
SYSTEMD.RESOURCE−CONTROL(5) systemd.resource-control SYSTEMD.RESOURCE−CONTROL(5)

NAME
systemd.resource-control − Resource control unit settings

SYNOPSIS
slice.slice, scope.scope, service.service, socket.socket, mount.mount, swap.swap

DESCRIPTION
Unit configuration files for services, slices, scopes, sockets, mount points, and swap devices share a subset

of configuration options for resource control of spawned processes. Internally, this relies on the Linux

Control Groups (cgroups) kernel concept for organizing processes in a hierarchical tree of named groups

for the purpose of resource management.

This man page lists the configuration options shared by those six unit types. See systemd.unit(5) for the

common options of all unit configuration files, and systemd.slice(5), systemd.scope(5),

systemd.service(5), systemd.socket(5), systemd.mount(5), and systemd.swap(5) for more information on

the specific unit configuration files. The resource control configuration options are configured in the [Slice],

[Scope], [Service], [Socket], [Mount], or [Swap] sections, depending on the unit type.

In addition, options which control resources available to programs executed by systemd are listed in

systemd.exec(5). Those options complement options listed here.

See the New Control Group Interfaces[1] for an introduction on how to make use of resource control APIs

from programs.

IMPLICIT DEPENDENCIES
The following dependencies are implicitly added:

• Units with the Slice= setting set automatically acquire Requires= and After= dependencies on the

specified slice unit.

UNIFIED AND LEGACY CONTROL GROUP HIERARCHIES
The unified control group hierarchy is the new version of kernel control group interface, see Control

Groups v2[2]. Depending on the resource type, there are differences in resource control capabilities. Also,

because of interface changes, some resource types have separate set of options on the unified hierarchy.

CPU

CPUWeight= and StartupCPUWeight= replace CPUShares= and StartupCPUShares=, respectively.

The "cpuacct" controller does not exist separately on the unified hierarchy.

Memory

MemoryMax= replaces MemoryLimit=. MemoryLow= and MemoryHigh= are effective only on

unified hierarchy.

IO

"IO"−prefixed settings are a superset of and replace "BlockIO"−prefixed ones. On unified hierarchy,

IO resource control also applies to buffered writes.

To ease the transition, there is best−effort translation between the two versions of settings. For each

controller, if any of the settings for the unified hierarchy are present, all settings for the legacy hierarchy are

ignored. If the resulting settings are for the other type of hierarchy, the configurations are translated before

application.

Legacy control group hierarchy (see Control Groups version 1[3]), also called cgroup−v1, doesn't allow

safe delegation of controllers to unprivileged processes. If the system uses the legacy control group

hierarchy, resource control is disabled for the systemd user instance, see systemd(1).

OPTIONS
Units of the types listed above can have settings for resource control configuration:

CPUAccounting=
Turn on CPU usage accounting for this unit. Takes a boolean argument. Note that turning on CPU

accounting for one unit will also implicitly turn it on for all units contained in the same slice and for

systemd 245 1

SYSTEMD.RESOURCE−CONTROL(5) systemd.resource-control SYSTEMD.RESOURCE−CONTROL(5)

all its parent slices and the units contained therein. The system default for this setting may be

controlled with DefaultCPUAccounting= in systemd-system.conf(5).

CPUWeight=weight, StartupCPUWeight=weight
Assign the specified CPU time weight to the processes executed, if the unified control group hierarchy

is used on the system. These options take an integer value and control the "cpu.weight" control group

attribute. The allowed range is 1 to 10000. Defaults to 100. For details about this control group

attribute, see Control Groups v2[2] and CFS Scheduler[4]. The available CPU time is split up among

all units within one slice relative to their CPU time weight.

While StartupCPUWeight= only applies to the startup phase of the system, CPUWeight= applies to

normal runtime of the system, and if the former is not set also to the startup phase. Using

StartupCPUWeight= allows prioritizing specific services at boot−up differently than during normal

runtime.

These settings replace CPUShares= and StartupCPUShares=.

CPUQuota=
Assign the specified CPU time quota to the processes executed. Takes a percentage value, suffixed

with "%". The percentage specifies how much CPU time the unit shall get at maximum, relative to the

total CPU time available on one CPU. Use values > 100% for allotting CPU time on more than one

CPU. This controls the "cpu.max" attribute on the unified control group hierarchy and

"cpu.cfs_quota_us" on legacy. For details about these control group attributes, see Control Groups

v2[2] and sched−bwc.txt[5].

Example: CPUQuota=20% ensures that the executed processes will never get more than 20% CPU

time on one CPU.

CPUQuotaPeriodSec=
Assign the duration over which the CPU time quota specified by CPUQuota= is measured. Takes a

time duration value in seconds, with an optional suffix such as "ms" for milliseconds (or "s" for

seconds.) The default setting is 100ms. The period is clamped to the range supported by the kernel,

which is [1ms, 1000ms]. Additionally, the period is adjusted up so that the quota interval is also at

least 1ms. Setting CPUQuotaPeriodSec= to an empty value resets it to the default.

This controls the second field of "cpu.max" attribute on the unified control group hierarchy and

"cpu.cfs_period_us" on legacy. For details about these control group attributes, see Control Groups

v2[2] and CFS Scheduler[4].

Example: CPUQuotaPeriodSec=10ms to request that the CPU quota is measured in periods of 10ms.

AllowedCPUs=
Restrict processes to be executed on specific CPUs. Takes a list of CPU indices or ranges separated by

either whitespace or commas. CPU ranges are specified by the lower and upper CPU indices separated

by a dash.

Setting AllowedCPUs= doesn't guarantee that all of the CPUs will be used by the processes as it may

be limited by parent units. The effective configuration is reported as EffectiveCPUs=.

This setting is supported only with the unified control group hierarchy.

AllowedMemoryNodes=
Restrict processes to be executed on specific memory NUMA nodes. Takes a list of memory NUMA

nodes indices or ranges separated by either whitespace or commas. Memory NUMA nodes ranges are

specified by the lower and upper CPU indices separated by a dash.

Setting AllowedMemoryNodes= doesn't guarantee that all of the memory NUMA nodes will be used

systemd 245 2

SYSTEMD.RESOURCE−CONTROL(5) systemd.resource-control SYSTEMD.RESOURCE−CONTROL(5)

by the processes as it may be limited by parent units. The effective configuration is reported as

EffectiveMemoryNodes=.

This setting is supported only with the unified control group hierarchy.

MemoryAccounting=
Turn on process and kernel memory accounting for this unit. Takes a boolean argument. Note that

turning on memory accounting for one unit will also implicitly turn it on for all units contained in the

same slice and for all its parent slices and the units contained therein. The system default for this

setting may be controlled with DefaultMemoryAccounting= in systemd-system.conf(5).

MemoryMin=bytes
Specify the memory usage protection of the executed processes in this unit. If the memory usages of

this unit and all its ancestors are below their minimum boundaries, this unit's memory won't be

reclaimed.

Takes a memory size in bytes. If the value is suffixed with K, M, G or T, the specified memory size is

parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes (with the base 1024), respectively.

Alternatively, a percentage value may be specified, which is taken relative to the installed physical

memory on the system. If assigned the special value "infinity", all available memory is protected,

which may be useful in order to always inherit all of the protection afforded by ancestors. This

controls the "memory.min" control group attribute. For details about this control group attribute, see

Memory Interface Files[6].

This setting is supported only if the unified control group hierarchy is used and disables

MemoryLimit=.

Units may have their children use a default "memory.min" value by specifying DefaultMemoryMin=,

which has the same semantics as MemoryMin=. This setting does not affect "memory.min" in the unit

itself.

MemoryLow=bytes
Specify the best−effort memory usage protection of the executed processes in this unit. If the memory

usages of this unit and all its ancestors are below their low boundaries, this unit's memory won't be

reclaimed as long as memory can be reclaimed from unprotected units.

Takes a memory size in bytes. If the value is suffixed with K, M, G or T, the specified memory size is

parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes (with the base 1024), respectively.

Alternatively, a percentage value may be specified, which is taken relative to the installed physical

memory on the system. If assigned the special value "infinity", all available memory is protected,

which may be useful in order to always inherit all of the protection afforded by ancestors. This

controls the "memory.low" control group attribute. For details about this control group attribute, see

Memory Interface Files[6].

This setting is supported only if the unified control group hierarchy is used and disables

MemoryLimit=.

Units may have their children use a default "memory.low" value by specifying DefaultMemoryLow=,

which has the same semantics as MemoryLow=. This setting does not affect "memory.low" in the unit

itself.

MemoryHigh=bytes
Specify the throttling limit on memory usage of the executed processes in this unit. Memory usage

may go above the limit if unavoidable, but the processes are heavily slowed down and memory is

taken away aggressively in such cases. This is the main mechanism to control memory usage of a unit.

Takes a memory size in bytes. If the value is suffixed with K, M, G or T, the specified memory size is

systemd 245 3

SYSTEMD.RESOURCE−CONTROL(5) systemd.resource-control SYSTEMD.RESOURCE−CONTROL(5)

parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes (with the base 1024), respectively.

Alternatively, a percentage value may be specified, which is taken relative to the installed physical

memory on the system. If assigned the special value "infinity", no memory throttling is applied. This

controls the "memory.high" control group attribute. For details about this control group attribute, see

Memory Interface Files[6].

This setting is supported only if the unified control group hierarchy is used and disables

MemoryLimit=.

MemoryMax=bytes
Specify the absolute limit on memory usage of the executed processes in this unit. If memory usage

cannot be contained under the limit, out−of−memory killer is invoked inside the unit. It is

recommended to use MemoryHigh= as the main control mechanism and use MemoryMax= as the last

line of defense.

Takes a memory size in bytes. If the value is suffixed with K, M, G or T, the specified memory size is

parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes (with the base 1024), respectively.

Alternatively, a percentage value may be specified, which is taken relative to the installed physical

memory on the system. If assigned the special value "infinity", no memory limit is applied. This

controls the "memory.max" control group attribute. For details about this control group attribute, see

Memory Interface Files[6].

This setting replaces MemoryLimit=.

MemorySwapMax=bytes
Specify the absolute limit on swap usage of the executed processes in this unit.

Takes a swap size in bytes. If the value is suffixed with K, M, G or T, the specified swap size is parsed

as Kilobytes, Megabytes, Gigabytes, or Terabytes (with the base 1024), respectively. If assigned the

special value "infinity", no swap limit is applied. This controls the "memory.swap.max" control group

attribute. For details about this control group attribute, see Memory Interface Files[6].

This setting is supported only if the unified control group hierarchy is used and disables

MemoryLimit=.

TasksAccounting=
Turn on task accounting for this unit. Takes a boolean argument. If enabled, the system manager will

keep track of the number of tasks in the unit. The number of tasks accounted this way includes both

kernel threads and userspace processes, with each thread counting individually. Note that turning on

tasks accounting for one unit will also implicitly turn it on for all units contained in the same slice and

for all its parent slices and the units contained therein. The system default for this setting may be

controlled with DefaultTasksAccounting= in systemd-system.conf(5).

TasksMax=N
Specify the maximum number of tasks that may be created in the unit. This ensures that the number of

tasks accounted for the unit (see above) stays below a specific limit. This either takes an absolute

number of tasks or a percentage value that is taken relative to the configured maximum number of

tasks on the system. If assigned the special value "infinity", no tasks limit is applied. This controls the

"pids.max" control group attribute. For details about this control group attribute, see Process Number

Controller[7].

The system default for this setting may be controlled with DefaultTasksMax= in systemd-

system.conf(5).

IOAccounting=
Turn on Block I/O accounting for this unit, if the unified control group hierarchy is used on the

system. Takes a boolean argument. Note that turning on block I/O accounting for one unit will also

systemd 245 4

SYSTEMD.RESOURCE−CONTROL(5) systemd.resource-control SYSTEMD.RESOURCE−CONTROL(5)

implicitly turn it on for all units contained in the same slice and all for its parent slices and the units

contained therein. The system default for this setting may be controlled with DefaultIOAccounting= in

systemd-system.conf(5).

This setting replaces BlockIOAccounting= and disables settings prefixed with BlockIO or

StartupBlockIO.

IOWeight=weight, StartupIOWeight=weight
Set the default overall block I/O weight for the executed processes, if the unified control group

hierarchy is used on the system. Takes a single weight value (between 1 and 10000) to set the default

block I/O weight. This controls the "io.weight" control group attribute, which defaults to 100. For

details about this control group attribute, see IO Interface Files[8]. The available I/O bandwidth is

split up among all units within one slice relative to their block I/O weight.

While StartupIOWeight= only applies to the startup phase of the system, IOWeight= applies to the

later runtime of the system, and if the former is not set also to the startup phase. This allows

prioritizing specific services at boot−up differently than during runtime.

These settings replace BlockIOWeight= and StartupBlockIOWeight= and disable settings prefixed with

BlockIO or StartupBlockIO.

IODeviceWeight=device weight
Set the per−device overall block I/O weight for the executed processes, if the unified control group

hierarchy is used on the system. Takes a space−separated pair of a file path and a weight value to

specify the device specific weight value, between 1 and 10000. (Example: "/dev/sda 1000"). The file

path may be specified as path to a block device node or as any other file, in which case the backing

block device of the file system of the file is determined. This controls the "io.weight" control group

attribute, which defaults to 100. Use this option multiple times to set weights for multiple devices. For

details about this control group attribute, see IO Interface Files[8].

This setting replaces BlockIODeviceWeight= and disables settings prefixed with BlockIO or

StartupBlockIO.

The specified device node should reference a block device that has an I/O scheduler associated, i.e.

should not refer to partition or loopback block devices, but to the originating, physical device. When a

path to a regular file or directory is specified it is attempted to discover the correct originating device

backing the file system of the specified path. This works correctly only for simpler cases, where the

file system is directly placed on a partition or physical block device, or where simple 1:1 encryption

using dm−crypt/LUKS is used. This discovery does not cover complex storage and in particular RAID

and volume management storage devices.

IOReadBandwidthMax=device bytes, IOWriteBandwidthMax=device bytes
Set the per−device overall block I/O bandwidth maximum limit for the executed processes, if the

unified control group hierarchy is used on the system. This limit is not work−conserving and the

executed processes are not allowed to use more even if the device has idle capacity. Takes a

space−separated pair of a file path and a bandwidth value (in bytes per second) to specify the device

specific bandwidth. The file path may be a path to a block device node, or as any other file in which

case the backing block device of the file system of the file is used. If the bandwidth is suffixed with K,

M, G, or T, the specified bandwidth is parsed as Kilobytes, Megabytes, Gigabytes, or Terabytes,

respectively, to the base of 1000. (Example: "/dev/disk/by−path/pci−0000:00:1f.2−scsi−0:0:0:0 5M").

This controls the "io.max" control group attributes. Use this option multiple times to set bandwidth

limits for multiple devices. For details about this control group attribute, see IO Interface Files[8].

These settings replace BlockIOReadBandwidth= and BlockIOWriteBandwidth= and disable settings

prefixed with BlockIO or StartupBlockIO.

systemd 245 5

SYSTEMD.RESOURCE−CONTROL(5) systemd.resource-control SYSTEMD.RESOURCE−CONTROL(5)

Similar restrictions on block device discovery as for IODeviceWeight= apply, see above.

IOReadIOPSMax=device IOPS, IOWriteIOPSMax=device IOPS
Set the per−device overall block I/O IOs−Per−Second maximum limit for the executed processes, if

the unified control group hierarchy is used on the system. This limit is not work−conserving and the

executed processes are not allowed to use more even if the device has idle capacity. Takes a

space−separated pair of a file path and an IOPS value to specify the device specific IOPS. The file path

may be a path to a block device node, or as any other file in which case the backing block device of the

file system of the file is used. If the IOPS is suffixed with K, M, G, or T, the specified IOPS is parsed

as KiloIOPS, MegaIOPS, GigaIOPS, or TeraIOPS, respectively, to the base of 1000. (Example:

"/dev/disk/by−path/pci−0000:00:1f.2−scsi−0:0:0:0 1K"). This controls the "io.max" control group

attributes. Use this option multiple times to set IOPS limits for multiple devices. For details about this

control group attribute, see IO Interface Files[8].

These settings are supported only if the unified control group hierarchy is used and disable settings

prefixed with BlockIO or StartupBlockIO.

Similar restrictions on block device discovery as for IODeviceWeight= apply, see above.

IODeviceLatencyTargetSec=device target
Set the per−device average target I/O latency for the executed processes, if the unified control group

hierarchy is used on the system. Takes a file path and a timespan separated by a space to specify the

device specific latency target. (Example: "/dev/sda 25ms"). The file path may be specified as path to a

block device node or as any other file, in which case the backing block device of the file system of the

file is determined. This controls the "io.latency" control group attribute. Use this option multiple times

to set latency target for multiple devices. For details about this control group attribute, see IO

Interface Files[8].

Implies "IOAccounting=yes".

These settings are supported only if the unified control group hierarchy is used.

Similar restrictions on block device discovery as for IODeviceWeight= apply, see above.

IPAccounting=
Takes a boolean argument. If true, turns on IPv4 and IPv6 network traffic accounting for packets sent

or received by the unit. When this option is turned on, all IPv4 and IPv6 sockets created by any

process of the unit are accounted for.

When this option is used in socket units, it applies to all IPv4 and IPv6 sockets associated with it

(including both listening and connection sockets where this applies). Note that for socket−activated

services, this configuration setting and the accounting data of the service unit and the socket unit are

kept separate, and displayed separately. No propagation of the setting and the collected statistics is

done, in either direction. Moreover, any traffic sent or received on any of the socket unit's sockets is

accounted to the socket unit — and never to the service unit it might have activated, even if the socket

is used by it.

The system default for this setting may be controlled with DefaultIPAccounting= in systemd-

system.conf(5).

IPAddressAllow=ADDRESS[/PREFIXLENGTH]..., IPAddressDeny=ADDRESS[/PREFIXLENGTH]...
Turn on address range network traffic filtering for IP packets sent and received over AF_INET and

AF_INET6 sockets. Both directives take a space separated list of IPv4 or IPv6 addresses, each

optionally suffixed with an address prefix length in bits (separated by a "/" character). If the latter is

omitted, the address is considered a host address, i.e. the prefix covers the whole address (32 for IPv4,

128 for IPv6).

systemd 245 6

SYSTEMD.RESOURCE−CONTROL(5) systemd.resource-control SYSTEMD.RESOURCE−CONTROL(5)

The access lists configured with this option are applied to all sockets created by processes of this unit

(or in the case of socket units, associated with it). The lists are implicitly combined with any lists

configured for any of the parent slice units this unit might be a member of. By default all access lists

are empty. Both ingress and egress traffic is filtered by these settings. In case of ingress traffic the

source IP address is checked against these access lists, in case of egress traffic the destination IP

address is checked. When configured the lists are enforced as follows:

• Access will be granted in case an IP packet's destination/source address matches any entry in

the IPAddressAllow= setting.

• Otherwise, access will be denied in case its destination/source address matches any entry in

the IPAddressDeny= setting.

• Otherwise, access will be granted.

In order to implement a whitelisting IP firewall, it is recommended to use a IPAddressDeny=any

setting on an upper−level slice unit (such as the root slice −.slice or the slice containing all system

services system.slice – see systemd.special(7) for details on these slice units), plus individual

per−service IPAddressAllow= lines permitting network access to relevant services, and only them.

Note that for socket−activated services, the IP access list configured on the socket unit applies to all

sockets associated with it directly, but not to any sockets created by the ultimately activated services

for it. Conversely, the IP access list configured for the service is not applied to any sockets passed into

the service via socket activation. Thus, it is usually a good idea, to replicate the IP access lists on both

the socket and the service unit, however it often makes sense to maintain one list more open and the

other one more restricted, depending on the usecase.

If these settings are used multiple times in the same unit the specified lists are combined. If an empty

string is assigned to these settings the specific access list is reset and all previous settings undone.

In place of explicit IPv4 or IPv6 address and prefix length specifications a small set of symbolic names

may be used. The following names are defined:

Table 1. Special address/network names

Symbolic Name Definition Meaning

any 0.0.0.0/0 ::/0 Any host

localhost 127.0.0.0/8 ::1/128 All addresses on the local

loopback

link−local 169.254.0.0/16 fe80::/64 All link−local IP addresses

multicast 224.0.0.0/4 ff00::/8 All IP multicasting addresses

Note that these settings might not be supported on some systems (for example if eBPF control group

support is not enabled in the underlying kernel or container manager). These settings will have no

effect in that case. If compatibility with such systems is desired it is hence recommended to not

exclusively rely on them for IP security.

IPIngressFilterPath=BPF_FS_PROGRAMM_PATH, IPEgressFilterPath=BPF_FS_PROGRAMM_PATH
Add custom network traffic filters implemented as BPF programs, applying to all IP packets sent and

received over AF_INET and AF_INET6 sockets. Takes an absolute path to a pinned BPF program in

the BPF virtual filesystem (/sys/fs/bpf/).

The filters configured with this option are applied to all sockets created by processes of this unit (or in

the case of socket units, associated with it). The filters are loaded in addition to filters any of the parent

slice units this unit might be a member of as well as any IPAddressAllow= and IPAddressDeny= filters

in any of these units. By default there are no filters specified.

systemd 245 7

SYSTEMD.RESOURCE−CONTROL(5) systemd.resource-control SYSTEMD.RESOURCE−CONTROL(5)

If these settings are used multiple times in the same unit all the specified programs are attached. If an

empty string is assigned to these settings the program list is reset and all previous specified programs

ignored.

Note that for socket−activated services, the IP filter programs configured on the socket unit apply to all

sockets associated with it directly, but not to any sockets created by the ultimately activated services

for it. Conversely, the IP filter programs configured for the service are not applied to any sockets

passed into the service via socket activation. Thus, it is usually a good idea, to replicate the IP filter

programs on both the socket and the service unit, however it often makes sense to maintain one

configuration more open and the other one more restricted, depending on the usecase.

Note that these settings might not be supported on some systems (for example if eBPF control group

support is not enabled in the underlying kernel or container manager). These settings will fail the

service in that case. If compatibility with such systems is desired it is hence recommended to attach

your filter manually (requires Delegate=yes) instead of using this setting.

DeviceAllow=
Control access to specific device nodes by the executed processes. Takes two space−separated strings:

a device node specifier followed by a combination of r, w, m to control reading, writing, or creation of

the specific device node(s) by the unit (mknod), respectively. On cgroup−v1 this controls the

"devices.allow" control group attribute. For details about this control group attribute, see Device

Whitelist Controller[9]. In the unified cgroup hierarchy this functionality is implemented using eBPF

filtering.

The device node specifier is either a path to a device node in the file system, starting with /dev/, or a

string starting with either "char−" or "block−" followed by a device group name, as listed in

/proc/devices. The latter is useful to whitelist all current and future devices belonging to a specific

device group at once. The device group is matched according to filename globbing rules, you may

hence use the "*" and "?" wildcards. (Note that such globbing wildcards are not available for device

node path specifications!) In order to match device nodes by numeric major/minor, use device node

paths in the /dev/char/ and /dev/block/ directories. However, matching devices by major/minor is

generally not recommended as assignments are neither stable nor portable between systems or

different kernel versions.

Examples: /dev/sda5 is a path to a device node, referring to an ATA or SCSI block device. "char−pts"

and "char−alsa" are specifiers for all pseudo TTYs and all ALSA sound devices, respectively.

"char−cpu/*" is a specifier matching all CPU related device groups.

Note that whitelists defined this way should only reference device groups which are resolvable at the

time the unit is started. Any device groups not resolvable then are not added to the device whitelist. In

order to work around this limitation, consider extending service units with a pair of

After=modprobe@xyz.service and Wants=modprobe@xyz.service lines that load the necessary

kernel module implementing the device group if missing. Example:

...

[Unit]

Wants=modprobe@loop.service

After=modprobe@loop.service

[Service]

DeviceAllow=block−loop

DeviceAllow=/dev/loop−control

...

DevicePolicy=auto|closed|strict
Control the policy for allowing device access:

systemd 245 8

SYSTEMD.RESOURCE−CONTROL(5) systemd.resource-control SYSTEMD.RESOURCE−CONTROL(5)

strict

means to only allow types of access that are explicitly specified.

closed

in addition, allows access to standard pseudo devices including /dev/null, /dev/zero, /dev/full,

/dev/random, and /dev/urandom.

auto

in addition, allows access to all devices if no explicit DeviceAllow= is present. This is the default.

Slice=
The name of the slice unit to place the unit in. Defaults to system.slice for all non−instantiated units of

all unit types (except for slice units themselves see below). Instance units are by default placed in a

subslice of system.slice that is named after the template name.

This option may be used to arrange systemd units in a hierarchy of slices each of which might have

resource settings applied.

For units of type slice, the only accepted value for this setting is the parent slice. Since the name of a

slice unit implies the parent slice, it is hence redundant to ever set this parameter directly for slice

units.

Special care should be taken when relying on the default slice assignment in templated service units

that have DefaultDependencies=no set, see systemd.service(5), section "Default Dependencies" for

details.

Delegate=
Turns on delegation of further resource control partitioning to processes of the unit. Units where this is

enabled may create and manage their own private subhierarchy of control groups below the control

group of the unit itself. For unprivileged services (i.e. those using the User= setting) the unit's control

group will be made accessible to the relevant user. When enabled the service manager will refrain

from manipulating control groups or moving processes below the unit's control group, so that a clear

concept of ownership is established: the control group tree above the unit's control group (i.e. towards

the root control group) is owned and managed by the service manager of the host, while the control

group tree below the unit's control group is owned and managed by the unit itself. Takes either a

boolean argument or a list of control group controller names. If true, delegation is turned on, and all

supported controllers are enabled for the unit, making them available to the unit's processes for

management. If false, delegation is turned off entirely (and no additional controllers are enabled). If

set to a list of controllers, delegation is turned on, and the specified controllers are enabled for the unit.

Note that additional controllers than the ones specified might be made available as well, depending on

configuration of the containing slice unit or other units contained in it. Note that assigning the empty

string will enable delegation, but reset the list of controllers, all assignments prior to this will have no

effect. Defaults to false.

Note that controller delegation to less privileged code is only safe on the unified control group

hierarchy. Accordingly, access to the specified controllers will not be granted to unprivileged services

on the legacy hierarchy, even when requested.

The following controller names may be specified: cpu, cpuacct, cpuset, io, blkio, memory, devices,

pids, bpf−firewall, and bpf−devices.

Not all of these controllers are available on all kernels however, and some are specific to the unified

hierarchy while others are specific to the legacy hierarchy. Also note that the kernel might support

further controllers, which aren't covered here yet as delegation is either not supported at all for them or

not defined cleanly.

For further details on the delegation model consult Control Group APIs and Delegation[10].

systemd 245 9

SYSTEMD.RESOURCE−CONTROL(5) systemd.resource-control SYSTEMD.RESOURCE−CONTROL(5)

DisableControllers=
Disables controllers from being enabled for a unit's children. If a controller listed is already in use in

its subtree, the controller will be removed from the subtree. This can be used to avoid child units being

able to implicitly or explicitly enable a controller. Defaults to not disabling any controllers.

It may not be possible to successfully disable a controller if the unit or any child of the unit in question

delegates controllers to its children, as any delegated subtree of the cgroup hierarchy is unmanaged by

systemd.

Multiple controllers may be specified, separated by spaces. You may also pass DisableControllers=
multiple times, in which case each new instance adds another controller to disable. Passing

DisableControllers= by itself with no controller name present resets the disabled controller list.

The following controller names may be specified: cpu, cpuacct, cpuset, io, blkio, memory, devices,

pids, bpf−firewall, and bpf−devices.

DEPRECATED OPTIONS
The following options are deprecated. Use the indicated superseding options instead:

CPUShares=weight, StartupCPUShares=weight
Assign the specified CPU time share weight to the processes executed. These options take an integer

value and control the "cpu.shares" control group attribute. The allowed range is 2 to 262144. Defaults

to 1024. For details about this control group attribute, see CFS Scheduler[4]. The available CPU time

is split up among all units within one slice relative to their CPU time share weight.

While StartupCPUShares= only applies to the startup phase of the system, CPUShares= applies to

normal runtime of the system, and if the former is not set also to the startup phase. Using

StartupCPUShares= allows prioritizing specific services at boot−up differently than during normal

runtime.

Implies "CPUAccounting=yes".

These settings are deprecated. Use CPUWeight= and StartupCPUWeight= instead.

MemoryLimit=bytes
Specify the limit on maximum memory usage of the executed processes. The limit specifies how much

process and kernel memory can be used by tasks in this unit. Takes a memory size in bytes. If the

value is suffixed with K, M, G or T, the specified memory size is parsed as Kilobytes, Megabytes,

Gigabytes, or Terabytes (with the base 1024), respectively. Alternatively, a percentage value may be

specified, which is taken relative to the installed physical memory on the system. If assigned the

special value "infinity", no memory limit is applied. This controls the "memory.limit_in_bytes" control

group attribute. For details about this control group attribute, see Memory Resource Controller[11].

Implies "MemoryAccounting=yes".

This setting is deprecated. Use MemoryMax= instead.

BlockIOAccounting=
Turn on Block I/O accounting for this unit, if the legacy control group hierarchy is used on the system.

Takes a boolean argument. Note that turning on block I/O accounting for one unit will also implicitly

turn it on for all units contained in the same slice and all for its parent slices and the units contained

therein. The system default for this setting may be controlled with DefaultBlockIOAccounting= in

systemd-system.conf(5).

This setting is deprecated. Use IOAccounting= instead.

BlockIOWeight=weight, StartupBlockIOWeight=weight

systemd 245 10

SYSTEMD.RESOURCE−CONTROL(5) systemd.resource-control SYSTEMD.RESOURCE−CONTROL(5)

Set the default overall block I/O weight for the executed processes, if the legacy control group

hierarchy is used on the system. Takes a single weight value (between 10 and 1000) to set the default

block I/O weight. This controls the "blkio.weight" control group attribute, which defaults to 500. For

details about this control group attribute, see Block IO Controller[12]. The available I/O bandwidth is

split up among all units within one slice relative to their block I/O weight.

While StartupBlockIOWeight= only applies to the startup phase of the system, BlockIOWeight=
applies to the later runtime of the system, and if the former is not set also to the startup phase. This

allows prioritizing specific services at boot−up differently than during runtime.

Implies "BlockIOAccounting=yes".

These settings are deprecated. Use IOWeight= and StartupIOWeight= instead.

BlockIODeviceWeight=device weight
Set the per−device overall block I/O weight for the executed processes, if the legacy control group

hierarchy is used on the system. Takes a space−separated pair of a file path and a weight value to

specify the device specific weight value, between 10 and 1000. (Example: "/dev/sda 500"). The file

path may be specified as path to a block device node or as any other file, in which case the backing

block device of the file system of the file is determined. This controls the "blkio.weight_device"

control group attribute, which defaults to 1000. Use this option multiple times to set weights for

multiple devices. For details about this control group attribute, see Block IO Controller[12].

Implies "BlockIOAccounting=yes".

This setting is deprecated. Use IODeviceWeight= instead.

BlockIOReadBandwidth=device bytes, BlockIOWriteBandwidth=device bytes
Set the per−device overall block I/O bandwidth limit for the executed processes, if the legacy control

group hierarchy is used on the system. Takes a space−separated pair of a file path and a bandwidth

value (in bytes per second) to specify the device specific bandwidth. The file path may be a path to a

block device node, or as any other file in which case the backing block device of the file system of the

file is used. If the bandwidth is suffixed with K, M, G, or T, the specified bandwidth is parsed as

Kilobytes, Megabytes, Gigabytes, or Terabytes, respectively, to the base of 1000. (Example:

"/dev/disk/by−path/pci−0000:00:1f.2−scsi−0:0:0:0 5M"). This controls the

"blkio.throttle.read_bps_device" and "blkio.throttle.write_bps_device" control group attributes. Use

this option multiple times to set bandwidth limits for multiple devices. For details about these control

group attributes, see Block IO Controller[12].

Implies "BlockIOAccounting=yes".

These settings are deprecated. Use IOReadBandwidthMax= and IOWriteBandwidthMax= instead.

SEE ALSO
systemd(1), systemd-system.conf(5), systemd.unit(5), systemd.service(5), systemd.slice(5),

systemd.scope(5), systemd.socket(5), systemd.mount(5), systemd.swap(5), systemd.exec(5),

systemd.directives(7), systemd.special(7), The documentation for control groups and specific controllers

in the Linux kernel: Control Groups v2[2].

NOTES
1. New Control Group Interfaces

https://www.freedesktop.org/wiki/Software/systemd/ControlGroupInterface/

2. Control Groups v2

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html

3. Control Groups version 1

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/

systemd 245 11

SYSTEMD.RESOURCE−CONTROL(5) systemd.resource-control SYSTEMD.RESOURCE−CONTROL(5)

4. CFS Scheduler

https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html

5. sched-bwc.txt

https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt

6. Memory Interface Files

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#memory-interface-files

7. Process Number Controller

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/pids.html

8. IO Interface Files

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#io-interface-files

9. Device Whitelist Controller

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/devices.html

10. Control Group APIs and Delegation

https://systemd.io/CGROUP_DELEGATION

11. Memory Resource Controller

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/memory.html

12. Block IO Controller

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/blkio-controller.html

systemd 245 12

