
SET_THREAD_AREA(2) Linux Programmer’s Manual SET_THREAD_AREA(2)

NAME
get_thread_area, set_thread_area − manipulate thread-local storage information

SYNOPSIS
#include <linux/unistd.h>

#if defined __i386__ || defined __x86_64__
include <asm/ldt.h>

int get_thread_area(struct user_desc *u_info);
int set_thread_area(struct user_desc *u_info);

#elif defined __m68k__

int get_thread_area(void);
int set_thread_area(unsigned long tp);

#elif defined __mips__

int set_thread_area(unsigned long addr);

#endif

Note: There are no glibc wrappers for these system calls; see NOTES.

DESCRIPTION
These calls provide architecture-specific support for a thread-local storage implementation. At the moment,

set_thread_area() is available on m68k, MIPS, and x86 (both 32-bit and 64-bit variants);

get_thread_area() is available on m68k and x86.

On m68k and MIPS, set_thread_area() allows storing an arbitrary pointer (provided in the tp argument on

m68k and in the addr argument on MIPS) in the kernel data structure associated with the calling thread;

this pointer can later be retrieved using get_thread_area() (see also NOTES for information regarding ob-

taining the thread pointer on MIPS).

On x86, Linux dedicates three global descriptor table (GDT) entries for thread-local storage. For more in-

formation about the GDT, see the Intel Software Developer’s Manual or the AMD Architecture Program-

ming Manual.

Both of these system calls take an argument that is a pointer to a structure of the following type:

struct user_desc {

unsigned int entry_number;

unsigned int base_addr;

unsigned int limit;

unsigned int seg_32bit:1;

unsigned int contents:2;

unsigned int read_exec_only:1;

unsigned int limit_in_pages:1;

unsigned int seg_not_present:1;

unsigned int useable:1;

#ifdef __x86_64__

unsigned int lm:1;

#endif

};

get_thread_area() reads the GDT entry indicated by u_info−>entry_number and fills in the rest of the

fields in u_info.

set_thread_area() sets a TLS entry in the GDT.

The TLS array entry set by set_thread_area() corresponds to the value of u_info−>entry_number passed

in by the user. If this value is in bounds, set_thread_area() writes the TLS descriptor pointed to by u_info

into the thread’s TLS array.

Linux 2020-02-09 1

SET_THREAD_AREA(2) Linux Programmer’s Manual SET_THREAD_AREA(2)

When set_thread_area() is passed an entry_number of −1, it searches for a free TLS entry. If

set_thread_area() finds a free TLS entry, the value of u_info−>entry_number is set upon return to show

which entry was changed.

A user_desc is considered "empty" if read_exec_only and seg_not_present are set to 1 and all of the other

fields are 0. If an "empty" descriptor is passed to set_thread_area(), the corresponding TLS entry will be

cleared. See BUGS for additional details.

Since Linux 3.19, set_thread_area() cannot be used to write non-present segments, 16-bit segments, or

code segments, although clearing a segment is still acceptable.

RETURN VALUE
On x86, these system calls return 0 on success, and −1 on failure, with errno set appropriately.

On MIPS and m68k, set_thread_area() always returns 0. On m68k, get_thread_area() returns the thread

area pointer value (previously set via set_thread_area()).

ERRORS
EFAULT

u_info is an invalid pointer.

EINVAL
u_info−>entry_number is out of bounds.

ENOSYS
get_thread_area() or set_thread_area() was invoked as a 64-bit system call.

ESRCH
(set_thread_area()) A free TLS entry could not be located.

VERSIONS
set_thread_area() first appeared in Linux 2.5.29. get_thread_area() first appeared in Linux 2.5.32.

CONFORMING TO
set_thread_area() and get_thread_area() are Linux-specific and should not be used in programs that are

intended to be portable.

NOTES
Glibc does not provide wrappers for these system calls, since they are generally intended for use only by

threading libraries. In the unlikely event that you want to call them directly, use syscall(2).

arch_prctl(2) can interfere with set_thread_area() on x86. See arch_prctl(2) for more details. This is

not normally a problem, as arch_prctl(2) is normally used only by 64-bit programs.

On MIPS, the current value of the thread area pointer can be obtained using the instruction:

rdhwr dest, $29

This instruction traps and is handled by kernel.

BUGS
On 64-bit kernels before Linux 3.19, one of the padding bits in user_desc, if set, would prevent the descrip-

tor from being considered empty (see modify_ldt(2)). As a result, the only reliable way to clear a TLS en-

try is to use memset(3) to zero the entire user_desc structure, including padding bits, and then to set the

read_exec_only and seg_not_present bits. On Linux 3.19, a user_desc consisting entirely of zeros except

for entry_number will also be interpreted as a request to clear a TLS entry, but this behaved differently on

older kernels.

Prior to Linux 3.19, the DS and ES segment registers must not reference TLS entries.

SEE ALSO
arch_prctl(2), modify_ldt(2), ptrace(2) (PTRACE_GET_THREAD_AREA and

PTRACE_SET_THREAD_AREA)

Linux 2020-02-09 2

SET_THREAD_AREA(2) Linux Programmer’s Manual SET_THREAD_AREA(2)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2020-02-09 3

