
SYSTEMD−NOTIFY(1) systemd-notify SYSTEMD−NOTIFY(1)

NAME
systemd-notify − Notify service manager about start−up completion and other daemon status changes

SYNOPSIS
systemd−notify [OPTIONS...] [VARIABLE=VALUE...]

DESCRIPTION
systemd−notify may be called by daemon scripts to notify the init system about status changes. It can be

used to send arbitrary information, encoded in an environment−block−like list of strings. Most importantly,

it can be used for start−up completion notification.

This is mostly just a wrapper around sd_notify() and makes this functionality available to shell scripts. For

details see sd_notify(3).

The command line may carry a list of environment variables to send as part of the status update.

Note that systemd will refuse reception of status updates from this command unless NotifyAccess= is set

for the service unit this command is called from.

Note that sd_notify() notifications may be attributed to units correctly only if either the sending process is

still around at the time PID 1 processes the message, or if the sending process is explicitly runtime−tracked

by the service manager. The latter is the case if the service manager originally forked off the process, i.e. on

all processes that match NotifyAccess=main or NotifyAccess=exec. Conversely, if an auxiliary process of

the unit sends an sd_notify() message and immediately exits, the service manager might not be able to

properly attribute the message to the unit, and thus will ignore it, even if NotifyAccess=all is set for it.

systemd−notify will first attempt to invoke sd_notify() pretending to have the PID of the invoking process.

This will only succeed when invoked with sufficient privileges. On failure, it will then fall back to invoking

it under its own PID. This behaviour is useful in order that when the tool is invoked from a shell script the

shell process — and not the systemd−notify process — appears as sender of the message, which in turn is

helpful if the shell process is the main process of a service, due to the limitations of NotifyAccess=all

described above.

OPTIONS
The following options are understood:

−−ready

Inform the init system about service start−up completion. This is equivalent to systemd−notify

READY=1. For details about the semantics of this option see sd_notify(3).

−−pid=

Inform the init system about the main PID of the daemon. Takes a PID as argument. If the argument is

omitted, the PID of the process that invoked systemd−notify is used. This is equivalent to

systemd−notify MAINPID=$PID. For details about the semantics of this option see sd_notify(3).

−−uid=USER

Set the user ID to send the notification from. Takes a UNIX user name or numeric UID. When

specified the notification message will be sent with the specified UID as sender, in place of the user the

command was invoked as. This option requires sufficient privileges in order to be able manipulate the

user identity of the process.

−−status=

Send a free−form status string for the daemon to the init systemd. This option takes the status string as

argument. This is equivalent to systemd−notify STATUS=.... For details about the semantics of this

option see sd_notify(3).

−−booted

Returns 0 if the system was booted up with systemd, non−zero otherwise. If this option is passed, no

message is sent. This option is hence unrelated to the other options. For details about the semantics of

this option, see sd_booted(3). An alternate way to check for this state is to call systemctl(1) with the

is−system−running command. It will return "offline" if the system was not booted with systemd.

−h, −−help

systemd 245 1

SYSTEMD−NOTIFY(1) systemd-notify SYSTEMD−NOTIFY(1)

Print a short help text and exit.

−−version

Print a short version string and exit.

EXIT STATUS
On success, 0 is returned, a non−zero failure code otherwise.

EXAMPLE
Example 1. Start−up Notification and Status Updates

A simple shell daemon that sends start−up notifications after having set up its communication channel.

During runtime it sends further status updates to the init system:

#!/bin/bash

mkfifo /tmp/waldo

systemd−notify −−ready −−status="Waiting for data..."

while : ; do

read a < /tmp/waldo

systemd−notify −−status="Processing $a"

Do something with $a ...

systemd−notify −−status="Waiting for data..."

done

SEE ALSO
systemd(1), systemctl(1), systemd.unit(5), sd_notify(3), sd_booted(3)

systemd 245 2

