
SPROF(1) Linux User Manual SPROF(1)

NAME
sprof − read and display shared object profiling data

SYNOPSIS
sprof [option]... shared-object-path [profile-data-path]

DESCRIPTION
The sprof command displays a profiling summary for the shared object (shared library) specified as its first

command-line argument. The profiling summary is created using previously generated profiling data in the

(optional) second command-line argument. If the profiling data pathname is omitted, then sprof will at-

tempt to deduce it using the soname of the shared object, looking for a file with the name <soname>.profile

in the current directory.

OPTIONS
The following command-line options specify the profile output to be produced:

−c, −−call−pairs

Print a list of pairs of call paths for the interfaces exported by the shared object, along with the

number of times each path is used.

−p, −−flat−profile

Generate a flat profile of all of the functions in the monitored object, with counts and ticks.

−q, −−graph

Generate a call graph.

If none of the above options is specified, then the default behavior is to display a flat profile and a call

graph.

The following additional command-line options are available:

−?, −−help

Display a summary of command-line options and arguments and exit.

−−usage

Display a short usage message and exit.

−V, −−version

Display the program version and exit.

CONFORMING TO
The sprof command is a GNU extension, not present in POSIX.1.

EXAMPLE
The following example demonstrates the use of sprof. The example consists of a main program that calls

two functions in a shared object. First, the code of the main program:

$ cat prog.c

#include <stdlib.h>

void x1(void);

void x2(void);

int

main(int argc, char *argv[])

{

x1();

x2();

exit(EXIT_SUCCESS);

}

The functions x1() and x2() are defined in the following source file that is used to construct the shared ob-

ject:

Linux 2019-03-06 1

SPROF(1) Linux User Manual SPROF(1)

$ cat libdemo.c

#include <unistd.h>

void

consumeCpu1(int lim)

{

int j;

for (j = 0; j < lim; j++)

getppid();

}

void

x1(void) {

int j;

for (j = 0; j < 100; j++)

consumeCpu1(200000);

}

void

consumeCpu2(int lim)

{

int j;

for (j = 0; j < lim; j++)

getppid();

}

void

x2(void)

{

int j;

for (j = 0; j < 1000; j++)

consumeCpu2(10000);

}

Now we construct the shared object with the real name libdemo.so.1.0.1, and the soname libdemo.so.1:

$ cc −g −fPIC −shared −Wl,−soname,libdemo.so.1 \

−o libdemo.so.1.0.1 libdemo.c

Then we construct symbolic links for the library soname and the library linker name:

$ ln −sf libdemo.so.1.0.1 libdemo.so.1

$ ln −sf libdemo.so.1 libdemo.so

Next, we compile the main program, linking it against the shared object, and then list the dynamic depen-

dencies of the program:

$ cc −g −o prog prog.c −L. −ldemo

$ ldd prog

linux−vdso.so.1 => (0x00007fff86d66000)

libdemo.so.1 => not found

libc.so.6 => /lib64/libc.so.6 (0x00007fd4dc138000)

/lib64/ld−linux−x86−64.so.2 (0x00007fd4dc51f000)

In order to get profiling information for the shared object, we define the environment variable

Linux 2019-03-06 2

SPROF(1) Linux User Manual SPROF(1)

LD_PROFILE with the soname of the library:

$ export LD_PROFILE=libdemo.so.1

We then define the environment variable LD_PROFILE_OUTPUT with the pathname of the directory

where profile output should be written, and create that directory if it does not exist already:

$ export LD_PROFILE_OUTPUT=$(pwd)/prof_data

$ mkdir −p $LD_PROFILE_OUTPUT

LD_PROFILE causes profiling output to be appended to the output file if it already exists, so we ensure

that there is no preexisting profiling data:

$ rm −f $LD_PROFILE_OUTPUT/$LD_PROFILE.profile

We then run the program to produce the profiling output, which is written to a file in the directory specified

in LD_PROFILE_OUTPUT:

$ LD_LIBRARY_PATH=. ./prog

$ ls prof_data

libdemo.so.1.profile

We then use the sprof −p option to generate a flat profile with counts and ticks:

$ sprof −p libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls us/call us/call name

60.00 0.06 0.06 100 600.00 consumeCpu1

40.00 0.10 0.04 1000 40.00 consumeCpu2

0.00 0.10 0.00 1 0.00 x1

0.00 0.10 0.00 1 0.00 x2

The sprof −q option generates a call graph:

$ sprof −q libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile

index % time self children called name

0.00 0.00 100/100 x1 [1]

[0] 100.0 0.00 0.00 100 consumeCpu1 [0]

−−−

0.00 0.00 1/1 <UNKNOWN>

[1] 0.0 0.00 0.00 1 x1 [1]

0.00 0.00 100/100 consumeCpu1 [0]

−−−

0.00 0.00 1000/1000 x2 [3]

[2] 0.0 0.00 0.00 1000 consumeCpu2 [2]

−−−

0.00 0.00 1/1 <UNKNOWN>

[3] 0.0 0.00 0.00 1 x2 [3]

0.00 0.00 1000/1000 consumeCpu2 [2]

−−−

Above and below, the "<UNKNOWN>" strings represent identifiers that are outside of the profiled object

(in this example, these are instances of main()).

The sprof −c option generates a list of call pairs and the number of their occurrences:

$ sprof −c libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile

<UNKNOWN> x1 1

Linux 2019-03-06 3

SPROF(1) Linux User Manual SPROF(1)

x1 consumeCpu1 100

<UNKNOWN> x2 1

x2 consumeCpu2 1000

SEE ALSO
gprof(1), ldd(1), ld.so(8)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-03-06 4

