
SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

NAME
systemd.exec − Execution environment configuration

SYNOPSIS
service.service, socket.socket, mount.mount, swap.swap

DESCRIPTION
Unit configuration files for services, sockets, mount points, and swap devices share a subset of

configuration options which define the execution environment of spawned processes.

This man page lists the configuration options shared by these four unit types. See systemd.unit(5) for the

common options of all unit configuration files, and systemd.service(5), systemd.socket(5),

systemd.swap(5), and systemd.mount(5) for more information on the specific unit configuration files. The

execution specific configuration options are configured in the [Service], [Socket], [Mount], or [Swap]

sections, depending on the unit type.

In addition, options which control resources through Linux Control Groups (cgroups) are listed in

systemd.resource-control(5). Those options complement options listed here.

IMPLICIT DEPENDENCIES
A few execution parameters result in additional, automatic dependencies to be added:

• Units with WorkingDirectory=, RootDirectory=, RootImage=, RuntimeDirectory=,

StateDirectory=, CacheDirectory=, LogsDirectory= or ConfigurationDirectory= set automatically

gain dependencies of type Requires= and After= on all mount units required to access the specified

paths. This is equivalent to having them listed explicitly in RequiresMountsFor=.

• Similar, units with PrivateTmp= enabled automatically get mount unit dependencies for all mounts

required to access /tmp and /var/tmp. They will also gain an automatic After= dependency on

systemd-tmpfiles-setup.service(8).

• Units whose standard output or error output is connected to journal, syslog or kmsg (or their

combinations with console output, see below) automatically acquire dependencies of type After=

on systemd−journald.socket.

• Units using LogNamespace= will automatically gain ordering and requirement dependencies on the

two socket units associated with systemd−journald@.service instances.

PATHS
The following settings may be used to change a service's view of the filesystem. Please note that the paths

must be absolute and must not contain a ".." path component.

WorkingDirectory=

Takes a directory path relative to the service's root directory specified by RootDirectory=, or the

special value "˜". Sets the working directory for executed processes. If set to "˜", the home directory of

the user specified in User= is used. If not set, defaults to the root directory when systemd is running as

a system instance and the respective user's home directory if run as user. If the setting is prefixed with

the "−" character, a missing working directory is not considered fatal. If RootDirectory=/RootImage=

is not set, then WorkingDirectory= is relative to the root of the system running the service manager.

Note that setting this parameter might result in additional dependencies to be added to the unit (see

above).

RootDirectory=

Takes a directory path relative to the host's root directory (i.e. the root of the system running the

service manager). Sets the root directory for executed processes, with the chroot(2) system call. If this

is used, it must be ensured that the process binary and all its auxiliary files are available in the chroot()

jail. Note that setting this parameter might result in additional dependencies to be added to the unit

(see above).

The MountAPIVFS= and PrivateUsers= settings are particularly useful in conjunction with

RootDirectory=. For details, see below.

systemd 245 1

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

This option is only available for system services and is not supported for services running in per−user

instances of the service manager.

RootImage=

Takes a path to a block device node or regular file as argument. This call is similar to RootDirectory=

however mounts a file system hierarchy from a block device node or loopback file instead of a

directory. The device node or file system image file needs to contain a file system without a partition

table, or a file system within an MBR/MS−DOS or GPT partition table with only a single

Linux−compatible partition, or a set of file systems within a GPT partition table that follows the

Discoverable Partitions Specification[1].

When DevicePolicy= is set to "closed" or "strict", or set to "auto" and DeviceAllow= is set, then this

setting adds /dev/loop−control with rw mode, "block−loop" and "block−blkext" with rwm mode to

DeviceAllow=. See systemd.resource-control(5) for the details about DevicePolicy= or

DeviceAllow=. Also, see PrivateDevices= below, as it may change the setting of DevicePolicy=.

This option is only available for system services and is not supported for services running in per−user

instances of the service manager.

MountAPIVFS=

Takes a boolean argument. If on, a private mount namespace for the unit's processes is created and the

API file systems /proc, /sys, and /dev are mounted inside of it, unless they are already mounted. Note

that this option has no effect unless used in conjunction with RootDirectory=/RootImage= as these

three mounts are generally mounted in the host anyway, and unless the root directory is changed, the

private mount namespace will be a 1:1 copy of the host's, and include these three mounts. Note that the

/dev file system of the host is bind mounted if this option is used without PrivateDevices=. To run the

service with a private, minimal version of /dev/, combine this option with PrivateDevices=.

This option is only available for system services and is not supported for services running in per−user

instances of the service manager.

BindPaths=, BindReadOnlyPaths=

Configures unit−specific bind mounts. A bind mount makes a particular file or directory available at an

additional place in the unit's view of the file system. Any bind mounts created with this option are

specific to the unit, and are not visible in the host's mount table. This option expects a whitespace

separated list of bind mount definitions. Each definition consists of a colon−separated triple of source

path, destination path and option string, where the latter two are optional. If only a source path is

specified the source and destination is taken to be the same. The option string may be either "rbind" or

"norbind" for configuring a recursive or non−recursive bind mount. If the destination path is omitted,

the option string must be omitted too. Each bind mount definition may be prefixed with "−", in which

case it will be ignored when its source path does not exist.

BindPaths= creates regular writable bind mounts (unless the source file system mount is already

marked read−only), while BindReadOnlyPaths= creates read−only bind mounts. These settings may

be used more than once, each usage appends to the unit's list of bind mounts. If the empty string is

assigned to either of these two options the entire list of bind mounts defined prior to this is reset. Note

that in this case both read−only and regular bind mounts are reset, regardless which of the two settings

is used.

This option is particularly useful when RootDirectory=/RootImage= is used. In this case the source

path refers to a path on the host file system, while the destination path refers to a path below the root

directory of the unit.

Note that the destination directory must exist or systemd must be able to create it. Thus, it is not

possible to use those options for mount points nested underneath paths specified in

InaccessiblePaths=, or under /home/ and other protected directories if ProtectHome=yes is specified.

systemd 245 2

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

TemporaryFileSystem= with ":ro" or ProtectHome=tmpfs should be used instead.

This option is only available for system services and is not supported for services running in per−user

instances of the service manager.

CREDENTIALS
These options are only available for system services and are not supported for services running in per−user

instances of the service manager.

User=, Group=

Set the UNIX user or group that the processes are executed as, respectively. Takes a single user or

group name, or a numeric ID as argument. For system services (services run by the system service

manager, i.e. managed by PID 1) and for user services of the root user (services managed by root's

instance of systemd −−user), the default is "root", but User= may be used to specify a different user.

For user services of any other user, switching user identity is not permitted, hence the only valid

setting is the same user the user's service manager is running as. If no group is set, the default group of

the user is used. This setting does not affect commands whose command line is prefixed with "+".

Note that this enforces only weak restrictions on the user/group name syntax, but will generate

warnings in many cases where user/group names do not adhere to the following rules: the specified

name should consist only of the characters a−z, A−Z, 0−9, "_" and "−", except for the first character

which must be one of a−z, A−Z and "_" (i.e. digits and "−" are not permitted as first character). The

user/group name must have at least one character, and at most 31. These restrictions are made in order

to avoid ambiguities and to ensure user/group names and unit files remain portable among Linux

systems. For further details on the names accepted and the names warned about see User/Group

Name Syntax[2].

When used in conjunction with DynamicUser= the user/group name specified is dynamically allocated

at the time the service is started, and released at the time the service is stopped — unless it is already

allocated statically (see below). If DynamicUser= is not used the specified user and group must have

been created statically in the user database no later than the moment the service is started, for example

using the sysusers.d(5) facility, which is applied at boot or package install time. If the user does not

exist by then program invocation will fail.

If the User= setting is used the supplementary group list is initialized from the specified user's default

group list, as defined in the system's user and group database. Additional groups may be configured

through the SupplementaryGroups= setting (see below).

DynamicUser=

Takes a boolean parameter. If set, a UNIX user and group pair is allocated dynamically when the unit

is started, and released as soon as it is stopped. The user and group will not be added to /etc/passwd or

/etc/group, but are managed transiently during runtime. The nss-systemd(8) glibc NSS module

provides integration of these dynamic users/groups into the system's user and group databases. The

user and group name to use may be configured via User= and Group= (see above). If these options are

not used and dynamic user/group allocation is enabled for a unit, the name of the dynamic user/group

is implicitly derived from the unit name. If the unit name without the type suffix qualifies as valid user

name it is used directly, otherwise a name incorporating a hash of it is used. If a statically allocated

user or group of the configured name already exists, it is used and no dynamic user/group is allocated.

Note that if User= is specified and the static group with the name exists, then it is required that the

static user with the name already exists. Similarly, if Group= is specified and the static user with the

name exists, then it is required that the static group with the name already exists. Dynamic

users/groups are allocated from the UID/GID range 61184...65519. It is recommended to avoid this

range for regular system or login users. At any point in time each UID/GID from this range is only

assigned to zero or one dynamically allocated users/groups in use. However, UID/GIDs are recycled

after a unit is terminated. Care should be taken that any processes running as part of a unit for which

dynamic users/groups are enabled do not leave files or directories owned by these users/groups around,

systemd 245 3

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

as a different unit might get the same UID/GID assigned later on, and thus gain access to these files or

directories. If DynamicUser= is enabled, RemoveIPC= and PrivateTmp= are implied (and cannot be

turned off). This ensures that the lifetime of IPC objects and temporary files created by the executed

processes is bound to the runtime of the service, and hence the lifetime of the dynamic user/group.

Since /tmp/ and /var/tmp/ are usually the only world−writable directories on a system this ensures that

a unit making use of dynamic user/group allocation cannot leave files around after unit termination.

Furthermore NoNewPrivileges= and RestrictSUIDSGID= are implicitly enabled (and cannot be

disabled), to ensure that processes invoked cannot take benefit or create SUID/SGID files or

directories. Moreover ProtectSystem=strict and ProtectHome=read−only are implied, thus prohibiting

the service to write to arbitrary file system locations. In order to allow the service to write to certain

directories, they hav e to be whitelisted using ReadWritePaths=, but care must be taken so that

UID/GID recycling doesn't create security issues involving files created by the service. Use

RuntimeDirectory= (see below) in order to assign a writable runtime directory to a service, owned by

the dynamic user/group and removed automatically when the unit is terminated. Use StateDirectory=,

CacheDirectory= and LogsDirectory= in order to assign a set of writable directories for specific

purposes to the service in a way that they are protected from vulnerabilities due to UID reuse (see

below). If this option is enabled, care should be taken that the unit's processes do not get access to

directories outside of these explicitly configured and managed ones. Specifically, do not use

BindPaths= and be careful with AF_UNIX file descriptor passing for directory file descriptors, as this

would permit processes to create files or directories owned by the dynamic user/group that are not

subject to the lifecycle and access guarantees of the service. Defaults to off.

SupplementaryGroups=

Sets the supplementary Unix groups the processes are executed as. This takes a space−separated list of

group names or IDs. This option may be specified more than once, in which case all listed groups are

set as supplementary groups. When the empty string is assigned, the list of supplementary groups is

reset, and all assignments prior to this one will have no effect. In any way, this option does not

override, but extends the list of supplementary groups configured in the system group database for the

user. This does not affect commands prefixed with "+".

PAMName=

Sets the PAM service name to set up a session as. If set, the executed process will be registered as a

PAM session under the specified service name. This is only useful in conjunction with the User=

setting, and is otherwise ignored. If not set, no PAM session will be opened for the executed processes.

See pam(8) for details.

Note that for each unit making use of this option a PAM session handler process will be maintained as

part of the unit and stays around as long as the unit is active, to ensure that appropriate actions can be

taken when the unit and hence the PAM session terminates. This process is named "(sd−pam)" and is

an immediate child process of the unit's main process.

Note that when this option is used for a unit it is very likely (depending on PAM configuration) that

the main unit process will be migrated to its own session scope unit when it is activated. This process

will hence be associated with two units: the unit it was originally started from (and for which

PAMName= was configured), and the session scope unit. Any child processes of that process will

however be associated with the session scope unit only. This has implications when used in

combination with NotifyAccess=all, as these child processes will not be able to affect changes in the

original unit through notification messages. These messages will be considered belonging to the

session scope unit and not the original unit. It is hence not recommended to use PAMName= in

combination with NotifyAccess=all.

CAPABILITIES
These options are only available for system services and are not supported for services running in per−user

instances of the service manager.

CapabilityBoundingSet=

Controls which capabilities to include in the capability bounding set for the executed process. See

systemd 245 4

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

capabilities(7) for details. Takes a whitespace−separated list of capability names, e.g.

CAP_SYS_ADMIN, CAP_DAC_OVERRIDE, CAP_SYS_PTRACE. Capabilities listed will be

included in the bounding set, all others are removed. If the list of capabilities is prefixed with "˜", all

but the listed capabilities will be included, the effect of the assignment inverted. Note that this option

also affects the respective capabilities in the effective, permitted and inheritable capability sets. If this

option is not used, the capability bounding set is not modified on process execution, hence no limits on

the capabilities of the process are enforced. This option may appear more than once, in which case the

bounding sets are merged by OR, or by AND if the lines are prefixed with "˜" (see below). If the

empty string is assigned to this option, the bounding set is reset to the empty capability set, and all

prior settings have no effect. If set to "˜" (without any further argument), the bounding set is reset to

the full set of available capabilities, also undoing any previous settings. This does not affect commands

prefixed with "+".

Example: if a unit has the following,

CapabilityBoundingSet=CAP_A CAP_B

CapabilityBoundingSet=CAP_B CAP_C

then CAP_A, CAP_B, and CAP_C are set. If the second line is prefixed with "˜", e.g.,

CapabilityBoundingSet=CAP_A CAP_B

CapabilityBoundingSet=˜CAP_B CAP_C

then, only CAP_A is set.

AmbientCapabilities=

Controls which capabilities to include in the ambient capability set for the executed process. Takes a

whitespace−separated list of capability names, e.g. CAP_SYS_ADMIN, CAP_DAC_OVERRIDE,

CAP_SYS_PTRACE. This option may appear more than once in which case the ambient capability

sets are merged (see the above examples in CapabilityBoundingSet=). If the list of capabilities is

prefixed with "˜", all but the listed capabilities will be included, the effect of the assignment inverted.

If the empty string is assigned to this option, the ambient capability set is reset to the empty capability

set, and all prior settings have no effect. If set to "˜" (without any further argument), the ambient

capability set is reset to the full set of available capabilities, also undoing any previous settings. Note

that adding capabilities to ambient capability set adds them to the process's inherited capability set.

Ambient capability sets are useful if you want to execute a process as a non−privileged user but still

want to give it some capabilities. Note that in this case option keep−caps is automatically added to

SecureBits= to retain the capabilities over the user change. AmbientCapabilities= does not affect

commands prefixed with "+".

SECURITY
NoNewPrivileges=

Takes a boolean argument. If true, ensures that the service process and all its children can never gain

new privileges through execve() (e.g. via setuid or setgid bits, or filesystem capabilities). This is the

simplest and most effective way to ensure that a process and its children can never elevate privileges

again. Defaults to false, but certain settings override this and ignore the value of this setting. This is

the case when SystemCallFilter=, SystemCallArchitectures=, RestrictAddressFamilies=,

RestrictNamespaces=, PrivateDevices=, ProtectKernelTunables=, ProtectKernelModules=,

ProtectKernelLogs=, ProtectClock=, MemoryDenyWriteExecute=, RestrictRealtime=,

RestrictSUIDSGID=, DynamicUser= or LockPersonality= are specified. Note that even if this setting

is overridden by them, systemctl show shows the original value of this setting. Also see No New

Privileges Flag[3].

SecureBits=

Controls the secure bits set for the executed process. Takes a space−separated combination of options

systemd 245 5

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

from the following list: keep−caps, keep−caps−locked, no−setuid−fixup, no−setuid−fixup−locked,

noroot, and noroot−locked. This option may appear more than once, in which case the secure bits are

ORed. If the empty string is assigned to this option, the bits are reset to 0. This does not affect

commands prefixed with "+". See capabilities(7) for details.

MANDAT ORY ACCESS CONTROL
These options are only available for system services and are not supported for services running in per−user

instances of the service manager.

SELinuxContext=

Set the SELinux security context of the executed process. If set, this will override the automated

domain transition. However, the policy still needs to authorize the transition. This directive is ignored

if SELinux is disabled. If prefixed by "−", all errors will be ignored. This does not affect commands

prefixed with "+". See setexeccon(3) for details.

AppArmorProfile=

Takes a profile name as argument. The process executed by the unit will switch to this profile when

started. Profiles must already be loaded in the kernel, or the unit will fail. This result in a non operation

if AppArmor is not enabled. If prefixed by "−", all errors will be ignored. This does not affect

commands prefixed with "+".

SmackProcessLabel=

Takes a SMACK64 security label as argument. The process executed by the unit will be started under

this label and SMACK will decide whether the process is allowed to run or not, based on it. The

process will continue to run under the label specified here unless the executable has its own

SMACK64EXEC label, in which case the process will transition to run under that label. When not

specified, the label that systemd is running under is used. This directive is ignored if SMACK is

disabled.

The value may be prefixed by "−", in which case all errors will be ignored. An empty value may be

specified to unset previous assignments. This does not affect commands prefixed with "+".

PROCESS PROPERTIES
LimitCPU=, LimitFSIZE=, LimitDATA=, LimitSTACK=, LimitCORE=, LimitRSS=, LimitNOFILE=,

LimitAS=, LimitNPROC=, LimitMEMLOCK=, LimitLOCKS=, LimitSIGPENDING=, LimitMSGQUEUE=,

LimitNICE=, LimitRTPRIO=, LimitRTTIME=

Set soft and hard limits on various resources for executed processes. See setrlimit(2) for details on the

resource limit concept. Resource limits may be specified in two formats: either as single value to set a

specific soft and hard limit to the same value, or as colon−separated pair soft:hard to set both limits

individually (e.g. "LimitAS=4G:16G"). Use the string infinity to configure no limit on a specific

resource. The multiplicative suffixes K, M, G, T, P and E (to the base 1024) may be used for resource

limits measured in bytes (e.g. "LimitAS=16G"). For the limits referring to time values, the usual time

units ms, s, min, h and so on may be used (see systemd.time(7) for details). Note that if no time unit is

specified for LimitCPU= the default unit of seconds is implied, while for LimitRTTIME= the default

unit of microseconds is implied. Also, note that the effective granularity of the limits might influence

their enforcement. For example, time limits specified for LimitCPU= will be rounded up implicitly to

multiples of 1s. For LimitNICE= the value may be specified in two syntaxes: if prefixed with "+" or

"−", the value is understood as regular Linux nice value in the range −20..19. If not prefixed like this

the value is understood as raw resource limit parameter in the range 0..40 (with 0 being equivalent to

1).

Note that most process resource limits configured with these options are per−process, and processes

may fork in order to acquire a new set of resources that are accounted independently of the original

process, and may thus escape limits set. Also note that LimitRSS= is not implemented on Linux, and

setting it has no effect. Often it is advisable to prefer the resource controls listed in systemd.resource-

control(5) over these per−process limits, as they apply to services as a whole, may be altered

dynamically at runtime, and are generally more expressive. For example, MemoryMax= is a more

systemd 245 6

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

powerful (and working) replacement for LimitRSS=.

Resource limits not configured explicitly for a unit default to the value configured in the various

DefaultLimitCPU=, DefaultLimitFSIZE=, ... options available in systemd-system.conf(5), and – if

not configured there – the kernel or per−user defaults, as defined by the OS (the latter only for user

services, see below).

For system units these resource limits may be chosen freely. When these settings are configured in a

user service (i.e. a service run by the per−user instance of the service manager) they cannot be used to

raise the limits above those set for the user manager itself when it was first invoked, as the user's

service manager generally lacks the privileges to do so. In user context these configuration options are

hence only useful to lower the limits passed in or to raise the soft limit to the maximum of the hard

limit as configured for the user. To raise the user's limits further, the available configuration

mechanisms differ between operating systems, but typically require privileges. In most cases it is

possible to configure higher per−user resource limits via PAM or by setting limits on the system

service encapsulating the user's service manager, i.e. the user's instance of user@.service. After

making such changes, make sure to restart the user's service manager.

Table 1. Resource limit directives, their equivalent ulimit shell commands and the unit used

Directive ulimit equivalent Unit

LimitCPU= ulimit −t Seconds

LimitFSIZE= ulimit −f Bytes

LimitDAT A= ulimit −d Bytes

LimitSTACK= ulimit −s Bytes

LimitCORE= ulimit −c Bytes

LimitRSS= ulimit −m Bytes

LimitNOFILE= ulimit −n Number of File Descriptors

LimitAS= ulimit −v Bytes

LimitNPROC= ulimit −u Number of Processes

LimitMEMLOCK= ulimit −l Bytes

LimitLOCKS= ulimit −x Number of Locks

LimitSIGPENDING= ulimit −i Number of Queued Signals

LimitMSGQUEUE= ulimit −q Bytes

LimitNICE= ulimit −e Nice Level

LimitRTPRIO= ulimit −r Realtime Priority

LimitRTTIME= No equivalent Microseconds

UMask=

Controls the file mode creation mask. Takes an access mode in octal notation. See umask(2) for

details. Defaults to 0022 for system units. For units of the user service manager the default value is

inherited from the user instance (whose default is inherited from the system service manager, and thus

also is 0022). Hence changing the default value of a user instance, either via UMask= or via a PAM

module, will affect the user instance itself and all user units started by the user instance unless a user

unit has specified its own UMask=.

Ke yringMode=

Controls how the kernel session keyring is set up for the service (see session-keyring(7) for details on

the session keyring). Takes one of inherit, private, shared. If set to inherit no special keyring setup is

done, and the kernel's default behaviour is applied. If private is used a new session keyring is

allocated when a service process is invoked, and it is not linked up with any user keyring. This is the

recommended setting for system services, as this ensures that multiple services running under the

same system user ID (in particular the root user) do not share their key material among each other. If

systemd 245 7

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

shared is used a new session keyring is allocated as for private, but the user keyring of the user

configured with User= is linked into it, so that keys assigned to the user may be requested by the unit's

processes. In this modes multiple units running processes under the same user ID may share key

material. Unless inherit is selected the unique invocation ID for the unit (see below) is added as a

protected key by the name "invocation_id" to the newly created session keyring. Defaults to private

for services of the system service manager and to inherit for non−service units and for services of the

user service manager.

OOMScoreAdjust=

Sets the adjustment value for the Linux kernel's Out−Of−Memory (OOM) killer score for executed

processes. Takes an integer between −1000 (to disable OOM killing of processes of this unit) and 1000

(to make killing of processes of this unit under memory pressure very likely). See proc.txt[4] for

details. If not specified defaults to the OOM score adjustment level of the service manager itself,

which is normally at 0.

Use the OOMPolicy= setting of service units to configure how the service manager shall react to the

kernel OOM killer terminating a process of the service. See systemd.service(5) for details.

TimerSlackNSec=

Sets the timer slack in nanoseconds for the executed processes. The timer slack controls the accuracy

of wake−ups triggered by timers. See prctl(2) for more information. Note that in contrast to most

other time span definitions this parameter takes an integer value in nano−seconds if no unit is

specified. The usual time units are understood too.

Personality=

Controls which kernel architecture uname(2) shall report, when invoked by unit processes. Takes one

of the architecture identifiers x86, x86−64, ppc, ppc−le, ppc64, ppc64−le, s390 or s390x. Which

personality architectures are supported depends on the system architecture. Usually the 64bit versions

of the various system architectures support their immediate 32bit personality architecture counterpart,

but no others. For example, x86−64 systems support the x86−64 and x86 personalities but no others.

The personality feature is useful when running 32−bit services on a 64−bit host system. If not

specified, the personality is left unmodified and thus reflects the personality of the host system's

kernel.

IgnoreSIGPIPE=

Takes a boolean argument. If true, causes SIGPIPE to be ignored in the executed process. Defaults to

true because SIGPIPE generally is useful only in shell pipelines.

SCHEDULING
Nice=

Sets the default nice level (scheduling priority) for executed processes. Takes an integer between −20

(highest priority) and 19 (lowest priority). See setpriority(2) for details.

CPUSchedulingPolicy=

Sets the CPU scheduling policy for executed processes. Takes one of other, batch, idle, fifo or rr. See

sched_setscheduler(2) for details.

CPUSchedulingPriority=

Sets the CPU scheduling priority for executed processes. The available priority range depends on the

selected CPU scheduling policy (see above). For real−time scheduling policies an integer between 1

(lowest priority) and 99 (highest priority) can be used. See sched_setscheduler(2) for details.

CPUSchedulingResetOnFork=

Takes a boolean argument. If true, elevated CPU scheduling priorities and policies will be reset when

the executed processes fork, and can hence not leak into child processes. See sched_setscheduler(2)

for details. Defaults to false.

CPUAffinity=

Controls the CPU affinity of the executed processes. Takes a list of CPU indices or ranges separated by

either whitespace or commas. Alternatively, takes a special "numa" value in which case systemd

systemd 245 8

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

automatically derives allowed CPU range based on the value of NUMAMask= option. CPU ranges are

specified by the lower and upper CPU indices separated by a dash. This option may be specified more

than once, in which case the specified CPU affinity masks are merged. If the empty string is assigned,

the mask is reset, all assignments prior to this will have no effect. See sched_setaffinity(2) for details.

NUMAPolicy=

Controls the NUMA memory policy of the executed processes. Takes a policy type, one of: default,

preferred, bind, interleave and local. A list of NUMA nodes that should be associated with the

policy must be specified in NUMAMask=. For more details on each policy please see,

set_mempolicy(2). For overall overview of NUMA support in Linux see, numa(7)

NUMAMask=

Controls the NUMA node list which will be applied alongside with selected NUMA policy. Takes a

list of NUMA nodes and has the same syntax as a list of CPUs for CPUAffinity= option. Note that the

list of NUMA nodes is not required for default and local policies and for preferred policy we expect

a single NUMA node.

IOSchedulingClass=

Sets the I/O scheduling class for executed processes. Takes an integer between 0 and 3 or one of the

strings none, realtime, best−effort or idle. If the empty string is assigned to this option, all prior

assignments to both IOSchedulingClass= and IOSchedulingPriority= have no effect. See

ioprio_set(2) for details.

IOSchedulingPriority=

Sets the I/O scheduling priority for executed processes. Takes an integer between 0 (highest priority)

and 7 (lowest priority). The available priorities depend on the selected I/O scheduling class (see

above). If the empty string is assigned to this option, all prior assignments to both

IOSchedulingClass= and IOSchedulingPriority= have no effect. See ioprio_set(2) for details.

SANDBOXING
The following sandboxing options are an effective way to limit the exposure of the system towards the

unit's processes. It is recommended to turn on as many of these options for each unit as is possible without

negatively affecting the process' ability to operate. Note that many of these sandboxing features are

gracefully turned off on systems where the underlying security mechanism is not available. For example,

ProtectSystem= has no effect if the kernel is built without file system namespacing or if the service

manager runs in a container manager that makes file system namespacing unavailable to its payload.

Similar, RestrictRealtime= has no effect on systems that lack support for SECCOMP system call filtering,

or in containers where support for this is turned off.

Also note that some sandboxing functionality is generally not available in user services (i.e. services run by

the per−user service manager). Specifically, the various settings requiring file system namespacing support

(such as ProtectSystem=) are not available, as the underlying kernel functionality is only accessible to

privileged processes. However, most namespacing settings, that will not work on their own in user services,

will work when used in conjunction with PrivateUsers=true.

ProtectSystem=

Takes a boolean argument or the special values "full" or "strict". If true, mounts the /usr and /boot

directories read−only for processes invoked by this unit. If set to "full", the /etc directory is mounted

read−only, too. If set to "strict" the entire file system hierarchy is mounted read−only, except for the

API file system subtrees /dev, /proc and /sys (protect these directories using PrivateDevices=,

ProtectKernelTunables=, ProtectControlGroups=). This setting ensures that any modification of the

vendor−supplied operating system (and optionally its configuration, and local mounts) is prohibited

for the service. It is recommended to enable this setting for all long−running services, unless they are

involved with system updates or need to modify the operating system in other ways. If this option is

used, ReadWritePaths= may be used to exclude specific directories from being made read−only. This

setting is implied if DynamicUser= is set. This setting cannot ensure protection in all cases. In general

it has the same limitations as ReadOnlyPaths=, see below. Defaults to off.

ProtectHome=

systemd 245 9

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

Takes a boolean argument or the special values "read−only" or "tmpfs". If true, the directories /home,

/root, and /run/user are made inaccessible and empty for processes invoked by this unit. If set to

"read−only", the three directories are made read−only instead. If set to "tmpfs", temporary file systems

are mounted on the three directories in read−only mode. The value "tmpfs" is useful to hide home

directories not relevant to the processes invoked by the unit, while still allowing necessary directories

to be made visible when listed in BindPaths= or BindReadOnlyPaths=.

Setting this to "yes" is mostly equivalent to set the three directories in InaccessiblePaths=. Similarly,

"read−only" is mostly equivalent to ReadOnlyPaths=, and "tmpfs" is mostly equivalent to

TemporaryFileSystem= with ":ro".

It is recommended to enable this setting for all long−running services (in particular network−facing

ones), to ensure they cannot get access to private user data, unless the services actually require access

to the user's private data. This setting is implied if DynamicUser= is set. This setting cannot ensure

protection in all cases. In general it has the same limitations as ReadOnlyPaths=, see below.

This option is only available for system services and is not supported for services running in per−user

instances of the service manager.

RuntimeDirectory=, StateDirectory=, CacheDirectory=, LogsDirectory=, ConfigurationDirectory=

These options take a whitespace−separated list of directory names. The specified directory names must

be relative, and may not include "..". If set, one or more directories by the specified names will be

created (including their parents) below the locations defined in the following table, when the unit is

started. Also, the corresponding environment variable is defined with the full path of directories. If

multiple directories are set, then in the environment variable the paths are concatenated with colon

(":").

Table 2. Automatic directory creation and environment variables

Directory Below path for

system units

Below path for user

units

Environment variable

set

RuntimeDirectory= /run/ $XDG_RUNTIME_DIR $RUNTIME_DIRECTORY

StateDirectory= /var/lib/ $XDG_CONFIG_HOME $STATE_DIRECTORY

CacheDirectory= /var/cache/ $XDG_CACHE_HOME $CACHE_DIRECTORY

LogsDirectory= /var/log/ $XDG_CONFIG_HOME/log/ $LOGS_DIRECTORY

ConfigurationDirectory= /etc/ $XDG_CONFIG_HOME $CONFIGURATION_DIRECTORY

In case of RuntimeDirectory= the innermost subdirectories are removed when the unit is stopped. It is

possible to preserve the specified directories in this case if RuntimeDirectoryPreserve= is configured

to restart or yes (see below). The directories specified with StateDirectory=, CacheDirectory=,

LogsDirectory=, ConfigurationDirectory= are not removed when the unit is stopped.

Except in case of ConfigurationDirectory=, the innermost specified directories will be owned by the

user and group specified in User= and Group=. If the specified directories already exist and their

owning user or group do not match the configured ones, all files and directories below the specified

directories as well as the directories themselves will have their file ownership recursively changed to

match what is configured. As an optimization, if the specified directories are already owned by the

right user and group, files and directories below of them are left as−is, even if they do not match what

is requested. The innermost specified directories will have their access mode adjusted to the what is

specified in RuntimeDirectoryMode=, StateDirectoryMode=, CacheDirectoryMode=,

LogsDirectoryMode= and ConfigurationDirectoryMode=.

These options imply BindPaths= for the specified paths. When combined with RootDirectory= or

RootImage= these paths always reside on the host and are mounted from there into the unit's file

system namespace.

systemd 245 10

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

If DynamicUser= is used in conjunction with StateDirectory=, CacheDirectory= and LogsDirectory=

is slightly altered: the directories are created below /var/lib/private, /var/cache/private and

/var/log/private, respectively, which are host directories made inaccessible to unprivileged users, which

ensures that access to these directories cannot be gained through dynamic user ID recycling. Symbolic

links are created to hide this difference in behaviour. Both from perspective of the host and from inside

the unit, the relevant directories hence always appear directly below /var/lib, /var/cache and /var/log.

Use RuntimeDirectory= to manage one or more runtime directories for the unit and bind their lifetime

to the daemon runtime. This is particularly useful for unprivileged daemons that cannot create runtime

directories in /run due to lack of privileges, and to make sure the runtime directory is cleaned up

automatically after use. For runtime directories that require more complex or different configuration or

lifetime guarantees, please consider using tmpfiles.d(5).

The directories defined by these options are always created under the standard paths used by systemd

(/var, /run, /etc, ...). If the service needs directories in a different location, a different mechanism has to

be used to create them.

tmpfiles.d(5) provides functionality that overlaps with these options. Using these options is

recommended, because the lifetime of the directories is tied directly to the lifetime of the unit, and it is

not necessary to ensure that the tmpfiles.d configuration is executed before the unit is started.

To remove any of the directories created by these settings, use the systemctl clean ... command on the

relevant units, see systemctl(1) for details.

Example: if a system service unit has the following,

RuntimeDirectory=foo/bar baz

the service manager creates /run/foo (if it does not exist), /run/foo/bar, and /run/baz. The directories

/run/foo/bar and /run/baz except /run/foo are owned by the user and group specified in User= and

Group=, and removed when the service is stopped.

Example: if a system service unit has the following,

RuntimeDirectory=foo/bar

StateDirectory=aaa/bbb ccc

then the environment variable "RUNTIME_DIRECTORY" is set with "/run/foo/bar", and

"STATE_DIRECTORY" is set with "/var/lib/aaa/bbb:/var/lib/ccc".

RuntimeDirectoryMode=, StateDirectoryMode=, CacheDirectoryMode=, LogsDirectoryMode=,

ConfigurationDirectoryMode=

Specifies the access mode of the directories specified in RuntimeDirectory=, StateDirectory=,

CacheDirectory=, LogsDirectory=, or ConfigurationDirectory=, respectively, as an octal number.

Defaults to 0755. See "Permissions" in path_resolution(7) for a discussion of the meaning of

permission bits.

RuntimeDirectoryPreserve=

Takes a boolean argument or restart. If set to no (the default), the directories specified in

RuntimeDirectory= are always removed when the service stops. If set to restart the directories are

preserved when the service is both automatically and manually restarted. Here, the automatic restart

means the operation specified in Restart=, and manual restart means the one triggered by systemctl

restart foo.service. If set to yes, then the directories are not removed when the service is stopped.

Note that since the runtime directory /run is a mount point of "tmpfs", then for system services the

directories specified in RuntimeDirectory= are removed when the system is rebooted.

systemd 245 11

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

TimeoutCleanSec=

Configures a timeout on the clean−up operation requested through systemctl clean ..., see

systemctl(1) for details. Takes the usual time values and defaults to infinity, i.e. by default no

time−out is applied. If a time−out is configured the clean operation will be aborted forcibly when the

time−out is reached, potentially leaving resources on disk.

ReadWritePaths=, ReadOnlyPaths=, InaccessiblePaths=

Sets up a new file system namespace for executed processes. These options may be used to limit

access a process might have to the file system hierarchy. Each setting takes a space−separated list of

paths relative to the host's root directory (i.e. the system running the service manager). Note that if

paths contain symlinks, they are resolved relative to the root directory set with

RootDirectory=/RootImage=.

Paths listed in ReadWritePaths= are accessible from within the namespace with the same access

modes as from outside of it. Paths listed in ReadOnlyPaths= are accessible for reading only, writing

will be refused even if the usual file access controls would permit this. Nest ReadWritePaths= inside

of ReadOnlyPaths= in order to provide writable subdirectories within read−only directories. Use

ReadWritePaths= in order to whitelist specific paths for write access if ProtectSystem=strict is used.

Paths listed in InaccessiblePaths= will be made inaccessible for processes inside the namespace along

with everything below them in the file system hierarchy. This may be more restrictive than desired,

because it is not possible to nest ReadWritePaths=, ReadOnlyPaths=, BindPaths=, or

BindReadOnlyPaths= inside it. For a more flexible option, see TemporaryFileSystem=.

Non−directory paths may be specified as well. These options may be specified more than once, in

which case all paths listed will have limited access from within the namespace. If the empty string is

assigned to this option, the specific list is reset, and all prior assignments have no effect.

Paths in ReadWritePaths=, ReadOnlyPaths= and InaccessiblePaths= may be prefixed with "−", in

which case they will be ignored when they do not exist. If prefixed with "+" the paths are taken

relative to the root directory of the unit, as configured with RootDirectory=/RootImage=, instead of

relative to the root directory of the host (see above). When combining "−" and "+" on the same path

make sure to specify "−" first, and "+" second.

Note that these settings will disconnect propagation of mounts from the unit's processes to the host.

This means that this setting may not be used for services which shall be able to install mount points in

the main mount namespace. For ReadWritePaths= and ReadOnlyPaths= propagation in the other

direction is not affected, i.e. mounts created on the host generally appear in the unit processes'

namespace, and mounts removed on the host also disappear there too. In particular, note that mount

propagation from host to unit will result in unmodified mounts to be created in the unit's namespace,

i.e. writable mounts appearing on the host will be writable in the unit's namespace too, even when

propagated below a path marked with ReadOnlyPaths=! Restricting access with these options hence

does not extend to submounts of a directory that are created later on. This means the lock−down

offered by that setting is not complete, and does not offer full protection.

Note that the effect of these settings may be undone by privileged processes. In order to set up an

effective sandboxed environment for a unit it is thus recommended to combine these settings with

either CapabilityBoundingSet=˜CAP_SYS_ADMIN or SystemCallFilter=˜@mount.

These options are only available for system services and are not supported for services running in

per−user instances of the service manager.

TemporaryFileSystem=

Takes a space−separated list of mount points for temporary file systems (tmpfs). If set, a new file

system namespace is set up for executed processes, and a temporary file system is mounted on each

mount point. This option may be specified more than once, in which case temporary file systems are

systemd 245 12

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

mounted on all listed mount points. If the empty string is assigned to this option, the list is reset, and

all prior assignments have no effect. Each mount point may optionally be suffixed with a colon (":")

and mount options such as "size=10%" or "ro". By default, each temporary file system is mounted

with "nodev,strictatime,mode=0755". These can be disabled by explicitly specifying the corresponding

mount options, e.g., "dev" or "nostrictatime".

This is useful to hide files or directories not relevant to the processes invoked by the unit, while

necessary files or directories can be still accessed by combining with BindPaths= or

BindReadOnlyPaths=:

Example: if a unit has the following,

TemporaryFileSystem=/var:ro

BindReadOnlyPaths=/var/lib/systemd

then the invoked processes by the unit cannot see any files or directories under /var except for

/var/lib/systemd or its contents.

This option is only available for system services and is not supported for services running in per−user

instances of the service manager.

PrivateTmp=

Takes a boolean argument. If true, sets up a new file system namespace for the executed processes and

mounts private /tmp and /var/tmp directories inside it that is not shared by processes outside of the

namespace. This is useful to secure access to temporary files of the process, but makes sharing

between processes via /tmp or /var/tmp impossible. If this is enabled, all temporary files created by a

service in these directories will be removed after the service is stopped. Defaults to false. It is possible

to run two or more units within the same private /tmp and /var/tmp namespace by using the

JoinsNamespaceOf= directive, see systemd.unit(5) for details. This setting is implied if

DynamicUser= is set. For this setting the same restrictions regarding mount propagation and

privileges apply as for ReadOnlyPaths= and related calls, see above. Enabling this setting has the side

effect of adding Requires= and After= dependencies on all mount units necessary to access /tmp and

/var/tmp. Moreover an implicitly After= ordering on systemd-tmpfiles-setup.service(8) is added.

Note that the implementation of this setting might be impossible (for example if mount namespaces

are not available), and the unit should be written in a way that does not solely rely on this setting for

security.

This option is only available for system services and is not supported for services running in per−user

instances of the service manager.

PrivateDevices=

Takes a boolean argument. If true, sets up a new /dev mount for the executed processes and only adds

API pseudo devices such as /dev/null, /dev/zero or /dev/random (as well as the pseudo TTY

subsystem) to it, but no physical devices such as /dev/sda, system memory /dev/mem, system ports

/dev/port and others. This is useful to securely turn off physical device access by the executed process.

Defaults to false. Enabling this option will install a system call filter to block low−level I/O system

calls that are grouped in the @raw−io set, will also remove CAP_MKNOD and CAP_SYS_RAWIO

from the capability bounding set for the unit (see above), and set DevicePolicy=closed (see

systemd.resource-control(5) for details). Note that using this setting will disconnect propagation of

mounts from the service to the host (propagation in the opposite direction continues to work). This

means that this setting may not be used for services which shall be able to install mount points in the

main mount namespace. The new /dev will be mounted read−only and 'noexec'. The latter may break

old programs which try to set up executable memory by using mmap(2) of /dev/zero instead of using

MAP_ANON. For this setting the same restrictions regarding mount propagation and privileges apply

as for ReadOnlyPaths= and related calls, see above. If turned on and if running in user mode, or in

systemd 245 13

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

system mode, but without the CAP_SYS_ADMIN capability (e.g. setting User=),

NoNewPrivileges=yes is implied.

Note that the implementation of this setting might be impossible (for example if mount namespaces

are not available), and the unit should be written in a way that does not solely rely on this setting for

security.

This option is only available for system services and is not supported for services running in per−user

instances of the service manager.

PrivateNetwork=

Takes a boolean argument. If true, sets up a new network namespace for the executed processes and

configures only the loopback network device "lo" inside it. No other network devices will be available

to the executed process. This is useful to turn off network access by the executed process. Defaults to

false. It is possible to run two or more units within the same private network namespace by using the

JoinsNamespaceOf= directive, see systemd.unit(5) for details. Note that this option will disconnect

all socket families from the host, including AF_NETLINK and AF_UNIX. Effectively, for

AF_NETLINK this means that device configuration events received from systemd-udevd.service(8)

are not delivered to the unit's processes. And for AF_UNIX this has the effect that AF_UNIX sockets

in the abstract socket namespace of the host will become unavailable to the unit's processes (however,

those located in the file system will continue to be accessible).

Note that the implementation of this setting might be impossible (for example if network namespaces

are not available), and the unit should be written in a way that does not solely rely on this setting for

security.

When this option is used on a socket unit any sockets bound on behalf of this unit will be bound within

a private network namespace. This may be combined with JoinsNamespaceOf= to listen on sockets

inside of network namespaces of other services.

This option is only available for system services and is not supported for services running in per−user

instances of the service manager.

NetworkNamespacePath=

Takes an absolute file system path refererring to a Linux network namespace pseudo−file (i.e. a file

like /proc/$PID/ns/net or a bind mount or symlink to one). When set the invoked processes are added

to the network namespace referenced by that path. The path has to point to a valid namespace file at

the moment the processes are forked off. If this option is used PrivateNetwork= has no effect. If this

option is used together with JoinsNamespaceOf= then it only has an effect if this unit is started before

any of the listed units that have PrivateNetwork= or NetworkNamespacePath= configured, as

otherwise the network namespace of those units is reused.

When this option is used on a socket unit any sockets bound on behalf of this unit will be bound within

the specified network namespace.

This option is only available for system services and is not supported for services running in per−user

instances of the service manager.

PrivateUsers=

Takes a boolean argument. If true, sets up a new user namespace for the executed processes and

configures a minimal user and group mapping, that maps the "root" user and group as well as the unit's

own user and group to themselves and everything else to the "nobody" user and group. This is useful

to securely detach the user and group databases used by the unit from the rest of the system, and thus

to create an effective sandbox environment. All files, directories, processes, IPC objects and other

resources owned by users/groups not equaling "root" or the unit's own will stay visible from within the

unit but appear owned by the "nobody" user and group. If this mode is enabled, all unit processes are

systemd 245 14

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

run without privileges in the host user namespace (regardless if the unit's own user/group is "root" or

not). Specifically this means that the process will have zero process capabilities on the host's user

namespace, but full capabilities within the service's user namespace. Settings such as

CapabilityBoundingSet= will affect only the latter, and there's no way to acquire additional

capabilities in the host's user namespace. Defaults to off.

When this setting is set up by a per−user instance of the service manager, the mapping of the "root"

user and group to itself is omitted (unless the user manager is root). Additionally, in the per−user

instance manager case, the user namespace will be set up before most other namespaces. This means

that combining PrivateUsers=true with other namespaces will enable use of features not normally

supported by the per−user instances of the service manager.

This setting is particularly useful in conjunction with RootDirectory=/RootImage=, as the need to

synchronize the user and group databases in the root directory and on the host is reduced, as the only

users and groups who need to be matched are "root", "nobody" and the unit's own user and group.

Note that the implementation of this setting might be impossible (for example if user namespaces are

not available), and the unit should be written in a way that does not solely rely on this setting for

security.

ProtectHostname=

Takes a boolean argument. When set, sets up a new UTS namespace for the executed processes. In

addition, changing hostname or domainname is prevented. Defaults to off.

Note that the implementation of this setting might be impossible (for example if UTS namespaces are

not available), and the unit should be written in a way that does not solely rely on this setting for

security.

Note that when this option is enabled for a service hostname changes no longer propagate from the

system into the service, it is hence not suitable for services that need to take notice of system hostname

changes dynamically.

This option is only available for system services and is not supported for services running in per−user

instances of the service manager.

ProtectClock=

Takes a boolean argument. If set, writes to the hardware clock or system clock will be denied. It is

recommended to turn this on for most services that do not need modify the clock. Defaults to off.

Enabling this option removes CAP_SYS_TIME and CAP_WAKE_ALARM from the capability

bounding set for this unit, installs a system call filter to block calls that can set the clock, and

DeviceAllow=char−rtc r is implied. This ensures /dev/rtc0, /dev/rtc1, etc are made read only to the

service. See systemd.resource-control(5) for the details about DeviceAllow=.

This option is only available for system services and is not supported for services running in per−user

instances of the service manager.

ProtectKernelTunables=

Takes a boolean argument. If true, kernel variables accessible through /proc/sys, /sys,

/proc/sysrq−trigger, /proc/latency_stats, /proc/acpi, /proc/timer_stats, /proc/fs and /proc/irq will be

made read−only to all processes of the unit. Usually, tunable kernel variables should be initialized only

at boot−time, for example with the sysctl.d(5) mechanism. Few services need to write to these at

runtime; it is hence recommended to turn this on for most services. For this setting the same

restrictions regarding mount propagation and privileges apply as for ReadOnlyPaths= and related

calls, see above. Defaults to off. If turned on and if running in user mode, or in system mode, but

without the CAP_SYS_ADMIN capability (e.g. services for which User= is set),

NoNewPrivileges=yes is implied. Note that this option does not prevent indirect changes to kernel

systemd 245 15

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

tunables effected by IPC calls to other processes. However, InaccessiblePaths= may be used to make

relevant IPC file system objects inaccessible. If ProtectKernelTunables= is set, MountAPIVFS=yes is

implied.

This option is only available for system services and is not supported for services running in per−user

instances of the service manager.

ProtectKernelModules=

Takes a boolean argument. If true, explicit module loading will be denied. This allows module load

and unload operations to be turned off on modular kernels. It is recommended to turn this on for most

services that do not need special file systems or extra kernel modules to work. Defaults to off.

Enabling this option removes CAP_SYS_MODULE from the capability bounding set for the unit,

and installs a system call filter to block module system calls, also /usr/lib/modules is made

inaccessible. For this setting the same restrictions regarding mount propagation and privileges apply as

for ReadOnlyPaths= and related calls, see above. Note that limited automatic module loading due to

user configuration or kernel mapping tables might still happen as side effect of requested user

operations, both privileged and unprivileged. To disable module auto−load feature please see

sysctl.d(5) kernel.modules_disabled mechanism and /proc/sys/kernel/modules_disabled

documentation. If turned on and if running in user mode, or in system mode, but without the

CAP_SYS_ADMIN capability (e.g. setting User=), NoNewPrivileges=yes is implied.

This option is only available for system services and is not supported for services running in per−user

instances of the service manager.

ProtectKernelLogs=

Takes a boolean argument. If true, access to the kernel log ring buffer will be denied. It is

recommended to turn this on for most services that do not need to read from or write to the kernel log

ring buffer. Enabling this option removes CAP_SYSLOG from the capability bounding set for this

unit, and installs a system call filter to block the syslog(2) system call (not to be confused with the libc

API syslog(3) for userspace logging). The kernel exposes its log buffer to userspace via /dev/kmsg and

/proc/kmsg. If enabled, these are made inaccessible to all the processes in the unit.

This option is only available for system services and is not supported for services running in per−user

instances of the service manager.

ProtectControlGroups=

Takes a boolean argument. If true, the Linux Control Groups (cgroups(7)) hierarchies accessible

through /sys/fs/cgroup will be made read−only to all processes of the unit. Except for container

managers no services should require write access to the control groups hierarchies; it is hence

recommended to turn this on for most services. For this setting the same restrictions regarding mount

propagation and privileges apply as for ReadOnlyPaths= and related calls, see above. Defaults to off.

If ProtectControlGroups= is set, MountAPIVFS=yes is implied.

This option is only available for system services and is not supported for services running in per−user

instances of the service manager.

RestrictAddressFamilies=

Restricts the set of socket address families accessible to the processes of this unit. Takes a

space−separated list of address family names to whitelist, such as AF_UNIX, AF_INET or

AF_INET6. When prefixed with ˜ the listed address families will be applied as blacklist, otherwise as

whitelist. Note that this restricts access to the socket(2) system call only. Sockets passed into the

process by other means (for example, by using socket activation with socket units, see

systemd.socket(5)) are unaffected. Also, sockets created with socketpair() (which creates connected

AF_UNIX sockets only) are unaffected. Note that this option has no effect on 32−bit x86, s390, s390x,

mips, mips−le, ppc, ppc−le, pcc64, ppc64−le and is ignored (but works correctly on other ABIs,

including x86−64). Note that on systems supporting multiple ABIs (such as x86/x86−64) it is

recommended to turn off alternative ABIs for services, so that they cannot be used to circumvent the

systemd 245 16

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

restrictions of this option. Specifically, it is recommended to combine this option with

SystemCallArchitectures=native or similar. If running in user mode, or in system mode, but without

the CAP_SYS_ADMIN capability (e.g. setting User=nobody), NoNewPrivileges=yes is implied. By

default, no restrictions apply, all address families are accessible to processes. If assigned the empty

string, any previous address family restriction changes are undone. This setting does not affect

commands prefixed with "+".

Use this option to limit exposure of processes to remote access, in particular via exotic and sensitive

network protocols, such as AF_PACKET. Note that in most cases, the local AF_UNIX address

family should be included in the configured whitelist as it is frequently used for local communication,

including for syslog(2) logging.

RestrictNamespaces=

Restricts access to Linux namespace functionality for the processes of this unit. For details about

Linux namespaces, see namespaces(7). Either takes a boolean argument, or a space−separated list of

namespace type identifiers. If false (the default), no restrictions on namespace creation and switching

are made. If true, access to any kind of namespacing is prohibited. Otherwise, a space−separated list of

namespace type identifiers must be specified, consisting of any combination of: cgroup, ipc, net, mnt,

pid, user and uts. Any namespace type listed is made accessible to the unit's processes, access to

namespace types not listed is prohibited (whitelisting). By prepending the list with a single tilde

character ("˜") the effect may be inverted: only the listed namespace types will be made inaccessible,

all unlisted ones are permitted (blacklisting). If the empty string is assigned, the default namespace

restrictions are applied, which is equivalent to false. This option may appear more than once, in which

case the namespace types are merged by OR, or by AND if the lines are prefixed with "˜" (see

examples below). Internally, this setting limits access to the unshare(2), clone(2) and setns(2) system

calls, taking the specified flags parameters into account. Note that — if this option is used — in

addition to restricting creation and switching of the specified types of namespaces (or all of them, if

true) access to the setns() system call with a zero flags parameter is prohibited. This setting is only

supported on x86, x86−64, mips, mips−le, mips64, mips64−le, mips64−n32, mips64−le−n32, ppc64,

ppc64−le, s390 and s390x, and enforces no restrictions on other architectures. If running in user mode,

or in system mode, but without the CAP_SYS_ADMIN capability (e.g. setting User=),

NoNewPrivileges=yes is implied.

Example: if a unit has the following,

RestrictNamespaces=cgroup ipc

RestrictNamespaces=cgroup net

then cgroup, ipc, and net are set. If the second line is prefixed with "˜", e.g.,

RestrictNamespaces=cgroup ipc

RestrictNamespaces=˜cgroup net

then, only ipc is set.

LockPersonality=

Takes a boolean argument. If set, locks down the personality(2) system call so that the kernel

execution domain may not be changed from the default or the personality selected with Personality=

directive. This may be useful to improve security, because odd personality emulations may be poorly

tested and source of vulnerabilities. If running in user mode, or in system mode, but without the

CAP_SYS_ADMIN capability (e.g. setting User=), NoNewPrivileges=yes is implied.

MemoryDenyWriteExecute=

Takes a boolean argument. If set, attempts to create memory mappings that are writable and executable

at the same time, or to change existing memory mappings to become executable, or mapping shared

memory segments as executable are prohibited. Specifically, a system call filter is added that rejects

systemd 245 17

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

mmap(2) system calls with both PROT_EXEC and PROT_WRITE set, mprotect(2) or

pkey_mprotect(2) system calls with PROT_EXEC set and shmat(2) system calls with SHM_EXEC

set. Note that this option is incompatible with programs and libraries that generate program code

dynamically at runtime, including JIT execution engines, executable stacks, and code "trampoline"

feature of various C compilers. This option improves service security, as it makes harder for software

exploits to change running code dynamically. However, the protection can be circumvented, if the

service can write to a filesystem, which is not mounted with noexec (such as /dev/shm), or it can use

memfd_create(). This can be prevented by making such file systems inaccessible to the service (e.g.

InaccessiblePaths=/dev/shm) and installing further system call filters

(SystemCallFilter=˜memfd_create). Note that this feature is fully available on x86−64, and partially on

x86. Specifically, the shmat() protection is not available on x86. Note that on systems supporting

multiple ABIs (such as x86/x86−64) it is recommended to turn off alternative ABIs for services, so

that they cannot be used to circumvent the restrictions of this option. Specifically, it is recommended

to combine this option with SystemCallArchitectures=native or similar. If running in user mode, or in

system mode, but without the CAP_SYS_ADMIN capability (e.g. setting User=),

NoNewPrivileges=yes is implied.

RestrictRealtime=

Takes a boolean argument. If set, any attempts to enable realtime scheduling in a process of the unit

are refused. This restricts access to realtime task scheduling policies such as SCHED_FIFO,

SCHED_RR or SCHED_DEADLINE. See sched(7) for details about these scheduling policies. If

running in user mode, or in system mode, but without the CAP_SYS_ADMIN capability (e.g. setting

User=), NoNewPrivileges=yes is implied. Realtime scheduling policies may be used to monopolize

CPU time for longer periods of time, and may hence be used to lock up or otherwise trigger

Denial−of−Service situations on the system. It is hence recommended to restrict access to realtime

scheduling to the few programs that actually require them. Defaults to off.

RestrictSUIDSGID=

Takes a boolean argument. If set, any attempts to set the set−user−ID (SUID) or set−group−ID (SGID)

bits on files or directories will be denied (for details on these bits see inode(7)). If running in user

mode, or in system mode, but without the CAP_SYS_ADMIN capability (e.g. setting User=),

NoNewPrivileges=yes is implied. As the SUID/SGID bits are mechanisms to elevate privileges, and

allows users to acquire the identity of other users, it is recommended to restrict creation of

SUID/SGID files to the few programs that actually require them. Note that this restricts marking of

any type of file system object with these bits, including both regular files and directories (where the

SGID is a different meaning than for files, see documentation). This option is implied if

DynamicUser= is enabled. Defaults to off.

RemoveIPC=

Takes a boolean parameter. If set, all System V and POSIX IPC objects owned by the user and group

the processes of this unit are run as are removed when the unit is stopped. This setting only has an

effect if at least one of User=, Group= and DynamicUser= are used. It has no effect on IPC objects

owned by the root user. Specifically, this removes System V semaphores, as well as System V and

POSIX shared memory segments and message queues. If multiple units use the same user or group the

IPC objects are removed when the last of these units is stopped. This setting is implied if

DynamicUser= is set.

This option is only available for system services and is not supported for services running in per−user

instances of the service manager.

PrivateMounts=

Takes a boolean parameter. If set, the processes of this unit will be run in their own private file system

(mount) namespace with all mount propagation from the processes towards the host's main file system

namespace turned off. This means any file system mount points established or removed by the unit's

processes will be private to them and not be visible to the host. However, file system mount points

established or removed on the host will be propagated to the unit's processes. See

mount_namespaces(7) for details on file system namespaces. Defaults to off.

systemd 245 18

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

When turned on, this executes three operations for each invoked process: a new CLONE_NEWNS

namespace is created, after which all existing mounts are remounted to MS_SLAVE to disable

propagation from the unit's processes to the host (but leaving propagation in the opposite direction in

effect). Finally, the mounts are remounted again to the propagation mode configured with

MountFlags=, see below.

File system namespaces are set up individually for each process forked off by the service manager.

Mounts established in the namespace of the process created by ExecStartPre= will hence be cleaned

up automatically as soon as that process exits and will not be available to subsequent processes forked

off for ExecStart= (and similar applies to the various other commands configured for units). Similarly,

JoinsNamespaceOf= does not permit sharing kernel mount namespaces between units, it only enables

sharing of the /tmp/ and /var/tmp/ directories.

Other file system namespace unit settings — PrivateMounts=, PrivateTmp=, PrivateDevices=,

ProtectSystem=, ProtectHome=, ReadOnlyPaths=, InaccessiblePaths=, ReadWritePaths=, ... — also

enable file system namespacing in a fashion equivalent to this option. Hence it is primarily useful to

explicitly request this behaviour if none of the other settings are used.

This option is only available for system services and is not supported for services running in per−user

instances of the service manager.

MountFlags=

Takes a mount propagation setting: shared, slave or private, which controls whether file system

mount points in the file system namespaces set up for this unit's processes will receive or propagate

mounts and unmounts from other file system namespaces. See mount(2) for details on mount

propagation, and the three propagation flags in particular.

This setting only controls the final propagation setting in effect on all mount points of the file system

namespace created for each process of this unit. Other file system namespacing unit settings (see the

discussion in PrivateMounts= above) will implicitly disable mount and unmount propagation from the

unit's processes towards the host by changing the propagation setting of all mount points in the unit's

file system namepace to slave first. Setting this option to shared does not reestablish propagation in

that case.

If not set – but file system namespaces are enabled through another file system namespace unit setting

– shared mount propagation is used, but — as mentioned — as slave is applied first, propagation from

the unit's processes to the host is still turned off.

It is not recommended to to use private mount propagation for units, as this means temporary mounts

(such as removable media) of the host will stay mounted and thus indefinitely busy in forked off

processes, as unmount propagation events won't be received by the file system namespace of the unit.

Usually, it is best to leave this setting unmodified, and use higher level file system namespacing

options instead, in particular PrivateMounts=, see above.

This option is only available for system services and is not supported for services running in per−user

instances of the service manager.

SYSTEM CALL FILTERING
SystemCallFilter=

Takes a space−separated list of system call names. If this setting is used, all system calls executed by

the unit processes except for the listed ones will result in immediate process termination with the

SIGSYS signal (whitelisting). (See SystemCallErrorNumber= below for changing the default action).

If the first character of the list is "˜", the effect is inverted: only the listed system calls will result in

immediate process termination (blacklisting). Blacklisted system calls and system call groups may

optionally be suffixed with a colon (":") and "errno" error number (between 0 and 4095) or errno name

systemd 245 19

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

such as EPERM, EACCES or EUCLEAN (see errno(3) for a full list). This value will be returned

when a blacklisted system call is triggered, instead of terminating the processes immediately. This

value takes precedence over the one given in SystemCallErrorNumber=, see below. If running in user

mode, or in system mode, but without the CAP_SYS_ADMIN capability (e.g. setting User=nobody),

NoNewPrivileges=yes is implied. This feature makes use of the Secure Computing Mode 2 interfaces

of the kernel ('seccomp filtering') and is useful for enforcing a minimal sandboxing environment. Note

that the execve, exit, exit_group, getrlimit, rt_sigreturn, sigreturn system calls and the system calls

for querying time and sleeping are implicitly whitelisted and do not need to be listed explicitly. This

option may be specified more than once, in which case the filter masks are merged. If the empty string

is assigned, the filter is reset, all prior assignments will have no effect. This does not affect commands

prefixed with "+".

Note that on systems supporting multiple ABIs (such as x86/x86−64) it is recommended to turn off

alternative ABIs for services, so that they cannot be used to circumvent the restrictions of this option.

Specifically, it is recommended to combine this option with SystemCallArchitectures=native or

similar.

Note that strict system call filters may impact execution and error handling code paths of the service

invocation. Specifically, access to the execve system call is required for the execution of the service

binary — if it is blocked service invocation will necessarily fail. Also, if execution of the service

binary fails for some reason (for example: missing service executable), the error handling logic might

require access to an additional set of system calls in order to process and log this failure correctly. It

might be necessary to temporarily disable system call filters in order to simplify debugging of such

failures.

If you specify both types of this option (i.e. whitelisting and blacklisting), the first encountered will

take precedence and will dictate the default action (termination or approval of a system call). Then the

next occurrences of this option will add or delete the listed system calls from the set of the filtered

system calls, depending of its type and the default action. (For example, if you have started with a

whitelisting of read and write, and right after it add a blacklisting of write, then write will be

removed from the set.)

As the number of possible system calls is large, predefined sets of system calls are provided. A set

starts with "@" character, followed by name of the set.

Table 3. Currently predefined system call sets

systemd 245 20

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

Note, that as new system calls are added to the kernel, additional system calls might be added to the

groups above. Contents of the sets may also change between systemd versions. In addition, the list of

system calls depends on the kernel version and architecture for which systemd was compiled. Use

systemd−analyze syscall−filter to list the actual list of system calls in each filter.

Generally, whitelisting system calls (rather than blacklisting) is the safer mode of operation. It is

recommended to enforce system call whitelists for all long−running system services. Specifically, the

following lines are a relatively safe basic choice for the majority of system services:

[Service]

SystemCallFilter=@system−service

SystemCallErrorNumber=EPERM

Note that various kernel system calls are defined redundantly: there are multiple system calls for

executing the same operation. For example, the pidfd_send_signal() system call may be used to

execute operations similar to what can be done with the older kill() system call, hence blocking the

latter without the former only provides weak protection. Since new system calls are added regularly to

the kernel as development progresses, keeping system call blacklists comprehensive requires constant

work. It is thus recommended to use whitelisting instead, which offers the benefit that new system

calls are by default implicitly blocked until the whitelist is updated.

Also note that a number of system calls are required to be accessible for the dynamic linker to work.

The dynamic linker is required for running most regular programs (specifically: all dynamic ELF

binaries, which is how most distributions build packaged programs). This means that blocking these

system calls (which include open(), openat() or mmap()) will make most programs typically shipped

with generic distributions unusable.

It is recommended to combine the file system namespacing related options with

SystemCallFilter=˜@mount, in order to prohibit the unit's processes to undo the mappings.

Specifically these are the options PrivateTmp=, PrivateDevices=, ProtectSystem=, ProtectHome=,

ProtectKernelTunables=, ProtectControlGroups=, ProtectKernelLogs=, ProtectClock=,

ReadOnlyPaths=, InaccessiblePaths= and ReadWritePaths=.

SystemCallErrorNumber=

Takes an "errno" error number (between 1 and 4095) or errno name such as EPERM, EACCES or

EUCLEAN, to return when the system call filter configured with SystemCallFilter= is triggered,

instead of terminating the process immediately. See errno(3) for a full list of error codes. When this

setting is not used, or when the empty string is assigned, the process will be terminated immediately

when the filter is triggered.

SystemCallArchitectures=

Takes a space−separated list of architecture identifiers to include in the system call filter. The known

architecture identifiers are the same as for ConditionArchitecture= described in systemd.unit(5), as

well as x32, mips64−n32, mips64−le−n32, and the special identifier native. The special identifier

native implicitly maps to the native architecture of the system (or more precisely: to the architecture

the system manager is compiled for). If running in user mode, or in system mode, but without the

CAP_SYS_ADMIN capability (e.g. setting User=nobody), NoNewPrivileges=yes is implied. By

default, this option is set to the empty list, i.e. no system call architecture filtering is applied.

If this setting is used, processes of this unit will only be permitted to call native system calls, and

system calls of the specified architectures. For the purposes of this option, the x32 architecture is

treated as including x86−64 system calls. However, this setting still fulfills its purpose, as explained

below, on x32.

System call filtering is not equally effective on all architectures. For example, on x86 filtering of

network socket−related calls is not possible, due to ABI limitations — a limitation that x86−64 does

systemd 245 21

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

not have, howev er. On systems supporting multiple ABIs at the same time — such as x86/x86−64 —

it is hence recommended to limit the set of permitted system call architectures so that secondary ABIs

may not be used to circumvent the restrictions applied to the native ABI of the system. In particular,

setting SystemCallArchitectures=native is a good choice for disabling non−native ABIs.

System call architectures may also be restricted system−wide via the SystemCallArchitectures= option

in the global configuration. See systemd-system.conf(5) for details.

ENVIRONMENT
Environment=

Sets environment variables for executed processes. Takes a space−separated list of variable

assignments. This option may be specified more than once, in which case all listed variables will be

set. If the same variable is set twice, the later setting will override the earlier setting. If the empty

string is assigned to this option, the list of environment variables is reset, all prior assignments have no

effect. Variable expansion is not performed inside the strings, however, specifier expansion is possible.

The $ character has no special meaning. If you need to assign a value containing spaces or the equals

sign to a variable, use double quotes (") for the assignment.

Example:

Environment="VAR1=word1 word2" VAR2=word3 "VAR3=$word 5 6"

gives three variables "VAR1", "VAR2", "VAR3" with the values "word1 word2", "word3", "$word 5

6".

See environ(7) for details about environment variables.

Note that environment variables are not suitable for passing secrets (such as passwords, key material,

...) to service processes. Environment variables set for a unit are exposed to unprivileged clients via

D−Bus IPC, and generally not understood as being data that requires protection. Moreover,

environment variables are propagated down the process tree, including across security boundaries

(such as setuid/setgid executables), and hence might leak to processes that should not have access to

the secret data.

EnvironmentFile=

Similar to Environment= but reads the environment variables from a text file. The text file should

contain new−line−separated variable assignments. Empty lines, lines without an "=" separator, or lines

starting with ; or # will be ignored, which may be used for commenting. A line ending with a

backslash will be concatenated with the following one, allowing multiline variable definitions. The

parser strips leading and trailing whitespace from the values of assignments, unless you use double

quotes (").

C escapes[5] are supported, but not most control characters[6]. "\t" and "\n" can be used to insert

tabs and newlines within EnvironmentFile=.

The argument passed should be an absolute filename or wildcard expression, optionally prefixed with

"−", which indicates that if the file does not exist, it will not be read and no error or warning message

is logged. This option may be specified more than once in which case all specified files are read. If the

empty string is assigned to this option, the list of file to read is reset, all prior assignments have no

effect.

The files listed with this directive will be read shortly before the process is executed (more specifically,

after all processes from a previous unit state terminated. This means you can generate these files in one

unit state, and read it with this option in the next. The files are read from the file system of the service

manager, before any file system changes like bind mounts take place).

systemd 245 22

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

Settings from these files override settings made with Environment=. If the same variable is set twice

from these files, the files will be read in the order they are specified and the later setting will override

the earlier setting.

PassEnvironment=

Pass environment variables set for the system service manager to executed processes. Takes a

space−separated list of variable names. This option may be specified more than once, in which case all

listed variables will be passed. If the empty string is assigned to this option, the list of environment

variables to pass is reset, all prior assignments have no effect. Variables specified that are not set for

the system manager will not be passed and will be silently ignored. Note that this option is only

relevant for the system service manager, as system services by default do not automatically inherit any

environment variables set for the service manager itself. However, in case of the user service manager

all environment variables are passed to the executed processes anyway, hence this option is without

effect for the user service manager.

Variables set for invoked processes due to this setting are subject to being overridden by those

configured with Environment= or EnvironmentFile=.

C escapes[5] are supported, but not most control characters[6]. "\t" and "\n" can be used to insert

tabs and newlines within EnvironmentFile=.

Example:

PassEnvironment=VAR1 VAR2 VAR3

passes three variables "VAR1", "VAR2", "VAR3" with the values set for those variables in PID1.

See environ(7) for details about environment variables.

UnsetEnvironment=

Explicitly unset environment variable assignments that would normally be passed from the service

manager to invoked processes of this unit. Takes a space−separated list of variable names or variable

assignments. This option may be specified more than once, in which case all listed

variables/assignments will be unset. If the empty string is assigned to this option, the list of

environment variables/assignments to unset is reset. If a variable assignment is specified (that is: a

variable name, followed by "=", followed by its value), then any environment variable matching this

precise assignment is removed. If a variable name is specified (that is a variable name without any

following "=" or value), then any assignment matching the variable name, regardless of its value is

removed. Note that the effect of UnsetEnvironment= is applied as final step when the environment list

passed to executed processes is compiled. That means it may undo assignments from any configuration

source, including assignments made through Environment= or EnvironmentFile=, inherited from the

system manager's global set of environment variables, inherited via PassEnvironment=, set by the

service manager itself (such as $NOTIFY_SOCKET and such), or set by a PAM module (in case

PAMName= is used).

See environ(7) for details about environment variables.

LOGGING AND STANDARD INPUT/OUTPUT
StandardInput=

Controls where file descriptor 0 (STDIN) of the executed processes is connected to. Takes one of null,

tty, tty−force, tty−fail, data, file:path, socket or fd:name.

If null is selected, standard input will be connected to /dev/null, i.e. all read attempts by the process

will result in immediate EOF.

If tty is selected, standard input is connected to a TTY (as configured by TTYPath=, see below) and

systemd 245 23

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

the executed process becomes the controlling process of the terminal. If the terminal is already being

controlled by another process, the executed process waits until the current controlling process releases

the terminal.

tty−force is similar to tty, but the executed process is forcefully and immediately made the controlling

process of the terminal, potentially removing previous controlling processes from the terminal.

tty−fail is similar to tty, but if the terminal already has a controlling process start−up of the executed

process fails.

The data option may be used to configure arbitrary textual or binary data to pass via standard input to

the executed process. The data to pass is configured via StandardInputText=/StandardInputData= (see

below). Note that the actual file descriptor type passed (memory file, regular file, UNIX pipe, ...) might

depend on the kernel and available privileges. In any case, the file descriptor is read−only, and when

read returns the specified data followed by EOF.

The file:path option may be used to connect a specific file system object to standard input. An absolute

path following the ":" character is expected, which may refer to a regular file, a FIFO or special file. If

an AF_UNIX socket in the file system is specified, a stream socket is connected to it. The latter is

useful for connecting standard input of processes to arbitrary system services.

The socket option is valid in socket−activated services only, and requires the relevant socket unit file

(see systemd.socket(5) for details) to have Accept=yes set, or to specify a single socket only. If this

option is set, standard input will be connected to the socket the service was activated from, which is

primarily useful for compatibility with daemons designed for use with the traditional inetd(8) socket

activation daemon.

The fd:name option connects standard input to a specific, named file descriptor provided by a socket

unit. The name may be specified as part of this option, following a ":" character (e.g. "fd:foobar"). If

no name is specified, the name "stdin" is implied (i.e. "fd" is equivalent to "fd:stdin"). At least one

socket unit defining the specified name must be provided via the Sockets= option, and the file

descriptor name may differ from the name of its containing socket unit. If multiple matches are found,

the first one will be used. See FileDescriptorName= in systemd.socket(5) for more details about

named file descriptors and their ordering.

This setting defaults to null.

Note that services which specify DefaultDependencies=no and use StandardInput= or

StandardOutput= with tty/tty−force/tty−fail, should specify

After=systemd−vconsole−setup.service, to make sure that the tty initialization is finished before they

start.

StandardOutput=

Controls where file descriptor 1 (stdout) of the executed processes is connected to. Takes one of

inherit, null, tty, journal, kmsg, journal+console, kmsg+console, file:path, append:path, socket or

fd:name.

inherit duplicates the file descriptor of standard input for standard output.

null connects standard output to /dev/null, i.e. everything written to it will be lost.

tty connects standard output to a tty (as configured via TTYPath=, see below). If the TTY is used for

output only, the executed process will not become the controlling process of the terminal, and will not

fail or wait for other processes to release the terminal.

systemd 245 24

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

journal connects standard output with the journal, which is accessible via journalctl(1). Note that

ev erything that is written to kmsg (see below) is implicitly stored in the journal as well, the specific

option listed below is hence a superset of this one. (Also note that any external, additional syslog

daemons receive their log data from the journal, too, hence this is the option to use when logging shall

be processed with such a daemon.)

kmsg connects standard output with the kernel log buffer which is accessible via dmesg(1), in

addition to the journal. The journal daemon might be configured to send all logs to kmsg anyway, in

which case this option is no different from journal.

journal+console and kmsg+console work in a similar way as the two options above but copy the

output to the system console as well.

The file:path option may be used to connect a specific file system object to standard output. The

semantics are similar to the same option of StandardInput=, see above. If path refers to a regular file

on the filesystem, it is opened (created if it doesn't exist yet) for writing at the beginning of the file, but

without truncating it. If standard input and output are directed to the same file path, it is opened only

once, for reading as well as writing and duplicated. This is particularly useful when the specified path

refers to an AF_UNIX socket in the file system, as in that case only a single stream connection is

created for both input and output.

append:path is similar to file:path above, but it opens the file in append mode.

socket connects standard output to a socket acquired via socket activation. The semantics are similar

to the same option of StandardInput=, see above.

The fd:name option connects standard output to a specific, named file descriptor provided by a socket

unit. A name may be specified as part of this option, following a ":" character (e.g. "fd:foobar"). If no

name is specified, the name "stdout" is implied (i.e. "fd" is equivalent to "fd:stdout"). At least one

socket unit defining the specified name must be provided via the Sockets= option, and the file

descriptor name may differ from the name of its containing socket unit. If multiple matches are found,

the first one will be used. See FileDescriptorName= in systemd.socket(5) for more details about

named descriptors and their ordering.

If the standard output (or error output, see below) of a unit is connected to the journal or the kernel log

buffer, the unit will implicitly gain a dependency of type After= on systemd−journald.socket (also see

the "Implicit Dependencies" section above). Also note that in this case stdout (or stderr, see below)

will be an AF_UNIX stream socket, and not a pipe or FIFO that can be re−opened. This means when

executing shell scripts the construct echo "hello" > /dev/stderr for writing text to stderr will not

work. To mitigate this use the construct echo "hello" >&2 instead, which is mostly equivalent and

avoids this pitfall.

This setting defaults to the value set with DefaultStandardOutput= in systemd-system.conf(5), which

defaults to journal. Note that setting this parameter might result in additional dependencies to be

added to the unit (see above).

StandardError=

Controls where file descriptor 2 (stderr) of the executed processes is connected to. The available

options are identical to those of StandardOutput=, with some exceptions: if set to inherit the file

descriptor used for standard output is duplicated for standard error, while fd:name will use a default

file descriptor name of "stderr".

This setting defaults to the value set with DefaultStandardError= in systemd-system.conf(5), which

defaults to inherit. Note that setting this parameter might result in additional dependencies to be

added to the unit (see above).

systemd 245 25

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

StandardInputText=, StandardInputData=

Configures arbitrary textual or binary data to pass via file descriptor 0 (STDIN) to the executed

processes. These settings have no effect unless StandardInput= is set to data. Use this option to

embed process input data directly in the unit file.

StandardInputText= accepts arbitrary textual data. C−style escapes for special characters as well as the

usual "%"−specifiers are resolved. Each time this setting is used the specified text is appended to the

per−unit data buffer, followed by a newline character (thus every use appends a new line to the end of

the buffer). Note that leading and trailing whitespace of lines configured with this option is removed. If

an empty line is specified the buffer is cleared (hence, in order to insert an empty line, add an

additional "\n" to the end or beginning of a line).

StandardInputData= accepts arbitrary binary data, encoded in Base64[7]. No escape sequences or

specifiers are resolved. Any whitespace in the encoded version is ignored during decoding.

Note that StandardInputText= and StandardInputData= operate on the same data buffer, and may be

mixed in order to configure both binary and textual data for the same input stream. The textual or

binary data is joined strictly in the order the settings appear in the unit file. Assigning an empty string

to either will reset the data buffer.

Please keep in mind that in order to maintain readability long unit file settings may be split into

multiple lines, by suffixing each line (except for the last) with a "\" character (see systemd.unit(5) for

details). This is particularly useful for large data configured with these two options. Example:

...

StandardInput=data

StandardInputData=SWNrIHNpdHplIGRhIHVuJyBlc3NlIEtsb3BzLAp1ZmYgZWVtYWwga2xvcHAncy4KSWNrIGtpZWtl \

LCBzdGF1bmUsIHd1bmRyZSBtaXIsCnVmZiBlZW1hbCBqZWh0IHNlIHVmZiBkaWUgVMO8ci4KTmFu \

dSwgZGVuayBpY2ssIGljayBkZW5rIG5hbnUhCkpldHogaXNzZSB1ZmYsIGVyc2NodCB3YXIgc2Ug \

enUhCkljayBqZWhlIHJhdXMgdW5kIGJsaWNrZSDigJQKdW5kIHdlciBzdGVodCBkcmF1w59lbj8g \

SWNrZSEK

...

LogLevelMax=

Configures filtering by log level of log messages generated by this unit. Takes a syslog log level, one

of emerg (lowest log level, only highest priority messages), alert, crit, err, warning, notice, info,

debug (highest log level, also lowest priority messages). See syslog(3) for details. By default no

filtering is applied (i.e. the default maximum log level is debug). Use this option to configure the

logging system to drop log messages of a specific service above the specified level. For example, set

LogLevelMax=info in order to turn off debug logging of a particularly chatty unit. Note that the

configured level is applied to any log messages written by any of the processes belonging to this unit,

sent via any supported logging protocol. The filtering is applied early in the logging pipeline, before

any kind of further processing is done. Moreover, messages which pass through this filter successfully

might still be dropped by filters applied at a later stage in the logging subsystem. For example,

MaxLevelStore= configured in journald.conf(5) might prohibit messages of higher log levels to be

stored on disk, even though the per−unit LogLevelMax= permitted it to be processed.

LogExtraFields=

Configures additional log metadata fields to include in all log records generated by processes

associated with this unit. This setting takes one or more journal field assignments in the format

"FIELD=VALUE" separated by whitespace. See systemd.journal-fields(7) for details on the journal

field concept. Even though the underlying journal implementation permits binary field values, this

setting accepts only valid UTF−8 values. To include space characters in a journal field value, enclose

the assignment in double quotes ("). The usual specifiers are expanded in all assignments (see below).

Note that this setting is not only useful for attaching additional metadata to log records of a unit, but

given that all fields and values are indexed may also be used to implement cross−unit log record

systemd 245 26

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

matching. Assign an empty string to reset the list.

LogRateLimitIntervalSec=, LogRateLimitBurst=

Configures the rate limiting that is applied to messages generated by this unit. If, in the time interval

defined by LogRateLimitIntervalSec=, more messages than specified in LogRateLimitBurst= are

logged by a service, all further messages within the interval are dropped until the interval is over. A

message about the number of dropped messages is generated. The time specification for

LogRateLimitIntervalSec= may be specified in the following units: "s", "min", "h", "ms", "us" (see

systemd.time(7) for details). The default settings are set by RateLimitIntervalSec= and

RateLimitBurst= configured in journald.conf(5).

LogNamespace=

Run the unit's processes in the specified journal namespace. Expects a short user−defined string

identifying the namespace. If not used the processes of the service are run in the default journal

namespace, i.e. their log stream is collected and processed by systemd−journald.service. If this option

is used any log data generated by processes of this unit (regardless if via the syslog(), journal native

logging or stdout/stderr logging) is collected and processed by an instance of the

systemd−journald@.service template unit, which manages the specified namespace. The log data is

stored in a data store independent from the default log namespace's data store. See systemd-

journald.service(8) for details about journal namespaces.

Internally, journal namespaces are implemented through Linux mount namespacing and

over−mounting the directory that contains the relevant AF_UNIX sockets used for logging in the

unit's mount namespace. Since mount namespaces are used this setting disconnects propagation of

mounts from the unit's processes to the host, similar to how ReadOnlyPaths= and similar settings (see

above) work. Journal namespaces may hence not be used for services that need to establish mount

points on the host.

When this option is used the unit will automatically gain ordering and requirement dependencies on

the two socket units associated with the systemd−journald@.service instance so that they are

automatically established prior to the unit starting up. Note that when this option is used log output of

this service does not appear in the regular journalctl(1) output, unless the −−namespace= option is

used.

SyslogIdentifier=

Sets the process name ("syslog tag") to prefix log lines sent to the logging system or the kernel log

buffer with. If not set, defaults to the process name of the executed process. This option is only useful

when StandardOutput= or StandardError= are set to journal or kmsg (or to the same settings in

combination with +console) and only applies to log messages written to stdout or stderr.

SyslogFacility=

Sets the syslog facility identifier to use when logging. One of kern, user, mail, daemon, auth, syslog,

lpr, news, uucp, cron, authpriv, ftp, local0, local1, local2, local3, local4, local5, local6 or local7.

See syslog(3) for details. This option is only useful when StandardOutput= or StandardError= are set

to journal or kmsg (or to the same settings in combination with +console), and only applies to log

messages written to stdout or stderr. Defaults to daemon.

SyslogLevel=

The default syslog log level to use when logging to the logging system or the kernel log buffer. One of

emerg, alert, crit, err, warning, notice, info, debug. See syslog(3) for details. This option is only

useful when StandardOutput= or StandardError= are set to journal or kmsg (or to the same settings

in combination with +console), and only applies to log messages written to stdout or stderr. Note that

individual lines output by executed processes may be prefixed with a different log level which can be

used to override the default log level specified here. The interpretation of these prefixes may be

disabled with SyslogLevelPrefix=, see below. For details, see sd-daemon(3). Defaults to info.

SyslogLevelPrefix=

Takes a boolean argument. If true and StandardOutput= or StandardError= are set to journal or kmsg

systemd 245 27

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

(or to the same settings in combination with +console), log lines written by the executed process that

are prefixed with a log level will be processed with this log level set but the prefix removed. If set to

false, the interpretation of these prefixes is disabled and the logged lines are passed on as−is. This only

applies to log messages written to stdout or stderr. For details about this prefixing see sd-daemon(3).

Defaults to true.

TTYPath=

Sets the terminal device node to use if standard input, output, or error are connected to a TTY (see

above). Defaults to /dev/console.

TTYReset=

Reset the terminal device specified with TTYPath= before and after execution. Defaults to "no".

TTYVHangup=

Disconnect all clients which have opened the terminal device specified with TTYPath= before and

after execution. Defaults to "no".

TTYVTDisallocate=

If the terminal device specified with TTYPath= is a virtual console terminal, try to deallocate the TTY

before and after execution. This ensures that the screen and scrollback buffer is cleared. Defaults to

"no".

SYSTEM V COMPATIBILITY
UtmpIdentifier=

Takes a four character identifier string for an utmp(5) and wtmp entry for this service. This should

only be set for services such as getty implementations (such as agetty(8)) where utmp/wtmp entries

must be created and cleared before and after execution, or for services that shall be executed as if they

were run by a getty process (see below). If the configured string is longer than four characters, it is

truncated and the terminal four characters are used. This setting interprets %I style string

replacements. This setting is unset by default, i.e. no utmp/wtmp entries are created or cleaned up for

this service.

UtmpMode=

Takes one of "init", "login" or "user". If UtmpIdentifier= is set, controls which type of utmp(5)/wtmp

entries for this service are generated. This setting has no effect unless UtmpIdentifier= is set too. If

"init" is set, only an INIT_PROCESS entry is generated and the invoked process must implement a

getty−compatible utmp/wtmp logic. If "login" is set, first an INIT_PROCESS entry, followed by a

LOGIN_PROCESS entry is generated. In this case, the invoked process must implement a

login(1)−compatible utmp/wtmp logic. If "user" is set, first an INIT_PROCESS entry, then a

LOGIN_PROCESS entry and finally a USER_PROCESS entry is generated. In this case, the

invoked process may be any process that is suitable to be run as session leader. Defaults to "init".

ENVIRONMENT VARIABLES IN SPAWNED PROCESSES
Processes started by the service manager are executed with an environment variable block assembled from

multiple sources. Processes started by the system service manager generally do not inherit environment

variables set for the service manager itself (but this may be altered via PassEnvironment=), but processes

started by the user service manager instances generally do inherit all environment variables set for the

service manager itself.

For each invoked process the list of environment variables set is compiled from the following sources:

• Variables globally configured for the service manager, using the DefaultEnvironment= setting in

systemd-system.conf(5), the kernel command line option systemd.setenv= (see systemd(1)) or via

systemctl set−environment (see systemctl(1)).

• Variables defined by the service manager itself (see the list below)

• Variables set in the service manager's own environment variable block (subject to

PassEnvironment= for the system service manager)

• Variables set via Environment= in the unit file

systemd 245 28

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

• Variables read from files specified via EnvironmentFile= in the unit file

• Variables set by any PAM modules in case PAMName= is in effect, cf. pam_env(8)

If the same environment variables are set by multiple of these sources, the later source — according to the

order of the list above — wins. Note that as final step all variables listed in UnsetEnvironment= are

removed again from the compiled environment variable list, immediately before it is passed to the executed

process.

The following select environment variables are set or propagated by the service manager for each invoked

process:

$PATH

Colon−separated list of directories to use when launching executables. systemd uses a fixed value of

"/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin" in the system manager. When compiled for systems

with "unmerged /usr" (/bin is not a symlink to /usr/bin), ":/sbin:/bin" is appended. In case of the the

user manager, a different path may be configured by the distribution. It is recommended to not rely on

the order of entries, and have only one program with a given name in $PATH.

$LANG

Locale. Can be set in locale.conf(5) or on the kernel command line (see systemd(1) and kernel-

command-line(7)).

$USER, $LOGNAME, $HOME, $SHELL

User name (twice), home directory, and the login shell. The variables are set for the units that have

User= set, which includes user systemd instances. See passwd(5).

$INVOCATION_ID

Contains a randomized, unique 128bit ID identifying each runtime cycle of the unit, formatted as 32

character hexadecimal string. A new ID is assigned each time the unit changes from an inactive state

into an activating or active state, and may be used to identify this specific runtime cycle, in particular

in data stored offline, such as the journal. The same ID is passed to all processes run as part of the unit.

$XDG_RUNTIME_DIR

The directory to use for runtime objects (such as IPC objects) and volatile state. Set for all services run

by the user systemd instance, as well as any system services that use PAMName= with a PAM stack

that includes pam_systemd. See below and pam_systemd(8) for more information.

$RUNTIME_DIRECTORY, $STATE_DIRECTORY, $CACHE_DIRECTORY, $LOGS_DIRECTORY,

$CONFIGURATION_DIRECTORY

Contains and absolute paths to the directories defined with RuntimeDirectory=, StateDirectory=,

CacheDirectory=, LogsDirectory=, and ConfigurationDirectory= when those settings are used.

$MAINPID

The PID of the unit's main process if it is known. This is only set for control processes as invoked by

ExecReload= and similar.

$MANAGERPID

The PID of the user systemd instance, set for processes spawned by it.

$LISTEN_FDS, $LISTEN_PID, $LISTEN_FDNAMES

Information about file descriptors passed to a service for socket activation. See sd_listen_fds(3).

$NOTIFY_SOCKET

The socket sd_notify() talks to. See sd_notify(3).

$WATCHDOG_PID, $WATCHDOG_USEC

Information about watchdog keep−alive notifications. See sd_watchdog_enabled(3).

$TERM

Terminal type, set only for units connected to a terminal (StandardInput=tty, StandardOutput=tty, or

StandardError=tty). See termcap(5).

$JOURNAL_STREAM

systemd 245 29

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

If the standard output or standard error output of the executed processes are connected to the journal

(for example, by setting StandardError=journal) $JOURNAL_STREAM contains the device and inode

numbers of the connection file descriptor, formatted in decimal, separated by a colon (":"). This

permits invoked processes to safely detect whether their standard output or standard error output are

connected to the journal. The device and inode numbers of the file descriptors should be compared

with the values set in the environment variable to determine whether the process output is still

connected to the journal. Note that it is generally not sufficient to only check whether

$JOURNAL_STREAM is set at all as services might invoke external processes replacing their standard

output or standard error output, without unsetting the environment variable.

If both standard output and standard error of the executed processes are connected to the journal via a

stream socket, this environment variable will contain information about the standard error stream, as

that's usually the preferred destination for log data. (Note that typically the same stream is used for

both standard output and standard error, hence very likely the environment variable contains device

and inode information matching both stream file descriptors.)

This environment variable is primarily useful to allow services to optionally upgrade their used log

protocol to the native journal protocol (using sd_journal_print(3) and other functions) if their

standard output or standard error output is connected to the journal anyway, thus enabling delivery of

structured metadata along with logged messages.

$SERVICE_RESULT

Only defined for the service unit type, this environment variable is passed to all ExecStop= and

ExecStopPost= processes, and encodes the service "result". Currently, the following values are

defined:

Table 4. Defined $SERVICE_RESULT values

systemd 245 30

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

Value Meaning

"success" The service ran successfully and

exited cleanly.

"protocol" A protocol violation occurred: the

service did not take the steps required

by its unit configuration (specifically

what is configured in its Type=

setting).

"timeout" One of the steps timed out.

"exit−code" Service process exited with a

non−zero exit code; see $EXIT_CODE

below for the actual exit code

returned.

"signal" A service process was terminated

abnormally by a signal, without

dumping core. See $EXIT_CODE

below for the actual signal causing the

termination.

"core−dump" A service process terminated

abnormally with a signal and dumped

core. See $EXIT_CODE below for the

signal causing the termination.

"watchdog" Watchdog keep−alive ping was

enabled for the service, but the

deadline was missed.

"start−limit−hit" A start limit was defined for the unit

and it was hit, causing the unit to fail

to start. See systemd.unit(5)'s

StartLimitIntervalSec= and

StartLimitBurst= for details.

"resources" A catch−all condition in case a system

operation failed.

This environment variable is useful to monitor failure or successful termination of a service. Even

though this variable is available in both ExecStop= and ExecStopPost=, it is usually a better choice to

place monitoring tools in the latter, as the former is only invoked for services that managed to start up

correctly, and the latter covers both services that failed during their start−up and those which failed

during their runtime.

$EXIT_CODE, $EXIT_STATUS

Only defined for the service unit type, these environment variables are passed to all ExecStop=,

ExecStopPost= processes and contain exit status/code information of the main process of the service.

For the precise definition of the exit code and status, see wait(2). $EXIT_CODE is one of "exited",

"killed", "dumped". $EXIT_STATUS contains the numeric exit code formatted as string if

$EXIT_CODE is "exited", and the signal name in all other cases. Note that these environment

variables are only set if the service manager succeeded to start and identify the main process of the

service.

Table 5. Summary of possible service result variable values

systemd 245 31

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

$SERVICE_RESULT $EXIT_CODE $EXIT_STATUS

"killed" "HUP", "INT", "TERM",

"PIPE"

"success"

"exited" "0"

not set not set"protocol"

"exited" "0"

"killed" "TERM", "KILL""timeout"

"exited" "0", "1", "2", "3", ..., "255"

"exit−code" "exited" "1", "2", "3", ..., "255"

"signal" "killed" "HUP", "INT", "KILL", ...

"core−dump" "dumped" "ABRT", "SEGV", "QUIT",

...

"dumped" "ABRT"

"killed" "TERM", "KILL"

"watchdog"

"exited" "0", "1", "2", "3", ..., "255"

"exec−condition" "exited" "1", "2", "3", "4", ..., "254"

"oom−kill" "killed" "TERM", "KILL"

"start−limit−hit" not set not set

"resources" any of the above any of the above

Note: the process may be also terminated by a signal not sent by systemd. In particular

the process may send an arbitrary signal to itself in a handler for any of the

non−maskable signals. Nevertheless, in the "timeout" and "watchdog" rows above only

the signals that systemd sends have been included. Moreover, using SuccessExitStatus=

additional exit statuses may be declared to indicate clean termination, which is not

reflected by this table.

$PIDFILE

The path to the configured PID file, in case the process is forked off on behalf of a service that uses the

PIDFile= setting, see systemd.service(5) for details. Service code may use this environment variable

to automatically generate a PID file at the location configured in the unit file. This field is set to an

absolute path in the file system.

For system services, when PAMName= is enabled and pam_systemd is part of the selected PAM stack,

additional environment variables defined by systemd may be set for services. Specifically, these are

$XDG_SEAT, $XDG_VTNR, see pam_systemd(8) for details.

PROCESS EXIT CODES
When invoking a unit process the service manager possibly fails to apply the execution parameters

configured with the settings above. In that case the already created service process will exit with a non−zero

exit code before the configured command line is executed. (Or in other words, the child process possibly

exits with these error codes, after having been created by the fork(2) system call, but before the matching

execve(2) system call is called.) Specifically, exit codes defined by the C library, by the LSB specification

and by the systemd service manager itself are used.

The following basic service exit codes are defined by the C library.

Table 6. Basic C library exit codes

Exit Code Symbolic Name Description

0 EXIT_SUCCESS Generic success code.

1 EXIT_FAILURE Generic failure or

unspecified error.

systemd 245 32

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

The following service exit codes are defined by the LSB specification[8].

Table 7. LSB service exit codes

Exit Code Symbolic Name Description

2 EXIT_INVALIDARGUMENT Invalid or excess arguments.

3 EXIT_NOTIMPLEMENTED Unimplemented feature.

4 EXIT_NOPERMISSION The user has insufficient

privileges.

5 EXIT_NOTINSTALLED The program is not installed.

6 EXIT_NOTCONFIGURED The program is not

configured.

7 EXIT_NOTRUNNING The program is not running.

The LSB specification suggests that error codes 200 and above are reserved for implementations. Some of

them are used by the service manager to indicate problems during process invocation:

Table 8. systemd−specific exit codes

systemd 245 33

SYSTEMD.EXEC(5) systemd.exec SYSTEMD.EXEC(5)

Finally, the BSD operating systems define a set of exit codes, typically defined on Linux systems too:

Table 9. BSD exit codes

Exit Code Symbolic Name Description

64 EX_USAGE Command line usage error

65 EX_DAT AERR Data format error

66 EX_NOINPUT Cannot open input

67 EX_NOUSER Addressee unknown

68 EX_NOHOST Host name unknown

69 EX_UNAV AILABLE Service unavailable

70 EX_SOFTWARE internal software error

71 EX_OSERR System error (e.g., can't

fork)

72 EX_OSFILE Critical OS file missing

73 EX_CANTCREAT Can't create (user) output file

74 EX_IOERR Input/output error

75 EX_TEMPFAIL Temporary failure; user is

invited to retry

76 EX_PROT OCOL Remote error in protocol

77 EX_NOPERM Permission denied

78 EX_CONFIG Configuration error

SEE ALSO
systemd(1), systemctl(1), systemd-analyze(1), journalctl(1), systemd-system.conf(5), systemd.unit(5),

systemd.service(5), systemd.socket(5), systemd.swap(5), systemd.mount(5), systemd.kill(5),

systemd.resource-control(5), systemd.time(7), systemd.directives(7), tmpfiles.d(5), exec(3)

NOTES
1. Discoverable Partitions Specification

https://systemd.io/DISCOVERABLE_PARTITIONS

2. User/Group Name Syntax

https://systemd.io/USER_NAMES

3. No New Privileges Flag

https://www.kernel.org/doc/html/latest/userspace-api/no_new_privs.html

4. proc.txt

https://www.kernel.org/doc/Documentation/filesystems/proc.txt

5. C escapes

https://en.wikipedia.org/wiki/Escape_sequences_in_C#Table_of_escape_sequences

6. most control characters

https://en.wikipedia.org/wiki/Control_character#In_ASCII

7. Base64

https://tools.ietf.org/html/rfc2045#section-6.8

8. LSB specification

https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html

systemd 245 34

