_FILE*2 is adjusted de-

pending on the memory in the system. If this number is exceeded, the socket is closed and a warn-

ing is printed.

tcp_moderate_rcvbuf (Boolean; default: enabled; since Linux 2.4.17/2.6.7)

If enabled, TCP performs receive buffer auto-tuning, attempting to automatically size the buffer

(no greater than tcp_rmem[2]) to match the size required by the path for full throughput.

tcp_mem (since Linux 2.4)

This is a vector of 3 integers: [low, pressure, high]. These bounds, measured in units of the system

page size, are used by TCP to track its memory usage. The defaults are calculated at boot time

from the amount of available memory. (TCP can only use low memory for this, which is limited to

around 900 megabytes on 32-bit systems. 64-bit systems do not suffer this limitation.)

low TCP doesn’t regulate its memory allocation when the number of pages it has allocated

globally is below this number.

pressure When the amount of memory allocated by TCP exceeds this number of pages, TCP

moderates its memory consumption. This memory pressure state is exited once the

number of pages allocated falls below the low mark.

high The maximum number of pages, globally, that TCP will allocate. This value overrides

any other limits imposed by the kernel.

tcp_mtu_probing (integer; default: 0; since Linux 2.6.17)

This parameter controls TCP Packetization-Layer Path MTU Discovery. The following values

may be assigned to the file:

0 Disabled

1 Disabled by default, enabled when an ICMP black hole detected

2 Always enabled, use initial MSS of tcp_base_mss.

tcp_no_metrics_save (Boolean; default: disabled; since Linux 2.6.6)

By default, TCP saves various connection metrics in the route cache when the connection closes,

so that connections established in the near future can use these to set initial conditions. Usually,

this increases overall performance, but it may sometimes cause performance degradation. If

tcp_no_metrics_save is enabled, TCP will not cache metrics on closing connections.

tcp_orphan_retries (integer; default: 8; since Linux 2.4)

The maximum number of attempts made to probe the other end of a connection which has been

closed by our end.

Linux 2020-02-09 5

TCP(7) Linux Programmer’s Manual TCP(7)

tcp_reordering (integer; default: 3; since Linux 2.4)

The maximum a packet can be reordered in a TCP packet stream without TCP assuming packet

loss and going into slow start. It is not advisable to change this number. This is a packet reorder-

ing detection metric designed to minimize unnecessary back off and retransmits provoked by re-

ordering of packets on a connection.

tcp_retrans_collapse (Boolean; default: enabled; since Linux 2.2)

Try to send full-sized packets during retransmit.

tcp_retries1 (integer; default: 3; since Linux 2.2)

The number of times TCP will attempt to retransmit a packet on an established connection nor-

mally, without the extra effort of getting the network layers involved. Once we exceed this num-

ber of retransmits, we first have the network layer update the route if possible before each new re-

transmit. The default is the RFC specified minimum of 3.

tcp_retries2 (integer; default: 15; since Linux 2.2)

The maximum number of times a TCP packet is retransmitted in established state before giving

up. The default value is 15, which corresponds to a duration of approximately between 13 to 30

minutes, depending on the retransmission timeout. The RFC 1122 specified minimum limit of 100

seconds is typically deemed too short.

tcp_rfc1337 (Boolean; default: disabled; since Linux 2.2)

Enable TCP behavior conformant with RFC 1337. When disabled, if a RST is received in

TIME_WAIT state, we close the socket immediately without waiting for the end of the

TIME_WAIT period.

tcp_rmem (since Linux 2.4)

This is a vector of 3 integers: [min, default, max]. These parameters are used by TCP to regulate

receive buffer sizes. TCP dynamically adjusts the size of the receive buffer from the defaults listed

below, in the range of these values, depending on memory available in the system.

min minimum size of the receive buffer used by each TCP socket. The default value is the

system page size. (On Linux 2.4, the default value is 4 kB, lowered to PA GE_SIZE

bytes in low-memory systems.) This value is used to ensure that in memory pressure

mode, allocations below this size will still succeed. This is not used to bound the size

of the receive buffer declared using SO_RCVBUF on a socket.

default the default size of the receive buffer for a TCP socket. This value overwrites the ini-

tial default buffer size from the generic global net.core.rmem_default defined for all

protocols. The default value is 87380 bytes. (On Linux 2.4, this will be lowered to

43689 in low-memory systems.) If larger receive buffer sizes are desired, this value

should be increased (to affect all sockets). To employ large TCP windows, the

net.ipv4.tcp_window_scaling must be enabled (default).

max the maximum size of the receive buffer used by each TCP socket. This value does not

override the global net.core.rmem_max. This is not used to limit the size of the re-

ceive buffer declared using SO_RCVBUF on a socket. The default value is calcu-

lated using the formula

max(87380, min(4 MB, tcp_mem[1]*PAGE_SIZE/128))

(On Linux 2.4, the default is 87380*2 bytes, lowered to 87380 in low-memory sys-

tems).

tcp_sack (Boolean; default: enabled; since Linux 2.2)

Enable RFC 2018 TCP Selective Acknowledgements.

tcp_slow_start_after_idle (Boolean; default: enabled; since Linux 2.6.18)

If enabled, provide RFC 2861 behavior and time out the congestion window after an idle period.

An idle period is defined as the current RTO (retransmission timeout). If disabled, the congestion

window will not be timed out after an idle period.

Linux 2020-02-09 6

TCP(7) Linux Programmer’s Manual TCP(7)

tcp_stdurg (Boolean; default: disabled; since Linux 2.2)

If this option is enabled, then use the RFC 1122 interpretation of the TCP urgent-pointer field.

According to this interpretation, the urgent pointer points to the last byte of urgent data. If this op-

tion is disabled, then use the BSD-compatible interpretation of the urgent pointer: the urgent

pointer points to the first byte after the urgent data. Enabling this option may lead to interoperabil-

ity problems.

tcp_syn_retries (integer; default: 5; since Linux 2.2)

The maximum number of times initial SYNs for an active TCP connection attempt will be retrans-

mitted. This value should not be higher than 255. The default value is 5, which corresponds to

approximately 180 seconds.

tcp_synack_retries (integer; default: 5; since Linux 2.2)

The maximum number of times a SYN/ACK segment for a passive TCP connection will be re-

transmitted. This number should not be higher than 255.

tcp_syncookies (Boolean; since Linux 2.2)

Enable TCP syncookies. The kernel must be compiled with CONFIG_SYN_COOKIES. Send

out syncookies when the syn backlog queue of a socket overflows. The syncookies feature at-

tempts to protect a socket from a SYN flood attack. This should be used as a last resort, if at all.

This is a violation of the TCP protocol, and conflicts with other areas of TCP such as TCP exten-

sions. It can cause problems for clients and relays. It is not recommended as a tuning mechanism

for heavily loaded servers to help with overloaded or misconfigured conditions. For recommended

alternatives see tcp_max_syn_backlog, tcp_synack_retries, and tcp_abort_on_overflow.

tcp_timestamps (integer; default: 1; since Linux 2.2)

Set to one of the following values to enable or disable RFC 1323 TCP timestamps:

0 Disable timestamps.

1 Enable timestamps as defined in RFC1323 and use random offset for each connection rather

than only using the current time.

2 As for the value 1, but without random offsets. Setting tcp_timestamps to this value is mean-

ingful since Linux 4.10.

tcp_tso_win_divisor (integer; default: 3; since Linux 2.6.9)

This parameter controls what percentage of the congestion window can be consumed by a single

TCP Segmentation Offload (TSO) frame. The setting of this parameter is a tradeoff between

burstiness and building larger TSO frames.

tcp_tw_recycle (Boolean; default: disabled; Linux 2.4 to 4.11)

Enable fast recycling of TIME_WAIT sockets. Enabling this option is not recommended as the re-

mote IP may not use monotonically increasing timestamps (devices behind NAT , devices with per-

connection timestamp offsets). See RFC 1323 (PAWS) and RFC 6191.

tcp_tw_reuse (Boolean; default: disabled; since Linux 2.4.19/2.6)

Allow to reuse TIME_WAIT sockets for new connections when it is safe from protocol viewpoint.

It should not be changed without advice/request of technical experts.

tcp_vegas_cong_avoid (Boolean; default: disabled; Linux 2.2 to 2.6.13)

Enable TCP Veg as congestion avoidance algorithm. TCP Veg as is a sender-side-only change to

TCP that anticipates the onset of congestion by estimating the bandwidth. TCP Veg as adjusts the

sending rate by modifying the congestion window. TCP Veg as should provide less packet loss, but

it is not as aggressive as TCP Reno.

tcp_westwood (Boolean; default: disabled; Linux 2.4.26/2.6.3 to 2.6.13)

Enable TCP Westwood+ congestion control algorithm. TCP Westwood+ is a sender-side-only

modification of the TCP Reno protocol stack that optimizes the performance of TCP congestion

control. It is based on end-to-end bandwidth estimation to set congestion window and slow start

threshold after a congestion episode. Using this estimation, TCP Westwood+ adaptively sets a

slow start threshold and a congestion window which takes into account the bandwidth used at the

Linux 2020-02-09 7

TCP(7) Linux Programmer’s Manual TCP(7)

time congestion is experienced. TCP Westwood+ significantly increases fairness with respect to

TCP Reno in wired networks and throughput over wireless links.

tcp_window_scaling (Boolean; default: enabled; since Linux 2.2)

Enable RFC 1323 TCP window scaling. This feature allows the use of a large window (> 64 kB)

on a TCP connection, should the other end support it. Normally, the 16 bit window length field in

the TCP header limits the window size to less than 64 kB. If larger windows are desired, applica-

tions can increase the size of their socket buffers and the window scaling option will be employed.

If tcp_window_scaling is disabled, TCP will not negotiate the use of window scaling with the

other end during connection setup.

tcp_wmem (since Linux 2.4)

This is a vector of 3 integers: [min, default, max]. These parameters are used by TCP to regulate

send buffer sizes. TCP dynamically adjusts the size of the send buffer from the default values

listed below, in the range of these values, depending on memory available.

min Minimum size of the send buffer used by each TCP socket. The default value is the

system page size. (On Linux 2.4, the default value is 4 kB.) This value is used to en-

sure that in memory pressure mode, allocations below this size will still succeed. This

is not used to bound the size of the send buffer declared using SO_SNDBUF on a

socket.

default The default size of the send buffer for a TCP socket. This value overwrites the initial

default buffer size from the generic global /proc/sys/net/core/wmem_default defined

for all protocols. The default value is 16 kB. If larger send buffer sizes are desired,

this value should be increased (to affect all sockets). To employ large TCP windows,

the /proc/sys/net/ipv4/tcp_window_scaling must be set to a nonzero value (default).

max The maximum size of the send buffer used by each TCP socket. This value does not

override the value in /proc/sys/net/core/wmem_max. This is not used to limit the size

of the send buffer declared using SO_SNDBUF on a socket. The default value is cal-

culated using the formula

max(65536, min(4 MB, tcp_mem[1]*PAGE_SIZE/128))

(On Linux 2.4, the default value is 128 kB, lowered 64 kB depending on low-memory

systems.)

tcp_workaround_signed_windows (Boolean; default: disabled; since Linux 2.6.26)

If enabled, assume that no receipt of a window-scaling option means that the remote TCP is bro-

ken and treats the window as a signed quantity. If disabled, assume that the remote TCP is not

broken even if we do not receive a window scaling option from it.

Socket options

To set or get a TCP socket option, call getsockopt(2) to read or setsockopt(2) to write the option with the

option level argument set to IPPROT O_TCP. Unless otherwise noted, optval is a pointer to an int. In ad-

dition, most IPPROT O_IP socket options are valid on TCP sockets. For more information see ip(7).

Following is a list of TCP-specific socket options. For details of some other socket options that are also ap-

plicable for TCP sockets, see socket(7).

TCP_CONGESTION (since Linux 2.6.13)

The argument for this option is a string. This option allows the caller to set the TCP congestion

control algorithm to be used, on a per-socket basis. Unprivileged processes are restricted to choos-

ing one of the algorithms in tcp_allowed_congestion_control (described above). Privileged pro-

cesses (CAP_NET_ADMIN) can choose from any of the available congestion-control algorithms

(see the description of tcp_available_congestion_control above).

TCP_CORK (since Linux 2.2)

If set, don’t send out partial frames. All queued partial frames are sent when the option is cleared

again. This is useful for prepending headers before calling sendfile(2), or for throughput opti-

mization. As currently implemented, there is a 200 millisecond ceiling on the time for which

Linux 2020-02-09 8

TCP(7) Linux Programmer’s Manual TCP(7)

output is corked by TCP_CORK. If this ceiling is reached, then queued data is automatically

transmitted. This option can be combined with TCP_NODELAY only since Linux 2.5.71. This

option should not be used in code intended to be portable.

TCP_DEFER_ACCEPT (since Linux 2.4)

Allow a listener to be awakened only when data arrives on the socket. Takes an integer value (sec-

onds), this can bound the maximum number of attempts TCP will make to complete the connec-

tion. This option should not be used in code intended to be portable.

TCP_INFO (since Linux 2.4)

Used to collect information about this socket. The kernel returns a struct tcp_info as defined in the

file /usr/include/linux/tcp.h. This option should not be used in code intended to be portable.

TCP_KEEPCNT (since Linux 2.4)

The maximum number of keepalive probes TCP should send before dropping the connection. This

option should not be used in code intended to be portable.

TCP_KEEPIDLE (since Linux 2.4)

The time (in seconds) the connection needs to remain idle before TCP starts sending keepalive

probes, if the socket option SO_KEEPALIVE has been set on this socket. This option should not

be used in code intended to be portable.

TCP_KEEPINTVL (since Linux 2.4)

The time (in seconds) between individual keepalive probes. This option should not be used in

code intended to be portable.

TCP_LINGER2 (since Linux 2.4)

The lifetime of orphaned FIN_WAIT2 state sockets. This option can be used to override the sys-

tem-wide setting in the file /proc/sys/net/ipv4/tcp_fin_timeout for this socket. This is not to be

confused with the socket(7) level option SO_LINGER. This option should not be used in code

intended to be portable.

TCP_MAXSEG

The maximum segment size for outgoing TCP packets. In Linux 2.2 and earlier, and in Linux

2.6.28 and later, if this option is set before connection establishment, it also changes the MSS

value announced to the other end in the initial packet. Values greater than the (eventual) interface

MTU have no effect. TCP will also impose its minimum and maximum bounds over the value

provided.

TCP_NODELAY

If set, disable the Nagle algorithm. This means that segments are always sent as soon as possible,

ev en if there is only a small amount of data. When not set, data is buffered until there is a suffi-

cient amount to send out, thereby avoiding the frequent sending of small packets, which results in

poor utilization of the network. This option is overridden by TCP_CORK; howev er, setting this

option forces an explicit flush of pending output, even if TCP_CORK is currently set.

TCP_QUICKACK (since Linux 2.4.4)

Enable quickack mode if set or disable quickack mode if cleared. In quickack mode, acks are sent

immediately, rather than delayed if needed in accordance to normal TCP operation. This flag is

not permanent, it only enables a switch to or from quickack mode. Subsequent operation of the

TCP protocol will once again enter/leave quickack mode depending on internal protocol process-

ing and factors such as delayed ack timeouts occurring and data transfer. This option should not

be used in code intended to be portable.

TCP_SYNCNT (since Linux 2.4)

Set the number of SYN retransmits that TCP should send before aborting the attempt to connect.

It cannot exceed 255. This option should not be used in code intended to be portable.

TCP_USER_TIMEOUT (since Linux 2.6.37)

This option takes an unsigned int as an argument. When the value is greater than 0, it specifies the

maximum amount of time in milliseconds that transmitted data may remain unacknowledged

Linux 2020-02-09 9

TCP(7) Linux Programmer’s Manual TCP(7)

before TCP will forcibly close the corresponding connection and return ETIMEDOUT to the ap-

plication. If the option value is specified as 0, TCP will use the system default.

Increasing user timeouts allows a TCP connection to survive extended periods without end-to-end

connectivity. Decreasing user timeouts allows applications to "fail fast", if so desired. Otherwise,

failure may take up to 20 minutes with the current system defaults in a normal WAN environment.

This option can be set during any state of a TCP connection, but is effective only during the syn-

chronized states of a connection (ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT,

CLOSING, and LAST-ACK). Moreover, when used with the TCP keepalive (SO_KEEPALIVE)

option, TCP_USER_TIMEOUT will override keepalive to determine when to close a connection

due to keepalive failure.

The option has no effect on when TCP retransmits a packet, nor when a keepalive probe is sent.

This option, like many others, will be inherited by the socket returned by accept(2), if it was set on

the listening socket.

Further details on the user timeout feature can be found in RFC 793 and RFC 5482 ("TCP User

Timeout Option").

TCP_WINDOW_CLAMP (since Linux 2.4)

Bound the size of the advertised window to this value. The kernel imposes a minimum size of

SOCK_MIN_RCVBUF/2. This option should not be used in code intended to be portable.

Sockets API

TCP provides limited support for out-of-band data, in the form of (a single byte of) urgent data. In Linux

this means if the other end sends newer out-of-band data the older urgent data is inserted as normal data

into the stream (even when SO_OOBINLINE is not set). This differs from BSD-based stacks.

Linux uses the BSD compatible interpretation of the urgent pointer field by default. This violates

RFC 1122, but is required for interoperability with other stacks. It can be changed via

/proc/sys/net/ipv4/tcp_stdurg.

It is possible to peek at out-of-band data using the recv(2) MSG_PEEK flag.

Since version 2.4, Linux supports the use of MSG_TRUNC in the flags argument of recv(2) (and

recvmsg(2)). This flag causes the received bytes of data to be discarded, rather than passed back in a

caller-supplied buffer. Since Linux 2.4.4, MSG_TRUNC also has this effect when used in conjunction

with MSG_OOB to receive out-of-band data.

Ioctls

The following ioctl(2) calls return information in value. The correct syntax is:

int value;

error = ioctl(tcp_socket, ioctl_type, &value);

ioctl_type is one of the following:

SIOCINQ

Returns the amount of queued unread data in the receive buffer. The socket must not be in LIS-

TEN state, otherwise an error (EINVAL) is returned. SIOCINQ is defined in <linux/sockios.h>.

Alternatively, you can use the synonymous FIONREAD, defined in <sys/ioctl.h>.

SIOCATMARK

Returns true (i.e., value is nonzero) if the inbound data stream is at the urgent mark.

If the SO_OOBINLINE socket option is set, and SIOCATMARK returns true, then the next read

from the socket will return the urgent data. If the SO_OOBINLINE socket option is not set, and

SIOCATMARK returns true, then the next read from the socket will return the bytes following

the urgent data (to actually read the urgent data requires the recv(MSG_OOB) flag).

Note that a read never reads across the urgent mark. If an application is informed of the presence

of urgent data via select(2) (using the exceptfds argument) or through delivery of a SIGURG sig-

nal, then it can advance up to the mark using a loop which repeatedly tests SIOCATMARK and

Linux 2020-02-09 10

TCP(7) Linux Programmer’s Manual TCP(7)

performs a read (requesting any number of bytes) as long as SIOCATMARK returns false.

SIOCOUTQ

Returns the amount of unsent data in the socket send queue. The socket must not be in LISTEN

state, otherwise an error (EINVAL) is returned. SIOCOUTQ is defined in <linux/sockios.h>.

Alternatively, you can use the synonymous TIOCOUTQ, defined in <sys/ioctl.h>.

Error handling

When a network error occurs, TCP tries to resend the packet. If it doesn’t succeed after some time, either

ETIMEDOUT or the last received error on this connection is reported.

Some applications require a quicker error notification. This can be enabled with the IPPROT O_IP level

IP_RECVERR socket option. When this option is enabled, all incoming errors are immediately passed to

the user program. Use this option with care — it makes TCP less tolerant to routing changes and other nor-

mal network conditions.

ERRORS
EAFNOTSUPPORT

Passed socket address type in sin_family was not AF_INET.

EPIPE The other end closed the socket unexpectedly or a read is executed on a shut down socket.

ETIMEDOUT

The other end didn’t acknowledge retransmitted data after some time.

Any errors defined for ip(7) or the generic socket layer may also be returned for TCP.

VERSIONS
Support for Explicit Congestion Notification, zero-copy sendfile(2), reordering support and some SACK

extensions (DSACK) were introduced in 2.4. Support for forward acknowledgement (FACK),

TIME_WAIT recycling, and per-connection keepalive socket options were introduced in 2.3.

BUGS
Not all errors are documented.

IPv6 is not described.

SEE ALSO
accept(2), bind(2), connect(2), getsockopt(2), listen(2), recvmsg(2), sendfile(2), sendmsg(2), socket(2),

ip(7), socket(7)

RFC 793 for the TCP specification.

RFC 1122 for the TCP requirements and a description of the Nagle algorithm.

RFC 1323 for TCP timestamp and window scaling options.

RFC 1337 for a description of TIME_WAIT assassination hazards.

RFC 3168 for a description of Explicit Congestion Notification.

RFC 2581 for TCP congestion control algorithms.

RFC 2018 and RFC 2883 for SACK and extensions to SACK.

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2020-02-09 11

