
SEMOP(2) Linux Programmer’s Manual SEMOP(2)

NAME
semop, semtimedop − System V semaphore operations

SYNOPSIS
#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semop(int semid , struct sembuf *sops, size_t nsops);

int semtimedop(int semid , struct sembuf *sops, size_t nsops,

const struct timespec *timeout);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

semtimedop(): _GNU_SOURCE

DESCRIPTION
Each semaphore in a System V semaphore set has the following associated values:

unsigned short semval; /* semaphore value */

unsigned short semzcnt; /* # waiting for zero */

unsigned short semncnt; /* # waiting for increase */

pid_t sempid; /* PID of process that last

semop() performs operations on selected semaphores in the set indicated by semid . Each of the nsops ele-

ments in the array pointed to by sops is a structure that specifies an operation to be performed on a single

semaphore. The elements of this structure are of type struct sembuf , containing the following members:

unsigned short sem_num; /* semaphore number */

short sem_op; /* semaphore operation */

short sem_flg; /* operation flags */

Flags recognized in sem_flg are IPC_NOWAIT and SEM_UNDO. If an operation specifies

SEM_UNDO, it will be automatically undone when the process terminates.

The set of operations contained in sops is performed in array order, and atomically, that is, the operations

are performed either as a complete unit, or not at all. The behavior of the system call if not all operations

can be performed immediately depends on the presence of the IPC_NOWAIT flag in the individual

sem_flg fields, as noted below.

Each operation is performed on the sem_num−th semaphore of the semaphore set, where the first sema-

phore of the set is numbered 0. There are three types of operation, distinguished by the value of sem_op.

If sem_op is a positive integer, the operation adds this value to the semaphore value (semval). Furthermore,

if SEM_UNDO is specified for this operation, the system subtracts the value sem_op from the semaphore

adjustment (semadj) value for this semaphore. This operation can always proceed—it never forces a thread

to wait. The calling process must have alter permission on the semaphore set.

If sem_op is zero, the process must have read permission on the semaphore set. This is a "wait-for-zero"

operation: if semval is zero, the operation can immediately proceed. Otherwise, if IPC_NOWAIT is speci-

fied in sem_flg, semop() fails with errno set to EAGAIN (and none of the operations in sops is performed).

Otherwise, semzcnt (the count of threads waiting until this semaphore’s value becomes zero) is incremented

by one and the thread sleeps until one of the following occurs:

• semval becomes 0, at which time the value of semzcnt is decremented.

• The semaphore set is removed: semop() fails, with errno set to EIDRM.

• The calling thread catches a signal: the value of semzcnt is decremented and semop() fails, with errno

set to EINTR.

If sem_op is less than zero, the process must have alter permission on the semaphore set. If semval is

greater than or equal to the absolute value of sem_op, the operation can proceed immediately: the absolute

value of sem_op is subtracted from semval, and, if SEM_UNDO is specified for this operation, the system

Linux 2019-08-02 1



SEMOP(2) Linux Programmer’s Manual SEMOP(2)

adds the absolute value of sem_op to the semaphore adjustment (semadj) value for this semaphore. If the

absolute value of sem_op is greater than semval, and IPC_NOWAIT is specified in sem_flg, semop() fails,

with errno set to EAGAIN (and none of the operations in sops is performed). Otherwise, semncnt (the

counter of threads waiting for this semaphore’s value to increase) is incremented by one and the thread

sleeps until one of the following occurs:

• semval becomes greater than or equal to the absolute value of sem_op: the operation now proceeds, as

described above.

• The semaphore set is removed from the system: semop() fails, with errno set to EIDRM.

• The calling thread catches a signal: the value of semncnt is decremented and semop() fails, with errno

set to EINTR.

On successful completion, the sempid value for each semaphore specified in the array pointed to by sops is

set to the caller’s process ID. In addition, the sem_otime is set to the current time.

semtimedop()

semtimedop() behaves identically to semop() except that in those cases where the calling thread would

sleep, the duration of that sleep is limited by the amount of elapsed time specified by the timespec structure

whose address is passed in the timeout argument. (This sleep interval will be rounded up to the system

clock granularity, and kernel scheduling delays mean that the interval may overrun by a small amount.) If

the specified time limit has been reached, semtimedop() fails with errno set to EAGAIN (and none of the

operations in sops is performed). If the timeout argument is NULL, then semtimedop() behaves exactly

like semop().

Note that if semtimedop() is interrupted by a signal, causing the call to fail with the error EINTR, the con-

tents of timeout are left unchanged.

RETURN VALUE
If successful, semop() and semtimedop() return 0; otherwise they return −1 with errno indicating the error.

ERRORS
On failure, errno is set to one of the following:

E2BIG The argument nsops is greater than SEMOPM, the maximum number of operations allowed per

system call.

EACCES

The calling process does not have the permissions required to perform the specified semaphore op-

erations, and does not have the CAP_IPC_OWNER capability in the user namespace that governs

its IPC namespace.

EAGAIN

An operation could not proceed immediately and either IPC_NOWAIT was specified in sem_flg

or the time limit specified in timeout expired.

EFAULT

An address specified in either the sops or the timeout argument isn’t accessible.

EFBIG

For some operation the value of sem_num is less than 0 or greater than or equal to the number of

semaphores in the set.

EIDRM

The semaphore set was removed.

EINTR

While blocked in this system call, the thread caught a signal; see signal(7).

EINVAL

The semaphore set doesn’t exist, or semid is less than zero, or nsops has a nonpositive value.

Linux 2019-08-02 2



SEMOP(2) Linux Programmer’s Manual SEMOP(2)

ENOMEM

The sem_flg of some operation specified SEM_UNDO and the system does not have enough

memory to allocate the undo structure.

ERANGE

For some operation sem_op+semval is greater than SEMVMX, the implementation dependent

maximum value for semval.

VERSIONS
semtimedop() first appeared in Linux 2.5.52, and was subsequently backported into kernel 2.4.22. Glibc

support for semtimedop() first appeared in version 2.3.3.

CONFORMING TO
POSIX.1-2001, POSIX.1-2008, SVr4.

NOTES
The inclusion of <sys/types.h> and <sys/ipc.h> isn’t required on Linux or by any version of POSIX. How-

ev er, some old implementations required the inclusion of these header files, and the SVID also documented

their inclusion. Applications intended to be portable to such old systems may need to include these header

files.

The sem_undo structures of a process aren’t inherited by the child produced by fork(2), but they are inher-

ited across an execve(2) system call.

semop() is never automatically restarted after being interrupted by a signal handler, reg ardless of the setting

of the SA_RESTART flag when establishing a signal handler.

A semaphore adjustment (semadj) value is a per-process, per-semaphore integer that is the negated sum of

all operations performed on a semaphore specifying the SEM_UNDO flag. Each process has a list of se-

madj values—one value for each semaphore on which it has operated using SEM_UNDO. When a process

terminates, each of its per-semaphore semadj values is added to the corresponding semaphore, thus undoing

the effect of that process’s operations on the semaphore (but see BUGS below). When a semaphore’s value

is directly set using the SETVAL or SETALL request to semctl(2), the corresponding semadj values in all

processes are cleared. The clone(2) CLONE_SYSVSEM flag allows more than one process to share a se-

madj list; see clone(2) for details.

The semval, sempid, semzcnt, and semnct values for a semaphore can all be retrieved using appropriate

semctl(2) calls.

Semaphore limits

The following limits on semaphore set resources affect the semop() call:

SEMOPM

Maximum number of operations allowed for one semop() call. Before Linux 3.19, the default

value for this limit was 32. Since Linux 3.19, the default value is 500. On Linux, this limit can be

read and modified via the third field of /proc/sys/kernel/sem. Note: this limit should not be raised

above 1000, because of the risk of that semop() fails due to kernel memory fragmentation when

allocating memory to copy the sops array.

SEMVMX

Maximum allowable value for semval: implementation dependent (32767).

The implementation has no intrinsic limits for the adjust on exit maximum value (SEMAEM), the system

wide maximum number of undo structures (SEMMNU) and the per-process maximum number of undo en-

tries system parameters.

BUGS
When a process terminates, its set of associated semadj structures is used to undo the effect of all of the

semaphore operations it performed with the SEM_UNDO flag. This raises a difficulty: if one (or more) of

these semaphore adjustments would result in an attempt to decrease a semaphore’s value below zero, what

should an implementation do? One possible approach would be to block until all the semaphore adjust-

ments could be performed. This is however undesirable since it could force process termination to block

Linux 2019-08-02 3



SEMOP(2) Linux Programmer’s Manual SEMOP(2)

for arbitrarily long periods. Another possibility is that such semaphore adjustments could be ignored alto-

gether (somewhat analogously to failing when IPC_NOWAIT is specified for a semaphore operation).

Linux adopts a third approach: decreasing the semaphore value as far as possible (i.e., to zero) and allowing

process termination to proceed immediately.

In kernels 2.6.x, x <= 10, there is a bug that in some circumstances prevents a thread that is waiting for a

semaphore value to become zero from being woken up when the value does actually become zero. This

bug is fixed in kernel 2.6.11.

EXAMPLE
The following code segment uses semop() to atomically wait for the value of semaphore 0 to become zero,

and then increment the semaphore value by one.

struct sembuf sops[2];

int semid;

/* Code to set semid omitted */

sops[0].sem_num = 0; /* Operate on semaphore 0 */

sops[0].sem_op = 0; /* Wait for value to equal 0 */

sops[0].sem_flg = 0;

sops[1].sem_num = 0; /* Operate on semaphore 0 */

sops[1].sem_op = 1; /* Increment value by one */

sops[1].sem_flg = 0;

if (semop(semid, sops, 2) == −1) {

perror("semop");

exit(EXIT_FAILURE);

}

SEE ALSO
clone(2), semctl(2), semget(2), sigaction(2), capabilities(7), sem_overview(7), sysvipc(7), time(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-08-02 4


