
SYSTEMD−NSPAWN(1) systemd-nspawn SYSTEMD−NSPAWN(1)

NAME
systemd-nspawn − Spawn a command or OS in a light−weight container

SYNOPSIS
systemd−nspawn [OPTIONS...] [COMMAND [ARGS...]]

systemd−nspawn −−boot [OPTIONS...] [ARGS...]

DESCRIPTION
systemd−nspawn may be used to run a command or OS in a light−weight namespace container. In many

ways it is similar to chroot(1), but more powerful since it fully virtualizes the file system hierarchy, as well

as the process tree, the various IPC subsystems and the host and domain name.

systemd−nspawn may be invoked on any directory tree containing an operating system tree, using the

−−directory= command line option. By using the −−machine= option an OS tree is automatically searched

for in a couple of locations, most importantly in /var/lib/machines, the suggested directory to place OS

container images installed on the system.

In contrast to chroot(1) systemd−nspawn may be used to boot full Linux−based operating systems in a

container.

systemd−nspawn limits access to various kernel interfaces in the container to read−only, such as /sys,

/proc/sys or /sys/fs/selinux. The host's network interfaces and the system clock may not be changed from

within the container. Device nodes may not be created. The host system cannot be rebooted and kernel

modules may not be loaded from within the container.

Use a tool like dnf(8), debootstrap(8), or pacman(8) to set up an OS directory tree suitable as file system

hierarchy for systemd−nspawn containers. See the Examples section below for details on suitable

invocation of these commands.

As a safety check systemd−nspawn will verify the existence of /usr/lib/os−release or /etc/os−release in the

container tree before starting the container (see os-release(5)). It might be necessary to add this file to the

container tree manually if the OS of the container is too old to contain this file out−of−the−box.

systemd−nspawn may be invoked directly from the interactive command line or run as system service in

the background. In this mode each container instance runs as its own service instance; a default template

unit file systemd−nspawn@.service is provided to make this easy, taking the container name as instance

identifier. Note that different default options apply when systemd−nspawn is invoked by the template unit

file than interactively on the command line. Most importantly the template unit file makes use of the

−−boot which is not the default in case systemd−nspawn is invoked from the interactive command line.

Further differences with the defaults are documented along with the various supported options below.

The machinectl(1) tool may be used to execute a number of operations on containers. In particular it

provides easy−to−use commands to run containers as system services using the systemd−nspawn@.service

template unit file.

Along with each container a settings file with the .nspawn suffix may exist, containing additional settings to

apply when running the container. See systemd.nspawn(5) for details. Settings files override the default

options used by the systemd−nspawn@.service template unit file, making it usually unnecessary to alter

this template file directly.

Note that systemd−nspawn will mount file systems private to the container to /dev, /run and similar. These

will not be visible outside of the container, and their contents will be lost when the container exits.

Note that running two systemd−nspawn containers from the same directory tree will not make processes in

them see each other. The PID namespace separation of the two containers is complete and the containers

will share very few runtime objects except for the underlying file system. Use machinectl(1)'s login or

shell commands to request an additional login session in a running container.

systemd−nspawn implements the Container Interface[1] specification.

While running, containers invoked with systemd−nspawn are registered with the systemd-machined(8)

service that keeps track of running containers, and provides programming interfaces to interact with them.

systemd 245 1

SYSTEMD−NSPAWN(1) systemd-nspawn SYSTEMD−NSPAWN(1)

OPTIONS
If option −b is specified, the arguments are used as arguments for the init program. Otherwise, COMMAND

specifies the program to launch in the container, and the remaining arguments are used as arguments for this

program. If −−boot is not used and no arguments are specified, a shell is launched in the container.

The following options are understood:

−q, −−quiet

Turns off any status output by the tool itself. When this switch is used, the only output from nspawn

will be the console output of the container OS itself.

−−settings=MODE

Controls whether systemd−nspawn shall search for and use additional per−container settings from

.nspawn files. Takes a boolean or the special values override or trusted.

If enabled (the default), a settings file named after the machine (as specified with the −−machine=

setting, or derived from the directory or image file name) with the suffix .nspawn is searched in

/etc/systemd/nspawn/ and /run/systemd/nspawn/. If it is found there, its settings are read and used. If it

is not found there, it is subsequently searched in the same directory as the image file or in the

immediate parent of the root directory of the container. In this case, if the file is found, its settings will

be also read and used, but potentially unsafe settings are ignored. Note that in both these cases,

settings on the command line take precedence over the corresponding settings from loaded .nspawn

files, if both are specified. Unsafe settings are considered all settings that elevate the container's

privileges or grant access to additional resources such as files or directories of the host. For details

about the format and contents of .nspawn files, consult systemd.nspawn(5).

If this option is set to override, the file is searched, read and used the same way, howev er, the order of

precedence is reversed: settings read from the .nspawn file will take precedence over the corresponding

command line options, if both are specified.

If this option is set to trusted, the file is searched, read and used the same way, but regardless of being

found in /etc/systemd/nspawn/, /run/systemd/nspawn/ or next to the image file or container root

directory, all settings will take effect, however, command line arguments still take precedence over

corresponding settings.

If disabled, no .nspawn file is read and no settings except the ones on the command line are in effect.

Image Options

−D, −−directory=

Directory to use as file system root for the container.

If neither −−directory=, nor −−image= is specified the directory is determined by searching for a

directory named the same as the machine name specified with −−machine=. See machinectl(1)

section "Files and Directories" for the precise search path.

If neither −−directory=, −−image=, nor −−machine= are specified, the current directory will be used.

May not be specified together with −−image=.

−−template=

Directory or "btrfs" subvolume to use as template for the container's root directory. If this is specified

and the container's root directory (as configured by −−directory=) does not yet exist it is created as

"btrfs" snapshot (if supported) or plain directory (otherwise) and populated from this template tree.

Ideally, the specified template path refers to the root of a "btrfs" subvolume, in which case a simple

copy−on−write snapshot is taken, and populating the root directory is instant. If the specified template

path does not refer to the root of a "btrfs" subvolume (or not even to a "btrfs" file system at all), the

tree is copied (though possibly in a 'reflink' copy−on−write scheme — if the file system supports that),

which can be substantially more time−consuming. Note that the snapshot taken is of the specified

systemd 245 2

SYSTEMD−NSPAWN(1) systemd-nspawn SYSTEMD−NSPAWN(1)

directory or subvolume, including all subdirectories and subvolumes below it, but excluding any

sub−mounts. May not be specified together with −−image= or −−ephemeral.

Note that this switch leaves host name, machine ID and all other settings that could identify the

instance unmodified.

−x, −−ephemeral

If specified, the container is run with a temporary snapshot of its file system that is removed

immediately when the container terminates. May not be specified together with −−template=.

Note that this switch leaves host name, machine ID and all other settings that could identify the

instance unmodified. Please note that — as with −−template= — taking the temporary snapshot is

more efficient on file systems that support subvolume snapshots or 'reflinks' natively ("btrfs" or new

"xfs") than on more traditional file systems that do not ("ext4"). Note that the snapshot taken is of the

specified directory or subvolume, including all subdirectories and subvolumes below it, but excluding

any sub−mounts.

With this option no modifications of the container image are retained. Use −−volatile= (described

below) for other mechanisms to restrict persistency of container images during runtime.

−i, −−image=

Disk image to mount the root directory for the container from. Takes a path to a regular file or to a

block device node. The file or block device must contain either:

• An MBR partition table with a single partition of type 0x83 that is marked bootable.

• A GUID partition table (GPT) with a single partition of type

0fc63daf−8483−4772−8e79−3d69d8477de4.

• A GUID partition table (GPT) with a marked root partition which is mounted as the root

directory of the container. Optionally, GPT images may contain a home and/or a server data

partition which are mounted to the appropriate places in the container. All these partitions

must be identified by the partition types defined by the Discoverable Partitions

Specification[2].

• No partition table, and a single file system spanning the whole image.

On GPT images, if an EFI System Partition (ESP) is discovered, it is automatically mounted to /efi (or

/boot as fallback) in case a directory by this name exists and is empty.

Partitions encrypted with LUKS are automatically decrypted. Also, on GPT images dm−verity data

integrity hash partitions are set up if the root hash for them is specified using the −−root−hash=

option.

Any other partitions, such as foreign partitions or swap partitions are not mounted. May not be

specified together with −−directory=, −−template=.

−−oci−bundle=

Takes the path to an OCI runtime bundle to invoke, as specified in the OCI Runtime Specification[3].

In this case no .nspawn file is loaded, and the root directory and various settings are read from the OCI

runtime JSON data (but data passed on the command line takes precedence).

−−read−only

Mount the container's root file system (and any other file systems container in the container image)

read−only. This has no effect on additional mounts made with −−bind=, −−tmpfs= and similar

options. This mode is implied if the container image file or directory is marked read−only itself. It is

also implied if −−volatile= is used. In this case the container image on disk is strictly read−only, while

changes are permitted but kept non−persistently in memory only. For further details, see below.

−−volatile, −−volatile=MODE

systemd 245 3

SYSTEMD−NSPAWN(1) systemd-nspawn SYSTEMD−NSPAWN(1)

Boots the container in volatile mode. When no mode parameter is passed or when mode is specified as

yes, full volatile mode is enabled. This means the root directory is mounted as a mostly unpopulated

"tmpfs" instance, and /usr/ from the OS tree is mounted into it in read−only mode (the system thus

starts up with read−only OS image, but pristine state and configuration, any changes are lost on

shutdown). When the mode parameter is specified as state, the OS tree is mounted read−only, but /var/

is mounted as a writable "tmpfs" instance into it (the system thus starts up with read−only OS

resources and configuration, but pristine state, and any changes to the latter are lost on shutdown).

When the mode parameter is specified as overlay the read−only root file system is combined with a

writable tmpfs instance through "overlayfs", so that it appears at it normally would, but any changes

are applied to the temporary file system only and lost when the container is terminated. When the

mode parameter is specified as no (the default), the whole OS tree is made available writable (unless

−−read−only is specified, see above).

Note that if one of the volatile modes is chosen, its effect is limited to the root file system (or /var/ in

case of state), and any other mounts placed in the hierarchy are unaffected — regardless if they are

established automatically (e.g. the EFI system partition that might be mounted to /efi/ or /boot/) or

explicitly (e.g. through an additional command line option such as −−bind=, see below). This means,

ev en if −−volatile=overlay is used changes to /efi/ or /boot/ are prohibited in case such a partition

exists in the container image operated on, and even if −−volatile=state is used the hypothetical file

/etc/foobar is potentially writable if −−bind=/etc/foobar if used to mount it from outside the

read−only container /etc directory.

The −−ephemeral option is closely related to this setting, and provides similar behaviour by making a

temporary, ephemeral copy of the whole OS image and executing that. For further details, see above.

The −−tmpfs= and −−overlay= options provide similar functionality, but for specific sub−directories

of the OS image only. For details, see below.

This option provides similar functionality for containers as the "systemd.volatile=" kernel command

line switch provides for host systems. See kernel-command-line(7) for details.

Note that setting this option to yes or state will only work correctly with operating systems in the

container that can boot up with only /usr/ mounted, and are able to automatically populate /var/ (and

/etc/ in case of "−−volatile=yes"). Specifically, this means that operating systems that follow the

historic split of /bin/ and /lib/ (and related directories) from /usr/ (i.e. where the former are not

symlinks into the latter) are not supported by "−−volatile=yes" as container payload. The overlay

option does not require any particular preparations in the OS, but do note that "overlayfs" behaviour

differs from regular file systems in a number of ways, and hence compatibility is limited.

−−root−hash=

Takes a data integrity (dm−verity) root hash specified in hexadecimal. This option enables data

integrity checks using dm−verity, if the used image contains the appropriate integrity data (see above).

The specified hash must match the root hash of integrity data, and is usually at least 256 bits (and

hence 64 formatted hexadecimal characters) long (in case of SHA256 for example). If this option is

not specified, but the image file carries the "user.verity.roothash" extended file attribute (see xattr(7)),

then the root hash is read from it, also as formatted hexadecimal characters. If the extended file

attribute is not found (or is not supported by the underlying file system), but a file with the .roothash

suffix is found next to the image file, bearing otherwise the same name, the root hash is read from it

and automatically used, also as formatted hexadecimal characters.

−−pivot−root=

Pivot the specified directory to / inside the container, and either unmount the container's old root, or

pivot it to another specified directory. Takes one of: a path argument — in which case the specified

path will be pivoted to / and the old root will be unmounted; or a colon−separated pair of new root

path and pivot destination for the old root. The new root path will be pivoted to /, and the old / will be

pivoted to the other directory. Both paths must be absolute, and are resolved in the container's file

systemd 245 4

SYSTEMD−NSPAWN(1) systemd-nspawn SYSTEMD−NSPAWN(1)

system namespace.

This is for containers which have sev eral bootable directories in them; for example, several OSTree[4]

deployments. It emulates the behavior of the boot loader and initial RAM disk which normally select

which directory to mount as the root and start the container's PID 1 in.

Execution Options

−a, −−as−pid2

Invoke the shell or specified program as process ID (PID) 2 instead of PID 1 (init). By default, if

neither this option nor −−boot is used, the selected program is run as the process with PID 1, a mode

only suitable for programs that are aware of the special semantics that the process with PID 1 has on

UNIX. For example, it needs to reap all processes reparented to it, and should implement sysvinit

compatible signal handling (specifically: it needs to reboot on SIGINT, reexecute on SIGTERM,

reload configuration on SIGHUP, and so on). With −−as−pid2 a minimal stub init process is run as

PID 1 and the selected program is executed as PID 2 (and hence does not need to implement any

special semantics). The stub init process will reap processes as necessary and react appropriately to

signals. It is recommended to use this mode to invoke arbitrary commands in containers, unless they

have been modified to run correctly as PID 1. Or in other words: this switch should be used for pretty

much all commands, except when the command refers to an init or shell implementation, as these are

generally capable of running correctly as PID 1. This option may not be combined with −−boot.

−b, −−boot

Automatically search for an init program and invoke it as PID 1, instead of a shell or a user supplied

program. If this option is used, arguments specified on the command line are used as arguments for the

init program. This option may not be combined with −−as−pid2.

The following table explains the different modes of invocation and relationship to −−as−pid2 (see

above):

Table 1. Invocation Mode

Switch Explanation

Neither −−as−pid2 nor −−boot

specified

The passed parameters are interpreted

as the command line, which is

executed as PID 1 in the container.

−−as−pid2 specified The passed parameters are interpreted

as the command line, which is

executed as PID 2 in the container. A

stub init process is run as PID 1.

−−boot specified An init program is automatically

searched for and run as PID 1 in the

container. The passed parameters are

used as invocation parameters for this

process.

Note that −−boot is the default mode of operation if the systemd−nspawn@.service template unit file

is used.

−−chdir=

Change to the specified working directory before invoking the process in the container. Expects an

absolute path in the container's file system namespace.

−E NAME=VALUE, −−setenv=NAME=VALUE

Specifies an environment variable assignment to pass to the init process in the container, in the format

"NAME=VALUE". This may be used to override the default variables or to set additional variables.

This parameter may be used more than once.

−u, −−user=

systemd 245 5

SYSTEMD−NSPAWN(1) systemd-nspawn SYSTEMD−NSPAWN(1)

After transitioning into the container, change to the specified user−defined in the container's user

database. Like all other systemd−nspawn features, this is not a security feature and provides protection

against accidental destructive operations only.

−−kill−signal=

Specify the process signal to send to the container's PID 1 when nspawn itself receives SIGTERM, in

order to trigger an orderly shutdown of the container. Defaults to SIGRTMIN+3 if −−boot is used (on

systemd−compatible init systems SIGRTMIN+3 triggers an orderly shutdown). If −−boot is not used

and this option is not specified the container's processes are terminated abruptly via SIGKILL. For a

list of valid signals, see signal(7).

−−notify−ready=

Configures support for notifications from the container's init process. −−notify−ready= takes a

boolean (no and yes). With option no systemd−nspawn notifies systemd with a "READY=1" message

when the init process is created. With option yes systemd−nspawn waits for the "READY=1" message

from the init process in the container before sending its own to systemd. For more details about

notifications see sd_notify(3)).

System Identity Options

−M, −−machine=

Sets the machine name for this container. This name may be used to identify this container during its

runtime (for example in tools like machinectl(1) and similar), and is used to initialize the container's

hostname (which the container can choose to override, however). If not specified, the last component

of the root directory path of the container is used, possibly suffixed with a random identifier in case

−−ephemeral mode is selected. If the root directory selected is the host's root directory the host's

hostname is used as default instead.

−−hostname=

Controls the hostname to set within the container, if different from the machine name. Expects a valid

hostname as argument. If this option is used, the kernel hostname of the container will be set to this

value, otherwise it will be initialized to the machine name as controlled by the −−machine= option

described above. The machine name is used for various aspect of identification of the container from

the outside, the kernel hostname configurable with this option is useful for the container to identify

itself from the inside. It is usually a good idea to keep both forms of identification synchronized, in

order to avoid confusion. It is hence recommended to avoid usage of this option, and use −−machine=

exclusively. Note that regardless whether the container's hostname is initialized from the name set with

−−hostname= or the one set with −−machine=, the container can later override its kernel hostname

freely on its own as well.

−−uuid=

Set the specified UUID for the container. The init system will initialize /etc/machine−id from this if

this file is not set yet. Note that this option takes effect only if /etc/machine−id in the container is

unpopulated.

Property Options

−S, −−slice=

Make the container part of the specified slice, instead of the default machine.slice. This applies only if

the machine is run in its own scope unit, i.e. if −−keep−unit isn't used.

−−property=

Set a unit property on the scope unit to register for the machine. This applies only if the machine is run

in its own scope unit, i.e. if −−keep−unit isn't used. Takes unit property assignments in the same

format as systemctl set−property. This is useful to set memory limits and similar for container.

−−register=

Controls whether the container is registered with systemd-machined(8). Takes a boolean argument,

which defaults to "yes". This option should be enabled when the container runs a full Operating

System (more specifically: a system and service manager as PID 1), and is useful to ensure that the

container is accessible via machinectl(1) and shown by tools such as ps(1). If the container does not

systemd 245 6

SYSTEMD−NSPAWN(1) systemd-nspawn SYSTEMD−NSPAWN(1)

run a service manager, it is recommended to set this option to "no".

−−keep−unit

Instead of creating a transient scope unit to run the container in, simply use the service or scope unit

systemd−nspawn has been invoked in. If −−register=yes is set this unit is registered with systemd-

machined(8). This switch should be used if systemd−nspawn is invoked from within a service unit,

and the service unit's sole purpose is to run a single systemd−nspawn container. This option is not

available if run from a user session.

Note that passing −−keep−unit disables the effect of −−slice= and −−property=. Use −−keep−unit

and −−register=no in combination to disable any kind of unit allocation or registration with

systemd−machined.

User Namespacing Options

−−private−users=

Controls user namespacing. If enabled, the container will run with its own private set of UNIX user

and group ids (UIDs and GIDs). This involves mapping the private UIDs/GIDs used in the container

(starting with the container's root user 0 and up) to a range of UIDs/GIDs on the host that are not used

for other purposes (usually in the range beyond the host's UID/GID 65536). The parameter may be

specified as follows:

1. If one or two colon−separated numbers are specified, user namespacing is turned on. The

first parameter specifies the first host UID/GID to assign to the container, the second

parameter specifies the number of host UIDs/GIDs to assign to the container. If the second

parameter is omitted, 65536 UIDs/GIDs are assigned.

2. If the parameter is omitted, or true, user namespacing is turned on. The UID/GID range to

use is determined automatically from the file ownership of the root directory of the

container's directory tree. To use this option, make sure to prepare the directory tree in

advance, and ensure that all files and directories in it are owned by UIDs/GIDs in the range

you'd like to use. Also, make sure that used file ACLs exclusively reference UIDs/GIDs in

the appropriate range. If this mode is used the number of UIDs/GIDs assigned to the

container for use is 65536, and the UID/GID of the root directory must be a multiple of

65536.

3. If the parameter is false, user namespacing is turned off. This is the default.

4. The special value "pick" turns on user namespacing. In this case the UID/GID range is

automatically chosen. As first step, the file owner of the root directory of the container's

directory tree is read, and it is checked that it is currently not used by the system otherwise

(in particular, that no other container is using it). If this check is successful, the UID/GID

range determined this way is used, similar to the behavior if "yes" is specified. If the check

is not successful (and thus the UID/GID range indicated in the root directory's file owner is

already used elsewhere) a new – currently unused – UID/GID range of 65536 UIDs/GIDs is

randomly chosen between the host UID/GIDs of 524288 and 1878982656, always starting at

a multiple of 65536. This setting implies −−private−users−chown (see below), which has

the effect that the files and directories in the container's directory tree will be owned by the

appropriate users of the range picked. Using this option makes user namespace behavior

fully automatic. Note that the first invocation of a previously unused container image might

result in picking a new UID/GID range for it, and thus in the (possibly expensive) file

ownership adjustment operation. However, subsequent invocations of the container will be

cheap (unless of course the picked UID/GID range is assigned to a different use by then).

It is recommended to assign at least 65536 UIDs/GIDs to each container, so that the usable UID/GID

range in the container covers 16 bit. For best security, do not assign overlapping UID/GID ranges to

multiple containers. It is hence a good idea to use the upper 16 bit of the host 32−bit UIDs/GIDs as

container identifier, while the lower 16 bit encode the container UID/GID used. This is in fact the

behavior enforced by the −−private−users=pick option.

systemd 245 7

SYSTEMD−NSPAWN(1) systemd-nspawn SYSTEMD−NSPAWN(1)

When user namespaces are used, the GID range assigned to each container is always chosen identical

to the UID range.

In most cases, using −−private−users=pick is the recommended option as it enhances container

security massively and operates fully automatically in most cases.

Note that the picked UID/GID range is not written to /etc/passwd or /etc/group. In fact, the allocation

of the range is not stored persistently anywhere, except in the file ownership of the files and directories

of the container.

Note that when user namespacing is used file ownership on disk reflects this, and all of the container's

files and directories are owned by the container's effective user and group IDs. This means that

copying files from and to the container image requires correction of the numeric UID/GID values,

according to the UID/GID shift applied.

−−private−users−chown

If specified, all files and directories in the container's directory tree will be adjusted so that they are

owned by the appropriate UIDs/GIDs selected for the container (see above). This operation is

potentially expensive, as it inv olves iterating through the full directory tree of the container. Besides

actual file ownership, file ACLs are adjusted as well.

This option is implied if −−private−users=pick is used. This option has no effect if user namespacing

is not used.

−U

If the kernel supports the user namespaces feature, equivalent to −−private−users=pick

−−private−users−chown, otherwise equivalent to −−private−users=no.

Note that −U is the default if the systemd−nspawn@.service template unit file is used.

Note: it is possible to undo the effect of −−private−users−chown (or −U) on the file system by

redoing the operation with the first UID of 0:

systemd−nspawn ... −−private−users=0 −−private−users−chown

Networking Options

−−private−network

Disconnect networking of the container from the host. This makes all network interfaces unavailable

in the container, with the exception of the loopback device and those specified with

−−network−interface= and configured with −−network−veth. If this option is specified, the

CAP_NET_ADMIN capability will be added to the set of capabilities the container retains. The latter

may be disabled by using −−drop−capability=. If this option is not specified (or implied by one of the

options listed below), the container will have full access to the host network.

−−network−interface=

Assign the specified network interface to the container. This will remove the specified interface from

the calling namespace and place it in the container. When the container terminates, it is moved back to

the host namespace. Note that −−network−interface= implies −−private−network. This option may

be used more than once to add multiple network interfaces to the container.

−−network−macvlan=

Create a "macvlan" interface of the specified Ethernet network interface and add it to the container. A

"macvlan" interface is a virtual interface that adds a second MAC address to an existing physical

Ethernet link. The interface in the container will be named after the interface on the host, prefixed with

"mv−". Note that −−network−macvlan= implies −−private−network. This option may be used more

than once to add multiple network interfaces to the container.

−−network−ipvlan=

systemd 245 8

SYSTEMD−NSPAWN(1) systemd-nspawn SYSTEMD−NSPAWN(1)

Create an "ipvlan" interface of the specified Ethernet network interface and add it to the container. An

"ipvlan" interface is a virtual interface, similar to a "macvlan" interface, which uses the same MAC

address as the underlying interface. The interface in the container will be named after the interface on

the host, prefixed with "iv−". Note that −−network−ipvlan= implies −−private−network. This option

may be used more than once to add multiple network interfaces to the container.

−n, −−network−veth

Create a virtual Ethernet link ("veth") between host and container. The host side of the Ethernet link

will be available as a network interface named after the container's name (as specified with

−−machine=), prefixed with "ve−". The container side of the Ethernet link will be named "host0". The

−−network−veth option implies −−private−network.

Note that systemd-networkd.service(8) includes by default a network file

/lib/systemd/network/80−container−ve.network matching the host−side interfaces created this way,

which contains settings to enable automatic address provisioning on the created virtual link via DHCP,

as well as automatic IP routing onto the host's external network interfaces. It also contains

/lib/systemd/network/80−container−host0.network matching the container−side interface created this

way, containing settings to enable client side address assignment via DHCP. In case

systemd−networkd is running on both the host and inside the container, automatic IP communication

from the container to the host is thus available, with further connectivity to the external network.

Note that −−network−veth is the default if the systemd−nspawn@.service template unit file is used.

Note that on Linux network interface names may have a length of 15 characters at maximum, while

container names may have a length up to 64 characters. As this option derives the host−side interface

name from the container name the name is possibly truncated. Thus, care needs to be taken to ensure

that interface names remain unique in this case, or even better container names are generally not

chosen longer than 12 characters, to avoid the truncation. If the name is truncated, systemd−nspawn

will automatically append a 4−digit hash value to the name to reduce the chance of collisions.

However, the hash algorithm is not collision−free. (See systemd.net-naming-scheme(7) for details on

older naming algorithms for this interface). Alternatively, the −−network−veth−extra= option may be

used, which allows free configuration of the host−side interface name independently of the container

name — but might require a bit more additional configuration in case bridging in a fashion similar to

−−network−bridge= is desired.

−−network−veth−extra=

Adds an additional virtual Ethernet link between host and container. Takes a colon−separated pair of

host interface name and container interface name. The latter may be omitted in which case the

container and host sides will be assigned the same name. This switch is independent of

−−network−veth, and — in contrast — may be used multiple times, and allows configuration of the

network interface names. Note that −−network−bridge= has no effect on interfaces created with

−−network−veth−extra=.

−−network−bridge=

Adds the host side of the Ethernet link created with −−network−veth to the specified Ethernet bridge

interface. Expects a valid network interface name of a bridge device as argument. Note that

−−network−bridge= implies −−network−veth. If this option is used, the host side of the Ethernet

link will use the "vb−" prefix instead of "ve−". Regardless of the used naming prefix the same network

interface name length limits imposed by Linux apply, along with the complications this creates (for

details see above).

−−network−zone=

Creates a virtual Ethernet link ("veth") to the container and adds it to an automatically managed

Ethernet bridge interface. The bridge interface is named after the passed argument, prefixed with

"vz−". The bridge interface is automatically created when the first container configured for its name is

started, and is automatically removed when the last container configured for its name exits. Hence,

each bridge interface configured this way exists only as long as there's at least one container

systemd 245 9

SYSTEMD−NSPAWN(1) systemd-nspawn SYSTEMD−NSPAWN(1)

referencing it running. This option is very similar to −−network−bridge=, besides this automatic

creation/removal of the bridge device.

This setting makes it easy to place multiple related containers on a common, virtual Ethernet−based

broadcast domain, here called a "zone". Each container may only be part of one zone, but each zone

may contain any number of containers. Each zone is referenced by its name. Names may be chosen

freely (as long as they form valid network interface names when prefixed with "vz−"), and it is

sufficient to pass the same name to the −−network−zone= switch of the various concurrently running

containers to join them in one zone.

Note that systemd-networkd.service(8) includes by default a network file

/lib/systemd/network/80−container−vz.network matching the bridge interfaces created this way, which

contains settings to enable automatic address provisioning on the created virtual network via DHCP, as

well as automatic IP routing onto the host's external network interfaces. Using −−network−zone= is

hence in most cases fully automatic and sufficient to connect multiple local containers in a joined

broadcast domain to the host, with further connectivity to the external network.

−−network−namespace−path=

Takes the path to a file representing a kernel network namespace that the container shall run in. The

specified path should refer to a (possibly bind−mounted) network namespace file, as exposed by the

kernel below /proc/$PID/ns/net. This makes the container enter the given network namespace. One of

the typical use cases is to give a network namespace under /run/netns created by ip-netns(8), for

example, −−network−namespace−path=/run/netns/foo. Note that this option cannot be used

together with other network−related options, such as −−private−network or −−network−interface=.

−p, −−port=

If private networking is enabled, maps an IP port on the host onto an IP port on the container. Takes a

protocol specifier (either "tcp" or "udp"), separated by a colon from a host port number in the range 1

to 65535, separated by a colon from a container port number in the range from 1 to 65535. The

protocol specifier and its separating colon may be omitted, in which case "tcp" is assumed. The

container port number and its colon may be omitted, in which case the same port as the host port is

implied. This option is only supported if private networking is used, such as with −−network−veth,

−−network−zone= −−network−bridge=.

Security Options

−−capability=

List one or more additional capabilities to grant the container. Takes a comma−separated list of

capability names, see capabilities(7) for more information. Note that the following capabilities will be

granted in any way: CAP_AUDIT_CONTROL, CAP_AUDIT_WRITE, CAP_CHOWN,

CAP_DAC_OVERRIDE, CAP_DAC_READ_SEARCH, CAP_FOWNER, CAP_FSETID,

CAP_IPC_OWNER, CAP_KILL, CAP_LEASE, CAP_LINUX_IMMUTABLE, CAP_MKNOD,

CAP_NET_BIND_SERVICE, CAP_NET_BROADCAST, CAP_NET_RAW, CAP_SETFCAP,

CAP_SETGID, CAP_SETPCAP, CAP_SETUID, CAP_SYS_ADMIN, CAP_SYS_BOOT,

CAP_SYS_CHROOT, CAP_SYS_NICE, CAP_SYS_PTRACE, CAP_SYS_RESOURCE,

CAP_SYS_TTY_CONFIG. Also CAP_NET_ADMIN is retained if −−private−network is

specified. If the special value "all" is passed, all capabilities are retained.

If the special value of "help" is passed, the program will print known capability names and exit.

−−drop−capability=

Specify one or more additional capabilities to drop for the container. This allows running the container

with fewer capabilities than the default (see above).

If the special value of "help" is passed, the program will print known capability names and exit.

−−no−new−privileges=

Takes a boolean argument. Specifies the value of the PR_SET_NO_NEW_PRIVS flag for the

systemd 245 10

SYSTEMD−NSPAWN(1) systemd-nspawn SYSTEMD−NSPAWN(1)

container payload. Defaults to off. When turned on the payload code of the container cannot acquire

new privileges, i.e. the "setuid" file bit as well as file system capabilities will not have an effect

anymore. See prctl(2) for details about this flag.

−−system−call−filter=

Alter the system call filter applied to containers. Takes a space−separated list of system call names or

group names (the latter prefixed with "@", as listed by the syscall−filter command of systemd-

analyze(1)). Passed system calls will be permitted. The list may optionally be prefixed by "˜", in

which case all listed system calls are prohibited. If this command line option is used multiple times the

configured lists are combined. If both a positive and a negative list (that is one system call list without

and one with the "˜" prefix) are configured, the negative list takes precedence over the positive list.

Note that systemd−nspawn always implements a system call whitelist (as opposed to a blacklist), and

this command line option hence adds or removes entries from the default whitelist, depending on the

"˜" prefix. Note that the applied system call filter is also altered implicitly if additional capabilities are

passed using the −−capabilities=.

−Z, −−selinux−context=

Sets the SELinux security context to be used to label processes in the container.

−L, −−selinux−apifs−context=

Sets the SELinux security context to be used to label files in the virtual API file systems in the

container.

Resource Options

−−rlimit=

Sets the specified POSIX resource limit for the container payload. Expects an assignment of the form

"LIMIT=SOFT:HARD" or "LIMIT=VALUE", where LIMIT should refer to a resource limit type, such

as RLIMIT_NOFILE or RLIMIT_NICE. The SOFT and HARD fields should refer to the numeric

soft and hard resource limit values. If the second form is used, VALUE may specify a value that is used

both as soft and hard limit. In place of a numeric value the special string "infinity" may be used to turn

off resource limiting for the specific type of resource. This command line option may be used multiple

times to control limits on multiple limit types. If used multiple times for the same limit type, the last

use wins. For details about resource limits see setrlimit(2). By default resource limits for the

container's init process (PID 1) are set to the same values the Linux kernel originally passed to the host

init system. Note that some resource limits are enforced on resources counted per user, in particular

RLIMIT_NPROC. This means that unless user namespacing is deployed (i.e. −−private−users= is

used, see above), any limits set will be applied to the resource usage of the same user on all local

containers as well as the host. This means particular care needs to be taken with these limits as they

might be triggered by possibly less trusted code. Example:

"−−rlimit=RLIMIT_NOFILE=8192:16384".

−−oom−score−adjust=

Changes the OOM ("Out Of Memory") score adjustment value for the container payload. This controls

/proc/self/oom_score_adj which influences the preference with which this container is terminated

when memory becomes scarce. For details see proc(5). Takes an integer in the range −1000...1000.

−−cpu−affinity=

Controls the CPU affinity of the container payload. Takes a comma separated list of CPU numbers or

number ranges (the latter's start and end value separated by dashes). See sched_setaffinity(2) for

details.

−−personality=

Control the architecture ("personality") reported by uname(2) in the container. Currently, only "x86"

and "x86−64" are supported. This is useful when running a 32−bit container on a 64−bit host. If this

setting is not used, the personality reported in the container is the same as the one reported on the host.

Integration Options

−−resolv−conf=

Configures how /etc/resolv.conf inside of the container (i.e. DNS configuration synchronization from

systemd 245 11

SYSTEMD−NSPAWN(1) systemd-nspawn SYSTEMD−NSPAWN(1)

host to container) shall be handled. Takes one of "off", "copy−host", "copy−static", "bind−host",

"bind−static", "delete" or "auto". If set to "off" the /etc/resolv.conf file in the container is left as it is

included in the image, and neither modified nor bind mounted over. If set to "copy−host", the

/etc/resolv.conf file from the host is copied into the container. Similar, if "bind−host" is used, the file is

bind mounted from the host into the container. If set to "copy−static" the static resolv.conf file

supplied with systemd-resolved.service(8) is copied into the container, and correspondingly

"bind−static" bind mounts it there. If set to "delete" the /etc/resolv.conf file in the container is deleted

if it exists. Finally, if set to "auto" the file is left as it is if private networking is turned on (see

−−private−network). Otherwise, if systemd−resolved.service is connectible its static resolv.conf file

is used, and if not the host's /etc/resolv.conf file is used. In the latter cases the file is copied if the

image is writable, and bind mounted otherwise. It's recommended to use "copy" if the container shall

be able to make changes to the DNS configuration on its own, deviating from the host's settings.

Otherwise "bind" is preferable, as it means direct changes to /etc/resolv.conf in the container are not

allowed, as it is a read−only bind mount (but note that if the container has enough privileges, it might

simply go ahead and unmount the bind mount anyway). Note that both if the file is bind mounted and

if it is copied no further propagation of configuration is generally done after the one−time early

initialization (this is because the file is usually updated through copying and renaming). Defaults to

"auto".

−−timezone=

Configures how /etc/localtime inside of the container (i.e. local timezone synchronization from host to

container) shall be handled. Takes one of "off", "copy", "bind", "symlink", "delete" or "auto". If set to

"off" the /etc/localtime file in the container is left as it is included in the image, and neither modified

nor bind mounted over. If set to "copy" the /etc/localtime file of the host is copied into the container.

Similar, if "bind" is used, it is bind mounted from the host into the container. If set to "symlink" a

symlink from /etc/localtime in the container is created pointing to the matching the timezone file of the

container that matches the timezone setting on the host. If set to "delete" the file in the container is

deleted, should it exist. If set to "auto" and the /etc/localtime file of the host is a symlink, then

"symlink" mode is used, and "copy" otherwise, except if the image is read−only in which case "bind"

is used instead. Defaults to "auto".

−−link−journal=

Control whether the container's journal shall be made visible to the host system. If enabled, allows

viewing the container's journal files from the host (but not vice versa). Takes one of "no", "host",

"try−host", "guest", "try−guest", "auto". If "no", the journal is not linked. If "host", the journal files are

stored on the host file system (beneath /var/log/journal/machine−id) and the subdirectory is

bind−mounted into the container at the same location. If "guest", the journal files are stored on the

guest file system (beneath /var/log/journal/machine−id) and the subdirectory is symlinked into the host

at the same location. "try−host" and "try−guest" do the same but do not fail if the host does not have

persistent journaling enabled. If "auto" (the default), and the right subdirectory of /var/log/journal

exists, it will be bind mounted into the container. If the subdirectory does not exist, no linking is

performed. Effectively, booting a container once with "guest" or "host" will link the journal

persistently if further on the default of "auto" is used.

Note that −−link−journal=try−guest is the default if the systemd−nspawn@.service template unit file

is used.

−j

Equivalent to −−link−journal=try−guest.

Mount Options

−−bind=, −−bind−ro=

Bind mount a file or directory from the host into the container. Takes one of: a path argument — in

which case the specified path will be mounted from the host to the same path in the container, or a

colon−separated pair of paths — in which case the first specified path is the source in the host, and the

second path is the destination in the container, or a colon−separated triple of source path, destination

path and mount options. The source path may optionally be prefixed with a "+" character. If so, the

systemd 245 12

SYSTEMD−NSPAWN(1) systemd-nspawn SYSTEMD−NSPAWN(1)

source path is taken relative to the image's root directory. This permits setting up bind mounts within

the container image. The source path may be specified as empty string, in which case a temporary

directory below the host's /var/tmp directory is used. It is automatically removed when the container is

shut down. Mount options are comma−separated and currently, only rbind and norbind are allowed,

controlling whether to create a recursive or a regular bind mount. Defaults to "rbind". Backslash

escapes are interpreted, so "\:" may be used to embed colons in either path. This option may be

specified multiple times for creating multiple independent bind mount points. The −−bind−ro= option

creates read−only bind mounts.

Note that when this option is used in combination with −−private−users, the resulting mount points

will be owned by the nobody user. That's because the mount and its files and directories continue to be

owned by the relevant host users and groups, which do not exist in the container, and thus show up

under the wildcard UID 65534 (nobody). If such bind mounts are created, it is recommended to make

them read−only, using −−bind−ro=.

−−inaccessible=

Make the specified path inaccessible in the container. This over−mounts the specified path (which

must exist in the container) with a file node of the same type that is empty and has the most restrictive

access mode supported. This is an effective way to mask files, directories and other file system objects

from the container payload. This option may be used more than once in case all specified paths are

masked.

−−tmpfs=

Mount a tmpfs file system into the container. Takes a single absolute path argument that specifies

where to mount the tmpfs instance to (in which case the directory access mode will be chosen as 0755,

owned by root/root), or optionally a colon−separated pair of path and mount option string that is used

for mounting (in which case the kernel default for access mode and owner will be chosen, unless

otherwise specified). Backslash escapes are interpreted in the path, so "\:" may be used to embed

colons in the path.

Note that this option cannot be used to replace the root file system of the container with a temporary

file system. However, the −−volatile= option described below provides similar functionality, with a

focus on implementing stateless operating system images.

−−overlay=, −−overlay−ro=

Combine multiple directory trees into one overlay file system and mount it into the container. Takes a

list of colon−separated paths to the directory trees to combine and the destination mount point.

Backslash escapes are interpreted in the paths, so "\:" may be used to embed colons in the paths.

If three or more paths are specified, then the last specified path is the destination mount point in the

container, all paths specified before refer to directory trees on the host and are combined in the

specified order into one overlay file system. The left−most path is hence the lowest directory tree, the

second−to−last path the highest directory tree in the stacking order. If −−overlay−ro= is used instead

of −−overlay=, a read−only overlay file system is created. If a writable overlay file system is created,

all changes made to it are written to the highest directory tree in the stacking order, i.e. the

second−to−last specified.

If only two paths are specified, then the second specified path is used both as the top−level directory

tree in the stacking order as seen from the host, as well as the mount point for the overlay file system

in the container. At least two paths have to be specified.

The source paths may optionally be prefixed with "+" character. If so they are taken relative to the

image's root directory. The uppermost source path may also be specified as empty string, in which

case a temporary directory below the host's /var/tmp is used. The directory is removed automatically

when the container is shut down. This behaviour is useful in order to make read−only container

systemd 245 13

SYSTEMD−NSPAWN(1) systemd-nspawn SYSTEMD−NSPAWN(1)

directories writable while the container is running. For example, use the "−−overlay=+/var::/var"

option in order to automatically overlay a writable temporary directory on a read−only /var directory.

For details about overlay file systems, see overlayfs.txt[5]. Note that the semantics of overlay file

systems are substantially different from normal file systems, in particular regarding reported device

and inode information. Device and inode information may change for a file while it is being written to,

and processes might see out−of−date versions of files at times. Note that this switch automatically

derives the "workdir=" mount option for the overlay file system from the top−level directory tree,

making it a sibling of it. It is hence essential that the top−level directory tree is not a mount point itself

(since the working directory must be on the same file system as the top−most directory tree). Also note

that the "lowerdir=" mount option receives the paths to stack in the opposite order of this switch.

Note that this option cannot be used to replace the root file system of the container with an overlay file

system. However, the −−volatile= option described above provides similar functionality, with a focus

on implementing stateless operating system images.

Input/Output Options

−−console=MODE

Configures how to set up standard input, output and error output for the container payload, as well as

the /dev/console device for the container. Takes one of interactive, read−only, passive, or pipe. If

interactive, a pseudo−TTY is allocated and made available as /dev/console in the container. It is then

bi−directionally connected to the standard input and output passed to systemd−nspawn. read−only is

similar but only the output of the container is propagated and no input from the caller is read. If

passive, a pseudo TTY is allocated, but it is not connected anywhere. Finally, in pipe mode no pseudo

TTY is allocated, but the standard input, output and error output file descriptors passed to

systemd−nspawn are passed on — as they are — to the container payload, see the following

paragraph. Defaults to interactive if systemd−nspawn is invoked from a terminal, and read−only

otherwise.

In pipe mode, /dev/console will not exist in the container. This means that the container payload

generally cannot be a full init system as init systems tend to require /dev/console to be available. On

the other hand, in this mode container invocations can be used within shell pipelines. This is because

intermediary pseudo TTYs do not permit independent bidirectional propagation of the end−of−file

(EOF) condition, which is necessary for shell pipelines to work correctly. Note that the pipe mode

should be used carefully, as passing arbitrary file descriptors to less trusted container payloads might

open up unwanted interfaces for access by the container payload. For example, if a passed file

descriptor refers to a TTY of some form, APIs such as TIOCSTI may be used to synthesize input that

might be used for escaping the container. Hence pipe mode should only be used if the payload is

sufficiently trusted or when the standard input/output/error output file descriptors are known safe, for

example pipes.

−−pipe, −P

Equivalent to −−console=pipe.

−−no−pager

Do not pipe output into a pager.

−h, −−help

Print a short help text and exit.

−−version

Print a short version string and exit.

ENVIRONMENT
$SYSTEMD_PAGER

Pager to use when −−no−pager is not given; overrides $PAGER. If neither $SYSTEMD_PAGER nor

$PAGER are set, a set of well−known pager implementations are tried in turn, including less(1) and

more(1), until one is found. If no pager implementation is discovered no pager is invoked. Setting this

systemd 245 14

SYSTEMD−NSPAWN(1) systemd-nspawn SYSTEMD−NSPAWN(1)

environment variable to an empty string or the value "cat" is equivalent to passing −−no−pager.

$SYSTEMD_LESS

Override the options passed to less (by default "FRSXMK").

Users might want to change two options in particular:

K

This option instructs the pager to exit immediately when Ctrl+C is pressed. To allow less to

handle Ctrl+C itself to switch back to the pager command prompt, unset this option.

If the value of $SYSTEMD_LESS does not include "K", and the pager that is invoked is less,

Ctrl+C will be ignored by the executable, and needs to be handled by the pager.

X

This option instructs the pager to not send termcap initialization and deinitialization strings to the

terminal. It is set by default to allow command output to remain visible in the terminal even after

the pager exits. Nevertheless, this prevents some pager functionality from working, in particular

paged output cannot be scrolled with the mouse.

See less(1) for more discussion.

$SYSTEMD_LESSCHARSET

Override the charset passed to less (by default "utf−8", if the invoking terminal is determined to be

UTF−8 compatible).

$SYSTEMD_COLORS

The value must be a boolean. Controls whether colorized output should be generated. This can be

specified to override the decision that systemd makes based on $TERM and what the console is

connected to.

$SYSTEMD_URLIFY

The value must be a boolean. Controls whether clickable links should be generated in the output for

terminal emulators supporting this. This can be specified to override the decision that systemd makes

based on $TERM and other conditions.

EXAMPLES
Example 1. Download a Fedora image and start a shell in it

machinectl pull−raw −−verify=no \

https://download.fedoraproject.org/pub/fedora/linux/releases/31/Cloud/x86_64/images/Fedora−Cloud−Base−31−1.9.x86_64.ra

Fedora−Cloud−Base−31−1.9.x86−64

systemd−nspawn −M Fedora−Cloud−Base−31−1.9.x86−64

This downloads an image using machinectl(1) and opens a shell in it.

Example 2. Build and boot a minimal Fedora distribution in a container

dnf −y −−releasever=31 −−installroot=/var/lib/machines/f31 \

−−disablerepo='*' −−enablerepo=fedora −−enablerepo=updates install \

systemd passwd dnf fedora−release vim−minimal glibc−minimal−langpack

systemd−nspawn −bD /var/lib/machines/f31

This installs a minimal Fedora distribution into the directory /var/lib/machines/f31 and then boots an OS in

a namespace container in it. Because the installation is located underneath the standard /var/lib/machines/

directory, it is also possible to start the machine using systemd−nspawn −M f31.

Example 3. Spawn a shell in a container of a minimal Debian unstable distribution

debootstrap unstable ˜/debian−tree/

systemd−nspawn −D ˜/debian−tree/

systemd 245 15

SYSTEMD−NSPAWN(1) systemd-nspawn SYSTEMD−NSPAWN(1)

This installs a minimal Debian unstable distribution into the directory ˜/debian−tree/ and then spawns a

shell in a namespace container in it.

debootstrap supports Debian[7], Ubuntu[8], and Tanglu[9] out of the box, so the same command can be

used to install any of those. For other distributions from the Debian family, a mirror has to be specified, see

debootstrap(8).

Example 4. Boot a minimal Arch Linux distribution in a container

pacstrap −c ˜/arch−tree/ base

systemd−nspawn −bD ˜/arch−tree/

This installs a minimal Arch Linux distribution into the directory ˜/arch−tree/ and then boots an OS in a

namespace container in it.

Example 5. Install the OpenSUSE Tumbleweed rolling distribution

zypper −−root=/var/lib/machines/tumbleweed ar −c \

https://download.opensuse.org/tumbleweed/repo/oss tumbleweed

zypper −−root=/var/lib/machines/tumbleweed refresh

zypper −−root=/var/lib/machines/tumbleweed install −−no−recommends \

systemd shadow zypper openSUSE−release vim

systemd−nspawn −M tumbleweed passwd root

systemd−nspawn −M tumbleweed −b

Example 6. Boot into an ephemeral snapshot of the host system

systemd−nspawn −D / −xb

This runs a copy of the host system in a snapshot which is removed immediately when the container exits.

All file system changes made during runtime will be lost on shutdown, hence.

Example 7. Run a container with SELinux sandbox security contexts

chcon system_u:object_r:svirt_sandbox_file_t:s0:c0,c1 −R /srv/container

systemd−nspawn −L system_u:object_r:svirt_sandbox_file_t:s0:c0,c1 \

−Z system_u:system_r:svirt_lxc_net_t:s0:c0,c1 −D /srv/container /bin/sh

Example 8. Run a container with an OSTree deployment

systemd−nspawn −b −i ˜/image.raw \

−−pivot−root=/ostree/deploy/$OS/deploy/$CHECKSUM:/sysroot \

−−bind=+/sysroot/ostree/deploy/$OS/var:/var

EXIT STATUS
The exit code of the program executed in the container is returned.

SEE ALSO
systemd(1), systemd.nspawn(5), chroot(1), dnf(8), debootstrap(8), pacman(8), zypper(8),

systemd.slice(5), machinectl(1), btrfs(8)

NOTES
1. Container Interface

https://systemd.io/CONTAINER_INTERFACE

2. Discoverable Partitions Specification

https://systemd.io/DISCOVERABLE_PARTITIONS

3. OCI Runtime Specification

https://github.com/opencontainers/runtime-spec/blob/master/spec.md

4. OSTree

https://ostree.readthedocs.io/en/latest/

systemd 245 16

SYSTEMD−NSPAWN(1) systemd-nspawn SYSTEMD−NSPAWN(1)

5. overlayfs.txt

https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt

6. Fedora

https://getfedora.org

7. Debian

https://www.debian.org

8. Ubuntu

https://www.ubuntu.com

9. Tanglu

https://www.tanglu.org

10. Arch Linux

https://www.archlinux.org

11. OpenSUSE Tumbleweed

https://software.opensuse.org/distributions/tumbleweed

systemd 245 17

