
SCHED_SETATTR(2) Linux Programmer’s Manual SCHED_SETATTR(2)

NAME
sched_setattr, sched_getattr − set and get scheduling policy and attributes

SYNOPSIS
#include <sched.h>

int sched_setattr(pid_t pid , struct sched_attr *attr,

unsigned int flags);

int sched_getattr(pid_t pid , struct sched_attr *attr,

unsigned int size, unsigned int flags);

DESCRIPTION
sched_setattr()

The sched_setattr() system call sets the scheduling policy and associated attributes for the thread whose ID

is specified in pid . If pid equals zero, the scheduling policy and attributes of the calling thread will be set.

Currently, Linux supports the following "normal" (i.e., non-real-time) scheduling policies as values that

may be specified in policy:

SCHED_OTHER

the standard round-robin time-sharing policy;

SCHED_BATCH

for "batch" style execution of processes; and

SCHED_IDLE for running very low priority background jobs.

Various "real-time" policies are also supported, for special time-critical applications that need precise con-

trol over the way in which runnable threads are selected for execution. For the rules governing when a

process may use these policies, see sched(7). The real-time policies that may be specified in policy are:

SCHED_FIFO a first-in, first-out policy; and

SCHED_RR a round-robin policy.

Linux also provides the following policy:

SCHED_DEADLINE

a deadline scheduling policy; see sched(7) for details.

The attr argument is a pointer to a structure that defines the new scheduling policy and attributes for the

specified thread. This structure has the following form:

struct sched_attr {

u32 size; /* Size of this structure */

u32 sched_policy; /* Policy (SCHED_*) */

u64 sched_flags; /* Flags */

s32 sched_nice; /* Nice value (SCHED_OTHER,

SCHED_BATCH) */

u32 sched_priority; /* Static priority (SCHED_FIFO,

SCHED_RR) */

/* Remaining fields are for SCHED_DEADLINE */

u64 sched_runtime;

u64 sched_deadline;

u64 sched_period;

};

The fields of this structure are as follows:

size This field should be set to the size of the structure in bytes, as in sizeof(struct sched_attr). If the

provided structure is smaller than the kernel structure, any additional fields are assumed to be ’0’.

If the provided structure is larger than the kernel structure, the kernel verifies that all additional

fields are 0; if they are not, sched_setattr() fails with the error E2BIG and updates size to contain

the size of the kernel structure.

Linux 2019-03-06 1



SCHED_SETATTR(2) Linux Programmer’s Manual SCHED_SETATTR(2)

The above behavior when the size of the user-space sched_attr structure does not match the size of

the kernel structure allows for future extensibility of the interface. Malformed applications that

pass oversize structures won’t break in the future if the size of the kernel sched_attr structure is in-

creased. In the future, it could also allow applications that know about a larger user-space

sched_attr structure to determine whether they are running on an older kernel that does not sup-

port the larger structure.

sched_policy

This field specifies the scheduling policy, as one of the SCHED_* values listed above.

sched_flags

This field contains zero or more of the following flags that are ORed together to control scheduling

behavior:

SCHED_FLAG_RESET_ON_FORK

Children created by fork(2) do not inherit privileged scheduling policies. See sched(7)

for details.

SCHED_FLAG_RECLAIM (since Linux 4.13)

This flag allows a SCHED_DEADLINE thread to reclaim bandwidth unused by other

real-time threads.

SCHED_FLAG_DL_OVERRUN (since Linux 4.16)

This flag allows an application to get informed about run-time overruns in

SCHED_DEADLINE threads. Such overruns may be caused by (for example) coarse

execution time accounting or incorrect parameter assignment. Notification takes the form

of a SIGXCPU signal which is generated on each overrun.

This SIGXCPU signal is process-directed (see signal(7)) rather than thread-directed.

This is probably a bug. On the one hand, sched_setattr() is being used to set a per-thread

attribute. On the other hand, if the process-directed signal is delivered to a thread inside

the process other than the one that had a run-time overrun, the application has no way of

knowing which thread overran.

sched_nice

This field specifies the nice value to be set when specifying sched_policy as SCHED_OTHER or

SCHED_BATCH. The nice value is a number in the range −20 (high priority) to +19 (low prior-

ity); see sched(7).

sched_priority

This field specifies the static priority to be set when specifying sched_policy as SCHED_FIFO or

SCHED_RR. The allowed range of priorities for these policies can be determined using

sched_get_priority_min(2) and sched_get_priority_max(2). For other policies, this field must

be specified as 0.

sched_runtime

This field specifies the "Runtime" parameter for deadline scheduling. The value is expressed in

nanoseconds. This field, and the next two fields, are used only for SCHED_DEADLINE schedul-

ing; for further details, see sched(7).

sched_deadline

This field specifies the "Deadline" parameter for deadline scheduling. The value is expressed in

nanoseconds.

sched_period

This field specifies the "Period" parameter for deadline scheduling. The value is expressed in

nanoseconds.

The flags argument is provided to allow for future extensions to the interface; in the current implementa-

tion it must be specified as 0.

Linux 2019-03-06 2



SCHED_SETATTR(2) Linux Programmer’s Manual SCHED_SETATTR(2)

sched_getattr()

The sched_getattr() system call fetches the scheduling policy and the associated attributes for the thread

whose ID is specified in pid . If pid equals zero, the scheduling policy and attributes of the calling thread

will be retrieved.

The size argument should be set to the size of the sched_attr structure as known to user space. The value

must be at least as large as the size of the initially published sched_attr structure, or the call fails with the

error EINVAL.

The retrieved scheduling attributes are placed in the fields of the sched_attr structure pointed to by attr.

The kernel sets attr.size to the size of its sched_attr structure.

If the caller-provided attr buffer is larger than the kernel’s sched_attr structure, the additional bytes in the

user-space structure are not touched. If the caller-provided structure is smaller than the kernel sched_attr

structure and the kernel needs to return values outside the provided space, sched_getattr() fails with the er-

ror E2BIG. As with sched_setattr(), these semantics allow for future extensibility of the interface.

The flags argument is provided to allow for future extensions to the interface; in the current implementa-

tion it must be specified as 0.

RETURN VALUE
On success, sched_setattr() and sched_getattr() return 0. On error, −1 is returned, and errno is set to indi-

cate the cause of the error.

ERRORS
sched_getattr() and sched_setattr() can both fail for the following reasons:

EINVAL

attr is NULL; or pid is negative; or flags is not zero.

ESRCH

The thread whose ID is pid could not be found.

In addition, sched_getattr() can fail for the following reasons:

E2BIG The buffer specified by size and attr is too small.

EINVAL

size is invalid; that is, it is smaller than the initial version of the sched_attr structure (48 bytes) or

larger than the system page size.

In addition, sched_setattr() can fail for the following reasons:

E2BIG The buffer specified by size and attr is larger than the kernel structure, and one or more of the ex-

cess bytes is nonzero.

EBUSY

SCHED_DEADLINE admission control failure, see sched(7).

EINVAL

attr.sched_policy is not one of the recognized policies; attr.sched_flags contains a flag other than

SCHED_FLAG_RESET_ON_FORK; or attr.sched_priority is invalid; or attr.sched_policy is

SCHED_DEADLINE and the deadline scheduling parameters in attr are invalid.

EPERM

The caller does not have appropriate privileges.

EPERM

The CPU affinity mask of the thread specified by pid does not include all CPUs in the system (see

sched_setaffinity(2)).

VERSIONS
These system calls first appeared in Linux 3.14.

Linux 2019-03-06 3



SCHED_SETATTR(2) Linux Programmer’s Manual SCHED_SETATTR(2)

CONFORMING TO
These system calls are nonstandard Linux extensions.

NOTES
sched_setattr() provides a superset of the functionality of sched_setscheduler(2), sched_setparam(2),

nice(2), and (other than the ability to set the priority of all processes belonging to a specified user or all pro-

cesses in a specified group) setpriority(2). Analogously, sched_getattr() provides a superset of the func-

tionality of sched_getscheduler(2), sched_getparam(2), and (partially) getpriority(2).

BUGS
In Linux versions up to 3.15, sched_settattr() failed with the error EFAULT instead of E2BIG for the case

described in ERRORS.

SEE ALSO
chrt(1), nice(2), sched_get_priority_max(2), sched_get_priority_min(2), sched_getaffinity(2),

sched_getparam(2), sched_getscheduler(2), sched_rr_get_interval(2), sched_setaffinity(2),

sched_setparam(2), sched_setscheduler(2), sched_yield(2), setpriority(2), pthread_getschedparam(3),

pthread_setschedparam(3), pthread_setschedprio(3), capabilities(7), cpuset(7), sched(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-03-06 4


