
CoDel(8) Linux CoDel(8)

NAME
CoDel − Controlled-Delay Active Queue Management algorithm

SYNOPSIS
tc qdisc ... codel [limit PA CKETS] [target TIME] [interval TIME] [ecn | noecn] [ce_threshold
TIME]

DESCRIPTION
CoDel (pronounced "coddle") is an adaptive "no-knobs" active queue management algorithm (AQM)
scheme that was developed to address the shortcomings of RED and its variants. It was developed with the
following goals in mind:
o It should be parameterless.
o It should keep delays low while permitting bursts of traffic.
o It should control delay.
o It should adapt dynamically to changing link rates with no impact on utilization.
o It should be simple and efficient and should scale from simple to complex routers.

ALGORITHM
CoDel comes with three major innovations. Instead of using queue size or queue average, it uses the local
minimum queue as a measure of the standing/persistent queue. Second, it uses a single state-tracking vari-
able of the minimum delay to see where it is relative to the standing queue delay. Third, instead of measur-
ing queue size in bytes or packets, it is measured in packet-sojourn time in the queue.

CoDel measures the minimum local queue delay (i.e. standing queue delay) and compares it to the value of
the given acceptable queue delay target. As long as the minimum queue delay is less than target or the
buffer contains fewer than MTU worth of bytes, packets are not dropped. Codel enters a dropping mode
when the minimum queue delay has exceeded target for a time greater than interval. In this mode, packets
are dropped at different drop times which is set by a control law. The control law ensures that the packet
drops cause a linear change in the throughput. Once the minimum delay goes below target, packets are no
longer dropped.

Additional details can be found in the paper cited below.

PARAMETERS
limit

hard limit on the real queue size. When this limit is reached, incoming packets are dropped. If the value is
lowered, packets are dropped so that the new limit is met. Default is 1000 packets.

target
is the acceptable minimum standing/persistent queue delay. This minimum delay is identified by tracking
the local minimum queue delay that packets experience. Default and recommended value is 5ms.

interval
is used to ensure that the measured minimum delay does not become too stale. The minimum delay must be
experienced in the last epoch of length interval. It should be set on the order of the worst-case RTT
through the bottleneck to give endpoints sufficient time to react. Default value is 100ms.

ecn | noecn
can be used to mark packets instead of dropping them. If ecn has been enabled, noecn can be used to turn it
off and vice-a-versa. By default, ecn is turned off.

iproute2 23 May 2012 1

CoDel(8) Linux CoDel(8)

ce_threshold
sets a threshold above which all packets are marked with ECN Congestion Experienced. This is useful for
DCTCP-style congestion control algorithms that require marking at very shallow queueing thresholds.

EXAMPLES
tc qdisc add dev eth0 root codel
tc -s qdisc show
qdisc codel 801b: dev eth0 root refcnt 2 limit 1000p target 5.0ms interval 100.0ms
Sent 245801662 bytes 275853 pkt (dropped 0, overlimits 0 requeues 24)
backlog 0b 0p requeues 24
count 0 lastcount 0 ldelay 2us drop_next 0us
maxpacket 7306 ecn_mark 0 drop_overlimit 0

tc qdisc add dev eth0 root codel limit 100 target 4ms interval 30ms ecn
tc -s qdisc show
qdisc codel 801c: dev eth0 root refcnt 2 limit 100p target 4.0ms interval 30.0ms ecn
Sent 237573074 bytes 268561 pkt (dropped 0, overlimits 0 requeues 5)
backlog 0b 0p requeues 5
count 0 lastcount 0 ldelay 76us drop_next 0us
maxpacket 2962 ecn_mark 0 drop_overlimit 0

SEE ALSO
tc(8), tc-red(8)

SOURCES
o Kathleen Nichols and Van Jacobson, "Controlling Queue Delay", ACM Queue, http://queue.acm.org/de-
tail.cfm?id=2209336

AUTHORS
CoDel was implemented by Eric Dumazet and David Taht. This manpage was written by Vijay Subrama-
nian. Please reports corrections to the Linux Networking mailing list <netdev@vger.kernel.org>.

iproute2 23 May 2012 2

