
SSH_CONFIG (5) BSD File Formats Manual SSH_CONFIG (5)

NAME

ssh_config — OpenSSH client configuration file

DESCRIPTION

ssh(1) obtains configuration data from the following sources in the following order:

1. command-line options

2. user’s configuration file (˜/.ssh/config)

3. system-wide configuration file (/etc/ssh/ssh_config)

For each parameter, the first obtained value will be used. The configuration files contain sections separated

by Host specifications, and that section is only applied for hosts that match one of the patterns given in the

specification. The matched host name is usually the one given on the command line (see the

CanonicalizeHostname option for exceptions).

Since the first obtained value for each parameter is used, more host-specific declarations should be given near

the beginning of the file, and general defaults at the end.

Note that the Debian openssh-client package sets several options as standard in

/etc/ssh/ssh_config which are not the default in ssh(1):

• Include /etc/ssh/ssh_config.d/∗ .conf
• SendEnv LANG LC_∗
• HashKnownHosts yes

• GSSAPIAuthentication yes

/etc/ssh/ssh_config.d/∗ .conf files are included at the start of the system-wide configuration file,

so options set there will override those in /etc/ssh/ssh_config.

The file contains keyword-argument pairs, one per line. Lines starting with ‘#’ and empty lines are inter-

preted as comments. Arguments may optionally be enclosed in double quotes (") in order to represent ar-

guments containing spaces. Configuration options may be separated by whitespace or optional whitespace

and exactly one ‘=’; the latter format is useful to avoid the need to quote whitespace when specifying config-

uration options using the ssh, scp, and sftp −o option.

The possible keywords and their meanings are as follows (note that keywords are case-insensitive and argu-

ments are case-sensitive):

Host Restricts the following declarations (up to the next Host or Match keyword) to be only for those

hosts that match one of the patterns given after the keyword. If more than one pattern is provided,

they should be separated by whitespace. A single ‘∗ ’ as a pattern can be used to provide global de-

faults for all hosts. The host is usually the hostname argument given on the command line (see

the CanonicalizeHostname keyword for exceptions).

A pattern entry may be negated by prefixing it with an exclamation mark (‘!’) . If a negated entry

is matched, then the Host entry is ignored, regardless of whether any other patterns on the line

match. Negated matches are therefore useful to provide exceptions for wildcard matches.

See PATTERNS for more information on patterns.

Match Restricts the following declarations (up to the next Host or Match keyword) to be used only when

the conditions following the Match keyword are satisfied. Match conditions are specified using one

or more criteria or the single token all which always matches. The available criteria keywords are:

canonical, final, exec, host, originalhost, user, and localuser. The all crite-

ria must appear alone or immediately after canonical or final. Other criteria may be com-

bined arbitrarily. All criteria but all, canonical, and final require an argument. Criteria may

be negated by prepending an exclamation mark (‘!’) .

BSD February 7, 2020 1

SSH_CONFIG (5) BSD File Formats Manual SSH_CONFIG (5)

The canonical keyword matches only when the configuration file is being re-parsed after host-

name canonicalization (see the CanonicalizeHostname option). This may be useful to specify

conditions that work with canonical host names only.

The final keyword requests that the configuration be re-parsed (regardless of whether

CanonicalizeHostname is enabled), and matches only during this final pass. If

CanonicalizeHostname is enabled, then canonical and final match during the same

pass.

The exec keyword executes the specified command under the user’s shell. If the command returns

a zero exit status then the condition is considered true. Commands containing whitespace characters

must be quoted. Arguments to exec accept the tokens described in the TOKENS section.

The other keywords’ criteria must be single entries or comma-separated lists and may use the wild-

card and negation operators described in the PATTERNS section. The criteria for the host key-

word are matched against the target hostname, after any substitution by the Hostname or

CanonicalizeHostname options. The originalhost keyword matches against the host-

name as it was specified on the command-line. The user keyword matches against the target user-

name on the remote host. The localuser keyword matches against the name of the local user

running ssh(1) (this keyword may be useful in system-wide ssh_config files).

AddKeysToAgent

Specifies whether keys should be automatically added to a running ssh-agent(1). If this option

is set to yes and a key is loaded from a file, the key and its passphrase are added to the agent with

the default lifetime, as if by ssh-add(1). If this option is set to ask, ssh(1) will require confir-

mation using the SSH_ASKPASS program before adding a key (see ssh-add(1) for details). If

this option is set to confirm, each use of the key must be confirmed, as if the −c option was spec-

ified to ssh-add(1). If this option is set to no, no keys are added to the agent. The argument must

be yes, confirm, ask, or no (the default).

AddressFamily

Specifies which address family to use when connecting. Valid arguments are any (the default),

inet (use IPv4 only), or inet6 (use IPv6 only).

BatchMode

If set to yes, user interaction such as password prompts and host key confirmation requests will be

disabled. In addition, the ServerAliveInterval option will be set to 300 seconds by default

(Debian-specific). This option is useful in scripts and other batch jobs where no user is present to

interact with ssh(1), and where it is desirable to detect a broken network swiftly. The argument

must be yes or no (the default).

BindAddress

Use the specified address on the local machine as the source address of the connection. Only useful

on systems with more than one address.

BindInterface

Use the address of the specified interface on the local machine as the source address of the connec-

tion.

CanonicalDomains

When CanonicalizeHostname is enabled, this option specifies the list of domain suffixes in

which to search for the specified destination host.

CanonicalizeFallbackLocal

Specifies whether to fail with an error when hostname canonicalization fails. The default, yes, will

attempt to look up the unqualified hostname using the system resolver’s search rules. A value of no

will cause ssh(1) to fail instantly if CanonicalizeHostname is enabled and the target host-

BSD February 7, 2020 2

SSH_CONFIG (5) BSD File Formats Manual SSH_CONFIG (5)

name cannot be found in any of the domains specified by CanonicalDomains.

CanonicalizeHostname

Controls whether explicit hostname canonicalization is performed. The default, no, is not to per-

form any name rewriting and let the system resolver handle all hostname lookups. If set to yes

then, for connections that do not use a ProxyCommand or ProxyJump, ssh(1) will attempt to

canonicalize the hostname specified on the command line using the CanonicalDomains suffixes

and CanonicalizePermittedCNAMEs rules. If CanonicalizeHostname is set to

always, then canonicalization is applied to proxied connections too.

If this option is enabled, then the configuration files are processed again using the new target name

to pick up any new configuration in matching Host and Match stanzas.

CanonicalizeMaxDots

Specifies the maximum number of dot characters in a hostname before canonicalization is disabled.

The default, 1, allows a single dot (i.e. hostname.subdomain).

CanonicalizePermittedCNAMEs

Specifies rules to determine whether CNAMEs should be followed when canonicalizing hostnames.

The rules consist of one or more arguments of

source_domain_list:target_domain_list, where source_domain_list is a pat-

tern-list of domains that may follow CNAMEs in canonicalization, and target_domain_list

is a pattern-list of domains that they may resolve to.

For example, "∗ .a.example.com:∗ .b.example.com,∗ .c.example.com" will allow hostnames matching

"∗ .a.example.com" to be canonicalized to names in the "∗ .b.example.com" or "∗ .c.example.com" do-

mains.

CASignatureAlgorithms

Specifies which algorithms are allowed for signing of certificates by certificate authorities (CAs).

The default is:

ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,

ssh-ed25519,rsa-sha2-512,rsa-sha2-256,ssh-rsa

ssh(1) will not accept host certificates signed using algorithms other than those specified.

CertificateFile

Specifies a file from which the user’s certificate is read. A corresponding private key must be pro-

vided separately in order to use this certificate either from an IdentityFile directive or −i flag

to ssh(1), via ssh-agent(1), or via a PKCS11Provider or SecurityKeyProvider.

Arguments to CertificateFile may use the tilde syntax to refer to a user’s home directory or

the tokens described in the TOKENS section.

It is possible to have multiple certificate files specified in configuration files; these certificates will

be tried in sequence. Multiple CertificateFile directives will add to the list of certificates

used for authentication.

ChallengeResponseAuthentication

Specifies whether to use challenge-response authentication. The argument to this keyword must be

yes (the default) or no.

CheckHostIP

If set to yes (the default), ssh(1) will additionally check the host IP address in the known_hosts

file. This allows it to detect if a host key changed due to DNS spoofing and will add addresses of

destination hosts to ˜/.ssh/known_hosts in the process, regardless of the setting of

StrictHostKeyChecking. If the option is set to no, the check will not be executed.

BSD February 7, 2020 3

SSH_CONFIG (5) BSD File Formats Manual SSH_CONFIG (5)

Ciphers

Specifies the ciphers allowed and their order of preference. Multiple ciphers must be comma-sepa-

rated. If the specified list begins with a ‘+’ character, then the specified ciphers will be appended to

the default set instead of replacing them. If the specified list begins with a ‘-’ character, then the

specified ciphers (including wildcards) will be removed from the default set instead of replacing

them. If the specified list begins with a ‘ˆ’ character, then the specified ciphers will be placed at the

head of the default set.

The supported ciphers are:

3des-cbc

aes128-cbc

aes192-cbc

aes256-cbc

aes128-ctr

aes192-ctr

aes256-ctr

aes128-gcm@openssh.com

aes256-gcm@openssh.com

chacha20-poly1305@openssh.com

The default is:

chacha20-poly1305@openssh.com,

aes128-ctr,aes192-ctr,aes256-ctr,

aes128-gcm@openssh.com,aes256-gcm@openssh.com

The list of available ciphers may also be obtained using "ssh -Q cipher".

ClearAllForwardings

Specifies that all local, remote, and dynamic port forwardings specified in the configuration files or

on the command line be cleared. This option is primarily useful when used from the ssh(1) com-

mand line to clear port forwardings set in configuration files, and is automatically set by scp(1) and

sftp(1). The argument must be yes or no (the default).

Compression

Specifies whether to use compression. The argument must be yes or no (the default).

ConnectionAttempts

Specifies the number of tries (one per second) to make before exiting. The argument must be an in-

teger. This may be useful in scripts if the connection sometimes fails. The default is 1.

ConnectTimeout

Specifies the timeout (in seconds) used when connecting to the SSH server, instead of using the de-

fault system TCP timeout. This timeout is applied both to establishing the connection and to per-

forming the initial SSH protocol handshake and key exchange.

ControlMaster

Enables the sharing of multiple sessions over a single network connection. When set to yes,

ssh(1) will listen for connections on a control socket specified using the ControlPath argument.

Additional sessions can connect to this socket using the same ControlPath with

ControlMaster set to no (the default). These sessions will try to reuse the master instance’s

network connection rather than initiating new ones, but will fall back to connecting normally if the

control socket does not exist, or is not listening.

Setting this to ask will cause ssh(1) to listen for control connections, but require confirmation us-

ing ssh-askpass(1). If the ControlPath cannot be opened, ssh(1) will continue without

BSD February 7, 2020 4

SSH_CONFIG (5) BSD File Formats Manual SSH_CONFIG (5)

connecting to a master instance.

X11 and ssh-agent(1) forwarding is supported over these multiplexed connections, however the

display and agent forwarded will be the one belonging to the master connection i.e. it is not possible

to forward multiple displays or agents.

Tw o additional options allow for opportunistic multiplexing: try to use a master connection but fall

back to creating a new one if one does not already exist. These options are: auto and autoask.

The latter requires confirmation like the ask option.

ControlPath

Specify the path to the control socket used for connection sharing as described in the

ControlMaster section above or the string none to disable connection sharing. Arguments to

ControlPath may use the tilde syntax to refer to a user’s home directory or the tokens described

in the TOKENS section. It is recommended that any ControlPath used for opportunistic con-

nection sharing include at least %h, %p, and %r (or alternatively %C) and be placed in a directory

that is not writable by other users. This ensures that shared connections are uniquely identified.

ControlPersist

When used in conjunction with ControlMaster, specifies that the master connection should re-

main open in the background (waiting for future client connections) after the initial client connec-

tion has been closed. If set to no (the default), then the master connection will not be placed into

the background, and will close as soon as the initial client connection is closed. If set to yes or 0,

then the master connection will remain in the background indefinitely (until killed or closed via a

mechanism such as the "ssh -O exit"). If set to a time in seconds, or a time in any of the formats

documented in sshd_config(5), then the backgrounded master connection will automatically ter-

minate after it has remained idle (with no client connections) for the specified time.

DynamicForward

Specifies that a TCP port on the local machine be forwarded over the secure channel, and the appli-

cation protocol is then used to determine where to connect to from the remote machine.

The argument must be [bind_address:]port. IPv6 addresses can be specified by enclosing ad-

dresses in square brackets. By default, the local port is bound in accordance with the

GatewayPorts setting. However, an explicit bind_address may be used to bind the connec-

tion to a specific address. The bind_address of localhost indicates that the listening port be

bound for local use only, while an empty address or ‘∗ ’ indicates that the port should be available

from all interfaces.

Currently the SOCKS4 and SOCKS5 protocols are supported, and ssh(1) will act as a SOCKS

server. Multiple forwardings may be specified, and additional forwardings can be given on the com-

mand line. Only the superuser can forward privileged ports.

EnableSSHKeysign

Setting this option to yes in the global client configuration file /etc/ssh/ssh_config enables

the use of the helper program ssh-keysign(8) during HostbasedAuthentication. The

argument must be yes or no (the default). This option should be placed in the non-hostspecific

section. See ssh-keysign(8) for more information.

EscapeChar

Sets the escape character (default: ‘˜’). The escape character can also be set on the command line.

The argument should be a single character, ‘ˆ’ followed by a letter, or none to disable the escape

character entirely (making the connection transparent for binary data).

ExitOnForwardFailure

Specifies whether ssh(1) should terminate the connection if it cannot set up all requested dynamic,

tunnel, local, and remote port forwardings, (e.g. if either end is unable to bind and listen on a speci-

BSD February 7, 2020 5

SSH_CONFIG (5) BSD File Formats Manual SSH_CONFIG (5)

fied port). Note that ExitOnForwardFailure does not apply to connections made over port

forwardings and will not, for example, cause ssh(1) to exit if TCP connections to the ultimate for-

warding destination fail. The argument must be yes or no (the default).

FingerprintHash

Specifies the hash algorithm used when displaying key fingerprints. Valid options are: md5 and

sha256 (the default).

ForwardAgent

Specifies whether the connection to the authentication agent (if any) will be forwarded to the remote

machine. The argument may be yes, no (the default), an explicit path to an agent socket or the

name of an environment variable (beginning with ‘$’) in which to find the path.

Agent forwarding should be enabled with caution. Users with the ability to bypass file permissions

on the remote host (for the agent’s Unix-domain socket) can access the local agent through the for-

warded connection. An attacker cannot obtain key material from the agent, however they can per-

form operations on the keys that enable them to authenticate using the identities loaded into the

agent.

ForwardX11

Specifies whether X11 connections will be automatically redirected over the secure channel and

DISPLAY set. The argument must be yes or no (the default).

X11 forwarding should be enabled with caution. Users with the ability to bypass file permissions on

the remote host (for the user’s X11 authorization database) can access the local X11 display through

the forwarded connection. An attacker may then be able to perform activities such as keystroke

monitoring if the ForwardX11Trusted option is also enabled.

ForwardX11Timeout

Specify a timeout for untrusted X11 forwarding using the format described in the TIME

FORMATS section of sshd_config(5). X11 connections received by ssh(1) after this time will

be refused. Setting ForwardX11Timeout to zero will disable the timeout and permit X11 for-

warding for the life of the connection. The default is to disable untrusted X11 forwarding after

twenty minutes has elapsed.

ForwardX11Trusted

If this option is set to yes, (the Debian-specific default), remote X11 clients will have full access to

the original X11 display.

If this option is set to no (the upstream default), remote X11 clients will be considered untrusted

and prevented from stealing or tampering with data belonging to trusted X11 clients. Furthermore,

the xauth(1) token used for the session will be set to expire after 20 minutes. Remote clients will

be refused access after this time.

See the X11 SECURITY extension specification for full details on the restrictions imposed on un-

trusted clients.

GatewayPorts

Specifies whether remote hosts are allowed to connect to local forwarded ports. By default, ssh(1)

binds local port forwardings to the loopback address. This prevents other remote hosts from con-

necting to forwarded ports. GatewayPorts can be used to specify that ssh should bind local port

forwardings to the wildcard address, thus allowing remote hosts to connect to forwarded ports. The

argument must be yes or no (the default).

GlobalKnownHostsFile

Specifies one or more files to use for the global host key database, separated by whitespace. The de-

fault is /etc/ssh/ssh_known_hosts, /etc/ssh/ssh_known_hosts2.

BSD February 7, 2020 6

SSH_CONFIG (5) BSD File Formats Manual SSH_CONFIG (5)

GSSAPIAuthentication

Specifies whether user authentication based on GSSAPI is allowed. The default is no.

GSSAPIClientIdentity

If set, specifies the GSSAPI client identity that ssh should use when connecting to the server. The

default is unset, which means that the default identity will be used.

GSSAPIDelegateCredentials

Forward (delegate) credentials to the server. The default is no.

GSSAPIKeyExchange

Specifies whether key exchange based on GSSAPI may be used. When using GSSAPI key exchange

the server need not have a host key. The default is “no”.

GSSAPIRenewalForcesRekey

If set to “yes” then renewal of the client’s GSSAPI credentials will force the rekeying of the ssh con-

nection. With a compatible server, this will delegate the renewed credentials to a session on the

server.

Checks are made to ensure that credentials are only propagated when the new credentials match the

old ones on the originating client and where the receiving server still has the old set in its cache.

The default is “no”.

For this to work GSSAPIKeyExchange needs to be enabled in the server and also used by the

client.

GSSAPIServerIdentity

If set, specifies the GSSAPI server identity that ssh should expect when connecting to the server.

The default is unset, which means that the expected GSSAPI server identity will be determined from

the target hostname.

GSSAPITrustDns

Set to “yes” to indicate that the DNS is trusted to securely canonicalize the name of the host being

connected to. If “no”, the hostname entered on the command line will be passed untouched to the

GSSAPI library. The default is “no”.

GSSAPIKexAlgorithms

The list of key exchange algorithms that are offered for GSSAPI key exchange. Possible values are

gss-gex-sha1-,

gss-group1-sha1-,

gss-group14-sha1-,

gss-group14-sha256-,

gss-group16-sha512-,

gss-nistp256-sha256-,

gss-curve25519-sha256-

The default is “gss-gex-sha1-,gss-group14-sha1-”. This option only applies to protocol version 2

connections using GSSAPI.

HashKnownHosts

Indicates that ssh(1) should hash host names and addresses when they are added to

˜/.ssh/known_hosts. These hashed names may be used normally by ssh(1) and sshd(8),

but they do not visually reveal identifying information if the file’s contents are disclosed. The de-

fault is no. Note that existing names and addresses in known hosts files will not be converted auto-

matically, but may be manually hashed using ssh-keygen(1). Use of this option may break facil-

ities such as tab-completion that rely on being able to read unhashed host names from

BSD February 7, 2020 7

SSH_CONFIG (5) BSD File Formats Manual SSH_CONFIG (5)

˜/.ssh/known_hosts.

HostbasedAuthentication

Specifies whether to try rhosts based authentication with public key authentication. The argument

must be yes or no (the default).

HostbasedKeyTypes

Specifies the key types that will be used for hostbased authentication as a comma-separated list of

patterns. Alternately if the specified list begins with a ‘+’ character, then the specified key types will

be appended to the default set instead of replacing them. If the specified list begins with a ‘-’ char-

acter, then the specified key types (including wildcards) will be removed from the default set instead

of replacing them. If the specified list begins with a ‘ˆ’ character, then the specified key types will

be placed at the head of the default set. The default for this option is:

ecdsa-sha2-nistp256-cert-v01@openssh.com,

ecdsa-sha2-nistp384-cert-v01@openssh.com,

ecdsa-sha2-nistp521-cert-v01@openssh.com,

sk-ecdsa-sha2-nistp256-cert-v01@openssh.com,

ssh-ed25519-cert-v01@openssh.com,

sk-ssh-ed25519-cert-v01@openssh.com,

rsa-sha2-512-cert-v01@openssh.com,

rsa-sha2-256-cert-v01@openssh.com,

ssh-rsa-cert-v01@openssh.com,

ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,

sk-ecdsa-sha2-nistp256@openssh.com,

ssh-ed25519,sk-ssh-ed25519@openssh.com,

rsa-sha2-512,rsa-sha2-256,ssh-rsa

The −Q option of ssh(1) may be used to list supported key types.

HostKeyAlgorithms

Specifies the host key algorithms that the client wants to use in order of preference. Alternately if

the specified list begins with a ‘+’ character, then the specified key types will be appended to the de-

fault set instead of replacing them. If the specified list begins with a ‘-’ character, then the specified

key types (including wildcards) will be removed from the default set instead of replacing them. If

the specified list begins with a ‘ˆ’ character, then the specified key types will be placed at the head of

the default set. The default for this option is:

ecdsa-sha2-nistp256-cert-v01@openssh.com,

ecdsa-sha2-nistp384-cert-v01@openssh.com,

ecdsa-sha2-nistp521-cert-v01@openssh.com,

sk-ecdsa-sha2-nistp256-cert-v01@openssh.com,

ssh-ed25519-cert-v01@openssh.com,

sk-ssh-ed25519-cert-v01@openssh.com,

rsa-sha2-512-cert-v01@openssh.com,

rsa-sha2-256-cert-v01@openssh.com,

ssh-rsa-cert-v01@openssh.com,

ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,

sk-ecdsa-sha2-nistp256@openssh.com,

ssh-ed25519,sk-ssh-ed25519@openssh.com,

rsa-sha2-512,rsa-sha2-256,ssh-rsa

If hostkeys are known for the destination host then this default is modified to prefer their algorithms.

BSD February 7, 2020 8

SSH_CONFIG (5) BSD File Formats Manual SSH_CONFIG (5)

The list of available key types may also be obtained using "ssh -Q HostKeyAlgorithms".

HostKeyAlias

Specifies an alias that should be used instead of the real host name when looking up or saving the

host key in the host key database files and when validating host certificates. This option is useful for

tunneling SSH connections or for multiple servers running on a single host.

Hostname

Specifies the real host name to log into. This can be used to specify nicknames or abbreviations for

hosts. Arguments to Hostname accept the tokens described in the TOKENS section. Numeric IP

addresses are also permitted (both on the command line and in Hostname specifications). The de-

fault is the name given on the command line.

IdentitiesOnly

Specifies that ssh(1) should only use the configured authentication identity and certificate files (ei-

ther the default files, or those explicitly configured in the ssh_config files or passed on the

ssh(1) command-line), even if ssh-agent(1) or a PKCS11Provider or

SecurityKeyProvider offers more identities. The argument to this keyword must be yes or

no (the default). This option is intended for situations where ssh-agent offers many different identi-

ties.

IdentityAgent

Specifies the UNIX-domain socket used to communicate with the authentication agent.

This option overrides the SSH_AUTH_SOCK environment variable and can be used to select a spe-

cific agent. Setting the socket name to none disables the use of an authentication agent. If the

string "SSH_AUTH_SOCK" is specified, the location of the socket will be read from the

SSH_AUTH_SOCK environment variable. Otherwise if the specified value begins with a ‘$’ charac-

ter, then it will be treated as an environment variable containing the location of the socket.

Arguments to IdentityAgent may use the tilde syntax to refer to a user’s home directory or the

tokens described in the TOKENS section.

IdentityFile

Specifies a file from which the user’s DSA, ECDSA, authenticator-hosted ECDSA, Ed25519, au-

thenticator-hosted Ed25519 or RSA authentication identity is read. The default is

˜/.ssh/id_dsa, ˜/.ssh/id_ecdsa, ˜/.ssh/id_ecdsa_sk, ˜/.ssh/id_ed25519,

˜/.ssh/id_ed25519_sk and ˜/.ssh/id_rsa. Additionally, any identities represented by

the authentication agent will be used for authentication unless IdentitiesOnly is set. If no cer-

tificates have been explicitly specified by CertificateFile, ssh(1) will try to load certificate

information from the filename obtained by appending -cert.pub to the path of a specified

IdentityFile.

Arguments to IdentityFile may use the tilde syntax to refer to a user’s home directory or the

tokens described in the TOKENS section.

It is possible to have multiple identity files specified in configuration files; all these identities will be

tried in sequence. Multiple IdentityFile directives will add to the list of identities tried (this

behaviour differs from that of other configuration directives).

IdentityFile may be used in conjunction with IdentitiesOnly to select which identities

in an agent are offered during authentication. IdentityFile may also be used in conjunction

with CertificateFile in order to provide any certificate also needed for authentication with

the identity.

BSD February 7, 2020 9

SSH_CONFIG (5) BSD File Formats Manual SSH_CONFIG (5)

IgnoreUnknown

Specifies a pattern-list of unknown options to be ignored if they are encountered in configuration

parsing. This may be used to suppress errors if ssh_config contains options that are unrecog-

nised by ssh(1). It is recommended that IgnoreUnknown be listed early in the configuration file

as it will not be applied to unknown options that appear before it.

Include

Include the specified configuration file(s). Multiple pathnames may be specified and each pathname

may contain glob(7) wildcards and, for user configurations, shell-like ‘˜’ references to user home

directories. Files without absolute paths are assumed to be in ˜/.ssh if included in a user configu-

ration file or /etc/ssh if included from the system configuration file. Include directive may

appear inside a Match or Host block to perform conditional inclusion.

IPQoS Specifies the IPv4 type-of-service or DSCP class for connections. Accepted values are af11,

af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, cs0, cs1, cs2,

cs3, cs4, cs5, cs6, cs7, ef, le, lowdelay, throughput, reliability, a numeric

value, or none to use the operating system default. This option may take one or two arguments,

separated by whitespace. If one argument is specified, it is used as the packet class unconditionally.

If two values are specified, the first is automatically selected for interactive sessions and the second

for non-interactive sessions. The default is lowdelay for interactive sessions and throughput

for non-interactive sessions.

KbdInteractiveAuthentication

Specifies whether to use keyboard-interactive authentication. The argument to this keyword must be

yes (the default) or no.

KbdInteractiveDevices

Specifies the list of methods to use in keyboard-interactive authentication. Multiple method names

must be comma-separated. The default is to use the server specified list. The methods available

vary depending on what the server supports. For an OpenSSH server, it may be zero or more of:

bsdauth and pam.

KexAlgorithms

Specifies the available KEX (Key Exchange) algorithms. Multiple algorithms must be comma-sepa-

rated. If the specified list begins with a ‘+’ character, then the specified methods will be appended

to the default set instead of replacing them. If the specified list begins with a ‘-’ character, then the

specified methods (including wildcards) will be removed from the default set instead of replacing

them. If the specified list begins with a ‘ˆ’ character, then the specified methods will be placed at the

head of the default set. The default is:

curve25519-sha256,curve25519-sha256@libssh.org,

ecdh-sha2-nistp256,ecdh-sha2-nistp384,ecdh-sha2-nistp521,

diffie-hellman-group-exchange-sha256,

diffie-hellman-group16-sha512,

diffie-hellman-group18-sha512,

diffie-hellman-group14-sha256

The list of available key exchange algorithms may also be obtained using "ssh -Q kex".

LocalCommand

Specifies a command to execute on the local machine after successfully connecting to the server.

The command string extends to the end of the line, and is executed with the user’s shell. Arguments

to LocalCommand accept the tokens described in the TOKENS section.

The command is run synchronously and does not have access to the session of the ssh(1) that

spawned it. It should not be used for interactive commands.

BSD February 7, 2020 10

SSH_CONFIG (5) BSD File Formats Manual SSH_CONFIG (5)

This directive is ignored unless PermitLocalCommand has been enabled.

LocalForward

Specifies that a TCP port on the local machine be forwarded over the secure channel to the specified

host and port from the remote machine. The first argument must be [bind_address:]port and

the second argument must be host:hostport. IPv6 addresses can be specified by enclosing ad-

dresses in square brackets. Multiple forwardings may be specified, and additional forwardings can

be given on the command line. Only the superuser can forward privileged ports. By default, the lo-

cal port is bound in accordance with the GatewayPorts setting. However, an explicit

bind_address may be used to bind the connection to a specific address. The bind_address

of localhost indicates that the listening port be bound for local use only, while an empty address

or ‘∗ ’ indicates that the port should be available from all interfaces.

LogLevel

Gives the verbosity level that is used when logging messages from ssh(1). The possible values are:

QUIET, FAT AL, ERROR, INFO, VERBOSE, DEBUG, DEBUG1, DEBUG2, and DEBUG3. The

default is INFO. DEBUG and DEBUG1 are equivalent. DEBUG2 and DEBUG3 each specify

higher levels of verbose output.

MACs Specifies the MAC (message authentication code) algorithms in order of preference. The MAC al-

gorithm is used for data integrity protection. Multiple algorithms must be comma-separated. If the

specified list begins with a ‘+’ character, then the specified algorithms will be appended to the de-

fault set instead of replacing them. If the specified list begins with a ‘-’ character, then the specified

algorithms (including wildcards) will be removed from the default set instead of replacing them. If

the specified list begins with a ‘ˆ’ character, then the specified algorithms will be placed at the head

of the default set.

The algorithms that contain "-etm" calculate the MAC after encryption (encrypt-then-mac). These

are considered safer and their use recommended.

The default is:

umac-64-etm@openssh.com,umac-128-etm@openssh.com,

hmac-sha2-256-etm@openssh.com,hmac-sha2-512-etm@openssh.com,

hmac-sha1-etm@openssh.com,

umac-64@openssh.com,umac-128@openssh.com,

hmac-sha2-256,hmac-sha2-512,hmac-sha1

The list of available MAC algorithms may also be obtained using "ssh -Q mac".

NoHostAuthenticationForLocalhost

Disable host authentication for localhost (loopback addresses). The argument to this keyword must

be yes or no (the default).

NumberOfPasswordPrompts

Specifies the number of password prompts before giving up. The argument to this keyword must be

an integer. The default is 3.

PasswordAuthentication

Specifies whether to use password authentication. The argument to this keyword must be yes (the

default) or no.

PermitLocalCommand

Allow local command execution via the LocalCommand option or using the !command escape

sequence in ssh(1). The argument must be yes or no (the default).

BSD February 7, 2020 11

SSH_CONFIG (5) BSD File Formats Manual SSH_CONFIG (5)

PKCS11Provider

Specifies which PKCS#11 provider to use or none to indicate that no provider should be used (the

default). The argument to this keyword is a path to the PKCS#11 shared library ssh(1) should use

to communicate with a PKCS#11 token providing keys for user authentication.

Port Specifies the port number to connect on the remote host. The default is 22.

PreferredAuthentications

Specifies the order in which the client should try authentication methods. This allows a client to

prefer one method (e.g. keyboard-interactive) over another method (e.g. password). The

default is:

gssapi-with-mic,hostbased,publickey,

keyboard-interactive,password

ProxyCommand

Specifies the command to use to connect to the server. The command string extends to the end of

the line, and is executed using the user’s shell exec directive to avoid a lingering shell process.

Arguments to ProxyCommand accept the tokens described in the TOKENS section. The com-

mand can be basically anything, and should read from its standard input and write to its standard

output. It should eventually connect an sshd(8) server running on some machine, or execute sshd

-i somewhere. Host key management will be done using the Hostname of the host being con-

nected (defaulting to the name typed by the user). Setting the command to none disables this op-

tion entirely. Note that CheckHostIP is not available for connects with a proxy command.

This directive is useful in conjunction with nc(1) and its proxy support. For example, the following

directive would connect via an HTTP proxy at 192.0.2.0:

ProxyCommand /usr/bin/nc -X connect -x 192.0.2.0:8080 %h %p

ProxyJump

Specifies one or more jump proxies as either [user@]host[:port] or an ssh URI. Multiple

proxies may be separated by comma characters and will be visited sequentially. Setting this option

will cause ssh(1) to connect to the target host by first making a ssh(1) connection to the specified

ProxyJump host and then establishing a TCP forwarding to the ultimate target from there.

Note that this option will compete with the ProxyCommand option - whichever is specified first

will prevent later instances of the other from taking effect.

Note also that the configuration for the destination host (either supplied via the command-line or the

configuration file) is not generally applied to jump hosts. ˜/.ssh/config should be used if spe-

cific configuration is required for jump hosts.

ProxyUseFdpass

Specifies that ProxyCommand will pass a connected file descriptor back to ssh(1) instead of con-

tinuing to execute and pass data. The default is no.

PubkeyAcceptedKeyTypes

Specifies the key types that will be used for public key authentication as a comma-separated list of

patterns. If the specified list begins with a ‘+’ character, then the key types after it will be appended

to the default instead of replacing it. If the specified list begins with a ‘-’ character, then the speci-

fied key types (including wildcards) will be removed from the default set instead of replacing them.

If the specified list begins with a ‘ˆ’ character, then the specified key types will be placed at the head

of the default set. The default for this option is:

ecdsa-sha2-nistp256-cert-v01@openssh.com,

ecdsa-sha2-nistp384-cert-v01@openssh.com,

BSD February 7, 2020 12

SSH_CONFIG (5) BSD File Formats Manual SSH_CONFIG (5)

ecdsa-sha2-nistp521-cert-v01@openssh.com,

sk-ecdsa-sha2-nistp256-cert-v01@openssh.com,

ssh-ed25519-cert-v01@openssh.com,

sk-ssh-ed25519-cert-v01@openssh.com,

rsa-sha2-512-cert-v01@openssh.com,

rsa-sha2-256-cert-v01@openssh.com,

ssh-rsa-cert-v01@openssh.com,

ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,

sk-ecdsa-sha2-nistp256@openssh.com,

ssh-ed25519,sk-ssh-ed25519@openssh.com,

rsa-sha2-512,rsa-sha2-256,ssh-rsa

The list of available key types may also be obtained using "ssh -Q PubkeyAcceptedKeyTypes".

PubkeyAuthentication

Specifies whether to try public key authentication. The argument to this keyword must be yes (the

default) or no.

RekeyLimit

Specifies the maximum amount of data that may be transmitted before the session key is renegoti-

ated, optionally followed a maximum amount of time that may pass before the session key is rene-

gotiated. The first argument is specified in bytes and may have a suffix of ‘K’, ‘M’, or ‘G’ to indi-

cate Kilobytes, Megabytes, or Gigabytes, respectively. The default is between ‘1G’ and ‘4G’, de-

pending on the cipher. The optional second value is specified in seconds and may use any of the

units documented in the TIME FORMATS section of sshd_config(5). The default value for

RekeyLimit is default none, which means that rekeying is performed after the cipher’s de-

fault amount of data has been sent or received and no time based rekeying is done.

RemoteCommand

Specifies a command to execute on the remote machine after successfully connecting to the server.

The command string extends to the end of the line, and is executed with the user’s shell. Arguments

to RemoteCommand accept the tokens described in the TOKENS section.

RemoteForward

Specifies that a TCP port on the remote machine be forwarded over the secure channel. The remote

port may either be forwarded to a specified host and port from the local machine, or may act as a

SOCKS 4/5 proxy that allows a remote client to connect to arbitrary destinations from the local ma-

chine. The first argument must be [bind_address:]port If forwarding to a specific destination

then the second argument must be host:hostport, otherwise if no destination argument is speci-

fied then the remote forwarding will be established as a SOCKS proxy.

IPv6 addresses can be specified by enclosing addresses in square brackets. Multiple forwardings

may be specified, and additional forwardings can be given on the command line. Privileged ports

can be forwarded only when logging in as root on the remote machine.

If the port argument is 0, the listen port will be dynamically allocated on the server and reported to

the client at run time.

If the bind_address is not specified, the default is to only bind to loopback addresses. If the

bind_address is ‘∗ ’ or an empty string, then the forwarding is requested to listen on all inter-

faces. Specifying a remote bind_address will only succeed if the server’s GatewayPorts op-

tion is enabled (see sshd_config(5)).

RequestTTY

Specifies whether to request a pseudo-tty for the session. The argument may be one of: no (never

request a TTY), yes (always request a TTY when standard input is a TTY), force (always request

BSD February 7, 2020 13

SSH_CONFIG (5) BSD File Formats Manual SSH_CONFIG (5)

a TTY) or auto (request a TTY when opening a login session). This option mirrors the −t and

−T flags for ssh(1).

RevokedHostKeys

Specifies revoked host public keys. Keys listed in this file will be refused for host authentication.

Note that if this file does not exist or is not readable, then host authentication will be refused for all

hosts. Keys may be specified as a text file, listing one public key per line, or as an OpenSSH Key

Revocation List (KRL) as generated by ssh-keygen(1). For more information on KRLs, see the

KEY REVOCATION LISTS section in ssh-keygen(1).

SecurityKeyProvider

Specifies a path to a library that will be used when loading any FIDO authenticator-hosted keys,

overriding the default of using the built-in USB HID support.

If the specified value begins with a ‘$’ character, then it will be treated as an environment variable

containing the path to the library.

SendEnv

Specifies what variables from the local environ(7) should be sent to the server. The server must

also support it, and the server must be configured to accept these environment variables. Note that

the TERM environment variable is always sent whenever a pseudo-terminal is requested as it is re-

quired by the protocol. Refer to AcceptEnv in sshd_config(5) for how to configure the

server. Variables are specified by name, which may contain wildcard characters. Multiple environ-

ment variables may be separated by whitespace or spread across multiple SendEnv directives.

See PATTERNS for more information on patterns.

It is possible to clear previously set SendEnv variable names by prefixing patterns with -. The de-

fault is not to send any environment variables.

ServerAliveCountMax

Sets the number of server alive messages (see below) which may be sent without ssh(1) receiving

any messages back from the server. If this threshold is reached while server alive messages are be-

ing sent, ssh will disconnect from the server, terminating the session. It is important to note that the

use of server alive messages is very different from TCPKeepAlive (below). The server alive mes-

sages are sent through the encrypted channel and therefore will not be spoofable. The TCP

keepalive option enabled by TCPKeepAlive is spoofable. The server alive mechanism is valuable

when the client or server depend on knowing when a connection has become unresponsive.

The default value is 3. If, for example, ServerAliveInterval (see below) is set to 15 and

ServerAliveCountMax is left at the default, if the server becomes unresponsive, ssh will dis-

connect after approximately 45 seconds.

ServerAliveInterval

Sets a timeout interval in seconds after which if no data has been received from the server, ssh(1)

will send a message through the encrypted channel to request a response from the server. The de-

fault is 0, indicating that these messages will not be sent to the server, or 300 if the BatchMode op-

tion is set (Debian-specific). ProtocolKeepAlives and SetupTimeOut are Debian-specific

compatibility aliases for this option.

SetEnv

Directly specify one or more environment variables and their contents to be sent to the server. Simi-

larly to SendEnv, the server must be prepared to accept the environment variable.

StreamLocalBindMask

Sets the octal file creation mode mask (umask) used when creating a Unix-domain socket file for

local or remote port forwarding. This option is only used for port forwarding to a Unix-domain

BSD February 7, 2020 14

SSH_CONFIG (5) BSD File Formats Manual SSH_CONFIG (5)

socket file.

The default value is 0177, which creates a Unix-domain socket file that is readable and writable only

by the owner. Note that not all operating systems honor the file mode on Unix-domain socket files.

StreamLocalBindUnlink

Specifies whether to remove an existing Unix-domain socket file for local or remote port forwarding

before creating a new one. If the socket file already exists and StreamLocalBindUnlink is not

enabled, ssh will be unable to forward the port to the Unix-domain socket file. This option is only

used for port forwarding to a Unix-domain socket file.

The argument must be yes or no (the default).

StrictHostKeyChecking

If this flag is set to yes, ssh(1) will never automatically add host keys to the

˜/.ssh/known_hosts file, and refuses to connect to hosts whose host key has changed. This

provides maximum protection against man-in-the-middle (MITM) attacks, though it can be annoy-

ing when the /etc/ssh/ssh_known_hosts file is poorly maintained or when connections to

new hosts are frequently made. This option forces the user to manually add all new hosts.

If this flag is set to “accept-new” then ssh will automatically add new host keys to the user known

hosts files, but will not permit connections to hosts with changed host keys. If this flag is set to “no”

or “off”, ssh will automatically add new host keys to the user known hosts files and allow connec-

tions to hosts with changed hostkeys to proceed, subject to some restrictions. If this flag is set to

ask (the default), new host keys will be added to the user known host files only after the user has

confirmed that is what they really want to do, and ssh will refuse to connect to hosts whose host key

has changed. The host keys of known hosts will be verified automatically in all cases.

SyslogFacility

Gives the facility code that is used when logging messages from ssh(1). The possible values are:

DAEMON, USER, AUTH, LOCAL0, LOCAL1, LOCAL2, LOCAL3, LOCAL4, LOCAL5, LO-

CAL6, LOCAL7. The default is USER.

TCPKeepAlive

Specifies whether the system should send TCP keepalive messages to the other side. If they are

sent, death of the connection or crash of one of the machines will be properly noticed. This option

only uses TCP keepalives (as opposed to using ssh level keepalives), so takes a long time to notice

when the connection dies. As such, you probably want the ServerAliveInterval option as

well. However, this means that connections will die if the route is down temporarily, and some peo-

ple find it annoying.

The default is yes (to send TCP keepalive messages), and the client will notice if the network goes

down or the remote host dies. This is important in scripts, and many users want it too.

To disable TCP keepalive messages, the value should be set to no. See also

ServerAliveInterval for protocol-level keepalives.

Tunnel

Request tun(4) device forwarding between the client and the server. The argument must be yes,

point-to-point (layer 3), ethernet (layer 2), or no (the default). Specifying yes requests

the default tunnel mode, which is point-to-point.

TunnelDevice

Specifies the tun(4) devices to open on the client (local_tun) and the server

(remote_tun) .

BSD February 7, 2020 15

SSH_CONFIG (5) BSD File Formats Manual SSH_CONFIG (5)

The argument must be local_tun[:remote_tun]. The devices may be specified by numerical

ID or the keyword any, which uses the next available tunnel device. If remote_tun is not speci-

fied, it defaults to any. The default is any:any.

UpdateHostKeys

Specifies whether ssh(1) should accept notifications of additional hostkeys from the server sent af-

ter authentication has completed and add them to UserKnownHostsFile. The argument must

be yes, no or ask. This option allows learning alternate hostkeys for a server and supports grace-

ful key rotation by allowing a server to send replacement public keys before old ones are removed.

Additional hostkeys are only accepted if the key used to authenticate the host was already trusted or

explicitly accepted by the user.

UpdateHostKeys is enabled by default if the user has not overridden the default

UserKnownHostsFile setting, otherwise UpdateHostKeys will be set to ask.

If UpdateHostKeys is set to ask, then the user is asked to confirm the modifications to the

known_hosts file. Confirmation is currently incompatible with ControlPersist, and will be

disabled if it is enabled.

Presently, only sshd(8) from OpenSSH 6.8 and greater support the "hostkeys@openssh.com" pro-

tocol extension used to inform the client of all the server’s hostkeys.

User Specifies the user to log in as. This can be useful when a different user name is used on different

machines. This saves the trouble of having to remember to give the user name on the command line.

UserKnownHostsFile

Specifies one or more files to use for the user host key database, separated by whitespace. The de-

fault is ˜/.ssh/known_hosts, ˜/.ssh/known_hosts2.

VerifyHostKeyDNS

Specifies whether to verify the remote key using DNS and SSHFP resource records. If this option is

set to yes, the client will implicitly trust keys that match a secure fingerprint from DNS. Insecure

fingerprints will be handled as if this option was set to ask. If this option is set to ask, information

on fingerprint match will be displayed, but the user will still need to confirm new host keys accord-

ing to the StrictHostKeyChecking option. The default is no.

See also VERIFYING HOST KEYS in ssh(1).

VisualHostKey

If this flag is set to yes, an ASCII art representation of the remote host key fingerprint is printed in

addition to the fingerprint string at login and for unknown host keys. If this flag is set to no (the de-

fault), no fingerprint strings are printed at login and only the fingerprint string will be printed for un-

known host keys.

XAuthLocation

Specifies the full pathname of the xauth(1) program. The default is /usr/bin/xauth.

PATTERNS

A pattern consists of zero or more non-whitespace characters, ‘∗ ’ (a wildcard that matches zero or more

characters), or ‘?’ (a wildcard that matches exactly one character). For example, to specify a set of declara-

tions for any host in the ".co.uk" set of domains, the following pattern could be used:

Host ∗ .co.uk

The following pattern would match any host in the 192.168.0.[0-9] network range:

Host 192.168.0.?

BSD February 7, 2020 16

SSH_CONFIG (5) BSD File Formats Manual SSH_CONFIG (5)

A pattern-list is a comma-separated list of patterns. Patterns within pattern-lists may be negated by preced-

ing them with an exclamation mark (‘!’) . For example, to allow a key to be used from anywhere within an

organization except from the "dialup" pool, the following entry (in authorized_keys) could be used:

from="!∗ .dialup.example.com,∗ .example.com"

Note that a negated match will never produce a positive result by itself. For example, attempting to match

"host3" against the following pattern-list will fail:

from="!host1,!host2"

The solution here is to include a term that will yield a positive match, such as a wildcard:

from="!host1,!host2,∗ "

TOKENS

Arguments to some keywords can make use of tokens, which are expanded at runtime:

%% A literal ‘%’.

%C Hash of %l%h%p%r.

%d Local user’s home directory.

%h The remote hostname.

%i The local user ID.

%L The local hostname.

%l The local hostname, including the domain name.

%n The original remote hostname, as given on the command line.

%p The remote port.

%r The remote username.

%T The local tun(4) or tap(4) network interface assigned if tunnel forwarding was requested, or

"NONE" otherwise.

%u The local username.

Match exec accepts the tokens %%, %h, %i, %L, %l, %n, %p, %r, and %u.

CertificateFile accepts the tokens %%, %d, %h, %i, %l, %r, and %u.

ControlPath accepts the tokens %%, %C, %h, %i, %L, %l, %n, %p, %r, and %u.

Hostname accepts the tokens %% and %h.

IdentityAgent and IdentityFile accept the tokens %%, %d, %h, %i, %l, %r, and %u.

LocalCommand accepts the tokens %%, %C, %d, %h, %i, %l, %n, %p, %r, %T, and %u.

ProxyCommand accepts the tokens %%, %h, %n, %p, and %r.

RemoteCommand accepts the tokens %%, %C, %d, %h, %i, %l, %n, %p, %r, and %u.

FILES

˜/.ssh/config

This is the per-user configuration file. The format of this file is described above. This file is used by

the SSH client. Because of the potential for abuse, this file must have strict permissions: read/write

for the user, and not writable by others. It may be group-writable provided that the group in ques-

tion contains only the user.

/etc/ssh/ssh_config

Systemwide configuration file. This file provides defaults for those values that are not specified in

the user’s configuration file, and for those users who do not have a configuration file. This file must

be world-readable.

BSD February 7, 2020 17

SSH_CONFIG (5) BSD File Formats Manual SSH_CONFIG (5)

SEE ALSO

ssh(1)

AUTHORS

OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen. Aaron Campbell, Bob

Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug Song removed many bugs, re-added newer fea-

tures and created OpenSSH. Markus Friedl contributed the support for SSH protocol versions 1.5 and 2.0.

BSD February 7, 2020 18

