
SYMLINK(7) Linux Programmer’s Manual SYMLINK(7)

NAME
symlink − symbolic link handling

DESCRIPTION
Symbolic links are files that act as pointers to other files. To understand their behavior, you must first un-

derstand how hard links work.

A hard link to a file is indistinguishable from the original file because it is a reference to the object underly-

ing the original filename. (To be precise: each of the hard links to a file is a reference to the same inode

number, where an inode number is an index into the inode table, which contains metadata about all files on

a filesystem. See stat(2).) Changes to a file are independent of the name used to reference the file. Hard

links may not refer to directories (to prevent the possibility of loops within the filesystem tree, which would

confuse many programs) and may not refer to files on different filesystems (because inode numbers are not

unique across filesystems).

A symbolic link is a special type of file whose contents are a string that is the pathname of another file, the

file to which the link refers. (The contents of a symbolic link can be read using readlink(2).) In other

words, a symbolic link is a pointer to another name, and not to an underlying object. For this reason, sym-

bolic links may refer to directories and may cross filesystem boundaries.

There is no requirement that the pathname referred to by a symbolic link should exist. A symbolic link that

refers to a pathname that does not exist is said to be a dangling link.

Because a symbolic link and its referenced object coexist in the filesystem name space, confusion can arise

in distinguishing between the link itself and the referenced object. On historical systems, commands and

system calls adopted their own link-following conventions in a somewhat ad-hoc fashion. Rules for a more

uniform approach, as they are implemented on Linux and other systems, are outlined here. It is important

that site-local applications also conform to these rules, so that the user interface can be as consistent as pos-

sible.

Symbolic link ownership, permissions, and timestamps

The owner and group of an existing symbolic link can be changed using lchown(2). The only time that the

ownership of a symbolic link matters is when the link is being removed or renamed in a directory that has

the sticky bit set (see stat(2)).

The last access and last modification timestamps of a symbolic link can be changed using utimensat(2) or

lutimes(3).

On Linux, the permissions of a symbolic link are not used in any operations; the permissions are always

0777 (read, write, and execute for all user categories), and can’t be changed. (Note that there are some

"magic" symbolic links in the /proc directory tree—for example, the /proc/[pid]/fd/* files—that have dif-

ferent permissions.)

Obtaining a file descriptor that refers to a symbolic link

Using the combination of the O_PATH and O_NOFOLLOW flags to open(2) yields a file descriptor that

can be passed as the dirfd argument in system calls such as fstatat(2), fchownat(2), fchmodat(2),

linkat(2), and readlinkat(2), in order to operate on the symbolic link itself (rather than the file to which it

refers).

By default (i.e., if the AT_SYMLINK_FOLLOW flag is not specified), if name_to_handle_at(2) is ap-

plied to a symbolic link, it yields a handle for the symbolic link (rather than the file to which it refers). One

can then obtain a file descriptor for the symbolic link (rather than the file to which it refers) by specifying

the O_PATH flag in a subsequent call to open_by_handle_at(2). Again, that file descriptor can be used in

the aforementioned system calls to operate on the symbolic link itself.

Handling of symbolic links by system calls and commands

Symbolic links are handled either by operating on the link itself, or by operating on the object referred to

by the link. In the latter case, an application or system call is said to follow the link. Symbolic links may

refer to other symbolic links, in which case the links are dereferenced until an object that is not a symbolic

link is found, a symbolic link that refers to a file which does not exist is found, or a loop is detected. (Loop

detection is done by placing an upper limit on the number of links that may be followed, and an error

Linux 2016-10-08 1



SYMLINK(7) Linux Programmer’s Manual SYMLINK(7)

results if this limit is exceeded.)

There are three separate areas that need to be discussed. They are as follows:

1. Symbolic links used as filename arguments for system calls.

2. Symbolic links specified as command-line arguments to utilities that are not traversing a file tree.

3. Symbolic links encountered by utilities that are traversing a file tree (either specified on the command

line or encountered as part of the file hierarchy walk).

System calls

The first area is symbolic links used as filename arguments for system calls.

Except as noted below, all system calls follow symbolic links. For example, if there were a symbolic link

slink which pointed to a file named afile, the system call open("slink" ...) would return a file descriptor re-

ferring to the file afile.

Various system calls do not follow links, and operate on the symbolic link itself. They are: lchown(2),

lgetxattr(2), llistxattr(2), lremovexattr(2), lsetxattr(2), lstat(2), readlink(2), rename(2), rmdir(2), and

unlink(2).

Certain other system calls optionally follow symbolic links. They are: faccessat(2), fchownat(2), fs-

tatat(2), linkat(2), name_to_handle_at(2), open(2), openat(2), open_by_handle_at(2), and utimen-

sat(2); see their manual pages for details. Because remove(3) is an alias for unlink(2), that library func-

tion also does not follow symbolic links. When rmdir(2) is applied to a symbolic link, it fails with the er-

ror ENOTDIR.

link(2) warrants special discussion. POSIX.1-2001 specifies that link(2) should dereference oldpath if it is

a symbolic link. However, Linux does not do this. (By default, Solaris is the same, but the POSIX.1-2001

specified behavior can be obtained with suitable compiler options.) POSIX.1-2008 changed the specifica-

tion to allow either behavior in an implementation.

Commands not traversing a file tree

The second area is symbolic links, specified as command-line filename arguments, to commands which are

not traversing a file tree.

Except as noted below, commands follow symbolic links named as command-line arguments. For example,

if there were a symbolic link slink which pointed to a file named afile, the command cat slink would dis-

play the contents of the file afile.

It is important to realize that this rule includes commands which may optionally traverse file trees; for ex-

ample, the command chown file is included in this rule, while the command chown −R file, which performs

a tree traversal, is not. (The latter is described in the third area, below.)

If it is explicitly intended that the command operate on the symbolic link instead of following the symbolic

link—for example, it is desired that chown slink change the ownership of the file that slink is, whether it is

a symbolic link or not—the −h option should be used. In the above example, chown root slink would

change the ownership of the file referred to by slink, while chown −h root slink would change the owner-

ship of slink itself.

There are some exceptions to this rule:

* The mv(1) and rm(1) commands do not follow symbolic links named as arguments, but respectively at-

tempt to rename and delete them. (Note, if the symbolic link references a file via a relative path, moving

it to another directory may very well cause it to stop working, since the path may no longer be correct.)

* The ls(1) command is also an exception to this rule. For compatibility with historic systems (when ls(1)

is not doing a tree walk—that is, −R option is not specified), the ls(1) command follows symbolic links

named as arguments if the −H or −L option is specified, or if the −F , −d , or −l options are not specified.

(The ls(1) command is the only command where the −H and −L options affect its behavior even though

it is not doing a walk of a file tree.)

* The file(1) command is also an exception to this rule. The file(1) command does not follow symbolic

links named as argument by default. The file(1) command does follow symbolic links named as

Linux 2016-10-08 2



SYMLINK(7) Linux Programmer’s Manual SYMLINK(7)

argument if the −L option is specified.

Commands traversing a file tree

The following commands either optionally or always traverse file trees: chgrp(1), chmod(1), chown(1),

cp(1), du(1), find(1), ls(1), pax(1), rm(1), and tar(1).

It is important to realize that the following rules apply equally to symbolic links encountered during the file

tree traversal and symbolic links listed as command-line arguments.

The first rule applies to symbolic links that reference files other than directories. Operations that apply to

symbolic links are performed on the links themselves, but otherwise the links are ignored.

The command rm −r slink directory will remove slink, as well as any symbolic links encountered in the

tree traversal of directory, because symbolic links may be removed. In no case will rm(1) affect the file re-

ferred to by slink.

The second rule applies to symbolic links that refer to directories. Symbolic links that refer to directories

are never followed by default. This is often referred to as a "physical" walk, as opposed to a "logical" walk

(where symbolic links that refer to directories are followed).

Certain conventions are (should be) followed as consistently as possible by commands that perform file tree

walks:

* A command can be made to follow any symbolic links named on the command line, regardless of the

type of file they reference, by specifying the −H (for "half-logical") flag. This flag is intended to make

the command-line name space look like the logical name space. (Note, for commands that do not always

do file tree traversals, the −H flag will be ignored if the −R flag is not also specified.)

For example, the command chown −HR user slink will traverse the file hierarchy rooted in the file

pointed to by slink. Note, the −H is not the same as the previously discussed −h flag. The −H flag

causes symbolic links specified on the command line to be dereferenced for the purposes of both the ac-

tion to be performed and the tree walk, and it is as if the user had specified the name of the file to which

the symbolic link pointed.

* A command can be made to follow any symbolic links named on the command line, as well as any sym-

bolic links encountered during the traversal, regardless of the type of file they reference, by specifying

the −L (for "logical") flag. This flag is intended to make the entire name space look like the logical name

space. (Note, for commands that do not always do file tree traversals, the −L flag will be ignored if the

−R flag is not also specified.)

For example, the command chown −LR user slink will change the owner of the file referred to by slink.

If slink refers to a directory, chown will traverse the file hierarchy rooted in the directory that it refer-

ences. In addition, if any symbolic links are encountered in any file tree that chown traverses, they will

be treated in the same fashion as slink.

* A command can be made to provide the default behavior by specifying the −P (for "physical") flag. This

flag is intended to make the entire name space look like the physical name space.

For commands that do not by default do file tree traversals, the −H , −L, and −P flags are ignored if the −R

flag is not also specified. In addition, you may specify the −H , −L, and −P options more than once; the

last one specified determines the command’s behavior. This is intended to permit you to alias commands to

behave one way or the other, and then override that behavior on the command line.

The ls(1) and rm(1) commands have exceptions to these rules:

* The rm(1) command operates on the symbolic link, and not the file it references, and therefore never fol-

lows a symbolic link. The rm(1) command does not support the −H , −L, or −P options.

* To maintain compatibility with historic systems, the ls(1) command acts a little differently. If you do not

specify the −F , −d or −l options, ls(1) will follow symbolic links specified on the command line. If the

−L flag is specified, ls(1) follows all symbolic links, regardless of their type, whether specified on the

command line or encountered in the tree walk.

Linux 2016-10-08 3



SYMLINK(7) Linux Programmer’s Manual SYMLINK(7)

SEE ALSO
chgrp(1), chmod(1), find(1), ln(1), ls(1), mv(1), namei(1), rm(1), lchown(2), link(2), lstat(2), read-

link(2), rename(2), symlink(2), unlink(2), utimensat(2), lutimes(3), path_resolution(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2016-10-08 4


