
SHM_OPEN(3) Linux Programmer’s Manual SHM_OPEN(3)

NAME
shm_open, shm_unlink − create/open or unlink POSIX shared memory objects

SYNOPSIS
#include <sys/mman.h>

#include <sys/stat.h> /* For mode constants */

#include <fcntl.h> /* For O_* constants */

int shm_open(const char *name, int oflag, mode_t mode);

int shm_unlink(const char *name);

Link with −lrt.

DESCRIPTION
shm_open() creates and opens a new, or opens an existing, POSIX shared memory object. A POSIX

shared memory object is in effect a handle which can be used by unrelated processes to mmap(2) the same

region of shared memory. The shm_unlink() function performs the converse operation, removing an object

previously created by shm_open().

The operation of shm_open() is analogous to that of open(2). name specifies the shared memory object to

be created or opened. For portable use, a shared memory object should be identified by a name of the form

/somename; that is, a null-terminated string of up to NAME_MAX (i.e., 255) characters consisting of an

initial slash, followed by one or more characters, none of which are slashes.

oflag is a bit mask created by ORing together exactly one of O_RDONLY or O_RDWR and any of the

other flags listed here:

O_RDONLY Open the object for read access. A shared memory object opened in this way can be

mmap(2)ed only for read (PROT_READ) access.

O_RDWR Open the object for read-write access.

O_CREAT Create the shared memory object if it does not exist. The user and group ownership of

the object are taken from the corresponding effective IDs of the calling process, and the

object’s permission bits are set according to the low-order 9 bits of mode, except that

those bits set in the process file mode creation mask (see umask(2)) are cleared for the

new object. A set of macro constants which can be used to define mode is listed in

open(2). (Symbolic definitions of these constants can be obtained by including

<sys/stat.h>.)

A new shared memory object initially has zero length—the size of the object can be set

using ftruncate(2). The newly allocated bytes of a shared memory object are automati-

cally initialized to 0.

O_EXCL If O_CREAT was also specified, and a shared memory object with the given name al-

ready exists, return an error. The check for the existence of the object, and its creation

if it does not exist, are performed atomically.

O_TRUNC If the shared memory object already exists, truncate it to zero bytes.

Definitions of these flag values can be obtained by including <fcntl.h>.

On successful completion shm_open() returns a new file descriptor referring to the shared memory object.

This file descriptor is guaranteed to be the lowest-numbered file descriptor not previously opened within the

process. The FD_CLOEXEC flag (see fcntl(2)) is set for the file descriptor.

The file descriptor is normally used in subsequent calls to ftruncate(2) (for a newly created object) and

mmap(2). After a call to mmap(2) the file descriptor may be closed without affecting the memory map-

ping.

The operation of shm_unlink() is analogous to unlink(2): it removes a shared memory object name, and,

once all processes have unmapped the object, de-allocates and destroys the contents of the associated mem-

ory region. After a successful shm_unlink(), attempts to shm_open() an object with the same name fail

(unless O_CREAT was specified, in which case a new, distinct object is created).

Linux 2017-09-15 1



SHM_OPEN(3) Linux Programmer’s Manual SHM_OPEN(3)

RETURN VALUE
On success, shm_open() returns a nonnegative file descriptor. On failure, shm_open() returns −1.

shm_unlink() returns 0 on success, or −1 on error.

ERRORS
On failure, errno is set to indicate the cause of the error. Values which may appear in errno include the fol-

lowing:

EACCES

Permission to shm_unlink() the shared memory object was denied.

EACCES

Permission was denied to shm_open() name in the specified mode, or O_TRUNC was specified

and the caller does not have write permission on the object.

EEXIST

Both O_CREAT and O_EXCL were specified to shm_open() and the shared memory object

specified by name already exists.

EINVAL

The name argument to shm_open() was invalid.

EMFILE

The per-process limit on the number of open file descriptors has been reached.

ENAMETOOLONG

The length of name exceeds PATH_MAX.

ENFILE

The system-wide limit on the total number of open files has been reached.

ENOENT

An attempt was made to shm_open() a name that did not exist, and O_CREAT was not specified.

ENOENT

An attempt was to made to shm_unlink() a name that does not exist.

VERSIONS
These functions are provided in glibc 2.2 and later.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value

Thread safety MT-Safe localeshm_open(), shm_unlink()

CONFORMING TO
POSIX.1-2001, POSIX.1-2008.

POSIX.1-2001 says that the group ownership of a newly created shared memory object is set to either the

calling process’s effective group ID or "a system default group ID". POSIX.1-2008 says that the group

ownership may be set to either the calling process’s effective group ID or, if the object is visible in the

filesystem, the group ID of the parent directory.

NOTES
POSIX leaves the behavior of the combination of O_RDONLY and O_TRUNC unspecified. On Linux,

this will successfully truncate an existing shared memory object—this may not be so on other UNIX sys-

tems.

The POSIX shared memory object implementation on Linux makes use of a dedicated tmpfs(5) filesystem

that is normally mounted under /dev/shm.

Linux 2017-09-15 2



SHM_OPEN(3) Linux Programmer’s Manual SHM_OPEN(3)

SEE ALSO
close(2), fchmod(2), fchown(2), fcntl(2), fstat(2), ftruncate(2), memfd_create(2), mmap(2), open(2),

umask(2), shm_overview(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2017-09-15 3


