
SETNS(2) Linux Programmer’s Manual SETNS(2)

NAME
setns − reassociate thread with a namespace

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */

#include <sched.h>

int setns(int fd , int nstype);

DESCRIPTION
Given a file descriptor referring to a namespace, reassociate the calling thread with that namespace.

The fd argument is a file descriptor referring to one of the namespace entries in a /proc/[pid]/ns/ directory;

see namespaces(7) for further information on /proc/[pid]/ns/ . The calling thread will be reassociated with

the corresponding namespace, subject to any constraints imposed by the nstype argument.

The nstype argument specifies which type of namespace the calling thread may be reassociated with. This

argument can have one of the following values:

0 Allow any type of namespace to be joined.

CLONE_NEWCGROUP (since Linux 4.6)

fd must refer to a cgroup namespace.

CLONE_NEWIPC (since Linux 3.0)

fd must refer to an IPC namespace.

CLONE_NEWNET (since Linux 3.0)

fd must refer to a network namespace.

CLONE_NEWNS (since Linux 3.8)

fd must refer to a mount namespace.

CLONE_NEWPID (since Linux 3.8)

fd must refer to a descendant PID namespace.

CLONE_NEWUSER (since Linux 3.8)

fd must refer to a user namespace.

CLONE_NEWUTS (since Linux 3.0)

fd must refer to a UTS namespace.

Specifying nstype as 0 suffices if the caller knows (or does not care) what type of namespace is referred to

by fd . Specifying a nonzero value for nstype is useful if the caller does not know what type of namespace

is referred to by fd and wants to ensure that the namespace is of a particular type. (The caller might not

know the type of the namespace referred to by fd if the file descriptor was opened by another process and,

for example, passed to the caller via a UNIX domain socket.)

Details for specific namespace types

Note the following details and restrictions when reassociating with specific namespace types:

User namespaces

A process reassociating itself with a user namespace must have the CAP_SYS_ADMIN capability

in the target user namespace. (This necessarily implies that it is only possible to join a descendant

user namespace.) Upon successfully joining a user namespace, a process is granted all capabilities

in that namespace, regardless of its user and group IDs.

A multithreaded process may not change user namespace with setns().

It is not permitted to use setns() to reenter the caller’s current user namespace. This prevents a

caller that has dropped capabilities from regaining those capabilities via a call to setns().

For security reasons, a process can’t join a new user namespace if it is sharing filesystem-related

attributes (the attributes whose sharing is controlled by the clone(2) CLONE_FS flag) with an-

other process.

Linux 2019-10-10 1

SETNS(2) Linux Programmer’s Manual SETNS(2)

For further details on user namespaces, see user_namespaces(7).

Mount namespaces

Changing the mount namespace requires that the caller possess both CAP_SYS_CHROOT and

CAP_SYS_ADMIN capabilities in its own user namespace and CAP_SYS_ADMIN in the user

namespace that owns the target mount namespace.

A process can’t join a new mount namespace if it is sharing filesystem-related attributes (the at-

tributes whose sharing is controlled by the clone(2) CLONE_FS flag) with another process.

See user_namespaces(7) for details on the interaction of user namespaces and mount namespaces.

PID namespaces

In order to reassociate itself with a new PID namespace, the caller must have the CAP_SYS_AD-

MIN capability both in its own user namespace and in the user namespace that owns the target

PID namespace.

If fd refers to a PID namespace, the semantics are somewhat different from other namespace

types: reassociating the calling thread with a PID namespace changes only the PID namespace that

subsequently created child processes of the caller will be placed in; it does not change the PID

namespace of the caller itself.

Reassociating with a PID namespace is allowed only if the PID namespace specified by fd is a de-

scendant (child, grandchild, etc.) of the PID namespace of the caller.

For further details on PID namespaces, see pid_namespaces(7).

Cgroup namespaces

In order to reassociate itself with a new cgroup namespace, the caller must have the

CAP_SYS_ADMIN capability both in its own user namespace and in the user namespace that

owns the target cgroup namespace.

Using setns() to change the caller’s cgroup namespace does not change the caller’s cgroup mem-

berships.

Network, IPC, and UTS namespaces

In order to reassociate itself with a new network, IPC, or UTS namespace, the caller must have the

CAP_SYS_ADMIN capability both in its own user namespace and in the user namespace that

owns the target namespace.

RETURN VALUE
On success, setns() returns 0. On failure, −1 is returned and errno is set to indicate the error.

ERRORS
EBADF

fd is not a valid file descriptor.

EINVAL

fd refers to a namespace whose type does not match that specified in nstype.

EINVAL

There is problem with reassociating the thread with the specified namespace.

EINVAL

The caller tried to join an ancestor (parent, grandparent, and so on) PID namespace.

EINVAL

The caller attempted to join the user namespace in which it is already a member.

EINVAL

The caller shares filesystem (CLONE_FS) state (in particular, the root directory) with other pro-

cesses and tried to join a new user namespace.

Linux 2019-10-10 2

SETNS(2) Linux Programmer’s Manual SETNS(2)

EINVAL

The caller is multithreaded and tried to join a new user namespace.

ENOMEM

Cannot allocate sufficient memory to change the specified namespace.

EPERM

The calling thread did not have the required capability for this operation.

VERSIONS
The setns() system call first appeared in Linux in kernel 3.0; library support was added to glibc in version

2.14.

CONFORMING TO
The setns() system call is Linux-specific.

NOTES
Not all of the attributes that can be shared when a new thread is created using clone(2) can be changed us-

ing setns().

EXAMPLE
The program below takes two or more arguments. The first argument specifies the pathname of a name-

space file in an existing /proc/[pid]/ns/ directory. The remaining arguments specify a command and its ar-

guments. The program opens the namespace file, joins that namespace using setns(), and executes the

specified command inside that namespace.

The following shell session demonstrates the use of this program (compiled as a binary named ns_exec) in

conjunction with the CLONE_NEWUTS example program in the clone(2) man page (complied as a bi-

nary named newuts).

We begin by executing the example program in clone(2) in the background. That program creates a child

in a separate UTS namespace. The child changes the hostname in its namespace, and then both processes

display the hostnames in their UTS namespaces, so that we can see that they are different.

$ su # Need privilege for namespace operations

Password:

./newuts bizarro &

[1] 3549

clone() returned 3550

uts.nodename in child: bizarro

uts.nodename in parent: antero

uname −n # Verify hostname in the shell

antero

We then run the program shown below, using it to execute a shell. Inside that shell, we verify that the host-

name is the one set by the child created by the first program:

./ns_exec /proc/3550/ns/uts /bin/bash

uname −n # Executed in shell started by ns_exec

bizarro

Program source

#define _GNU_SOURCE

#include <fcntl.h>

#include <sched.h>

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

} while (0)

Linux 2019-10-10 3

SETNS(2) Linux Programmer’s Manual SETNS(2)

int

main(int argc, char *argv[])

{

int fd;

if (argc < 3) {

fprintf(stderr, "%s /proc/PID/ns/FILE cmd args...\n", argv[0]);

exit(EXIT_FAILURE);

}

fd = open(argv[1], O_RDONLY); /* Get file descriptor for namespace */

if (fd == −1)

errExit("open");

if (setns(fd, 0) == −1) /* Join that namespace */

errExit("setns");

execvp(argv[2], &argv[2]); /* Execute a command in namespace */

errExit("execvp");

}

SEE ALSO
nsenter(1), clone(2), fork(2), unshare(2), vfork(2), namespaces(7), unix(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-10-10 4

