
SCHED(7) Linux Programmer’s Manual SCHED(7)

NAME
sched − overview of CPU scheduling

DESCRIPTION
Since Linux 2.6.23, the default scheduler is CFS, the "Completely Fair Scheduler". The CFS scheduler re-

placed the earlier "O(1)" scheduler.

API summary

Linux provides the following system calls for controlling the CPU scheduling behavior, policy, and priority

of processes (or, more precisely, threads).

nice(2) Set a new nice value for the calling thread, and return the new nice value.

getpriority(2)

Return the nice value of a thread, a process group, or the set of threads owned by a specified user.

setpriority(2)

Set the nice value of a thread, a process group, or the set of threads owned by a specified user.

sched_setscheduler(2)

Set the scheduling policy and parameters of a specified thread.

sched_getscheduler(2)

Return the scheduling policy of a specified thread.

sched_setparam(2)

Set the scheduling parameters of a specified thread.

sched_getparam(2)

Fetch the scheduling parameters of a specified thread.

sched_get_priority_max(2)

Return the maximum priority available in a specified scheduling policy.

sched_get_priority_min(2)

Return the minimum priority available in a specified scheduling policy.

sched_rr_get_interval(2)

Fetch the quantum used for threads that are scheduled under the "round-robin" scheduling policy.

sched_yield(2)

Cause the caller to relinquish the CPU, so that some other thread be executed.

sched_setaffinity(2)

(Linux-specific) Set the CPU affinity of a specified thread.

sched_getaffinity(2)

(Linux-specific) Get the CPU affinity of a specified thread.

sched_setattr(2)

Set the scheduling policy and parameters of a specified thread. This (Linux-specific) system call

provides a superset of the functionality of sched_setscheduler(2) and sched_setparam(2).

sched_getattr(2)

Fetch the scheduling policy and parameters of a specified thread. This (Linux-specific) system

call provides a superset of the functionality of sched_getscheduler(2) and sched_getparam(2).

Scheduling policies

The scheduler is the kernel component that decides which runnable thread will be executed by the CPU

next. Each thread has an associated scheduling policy and a static scheduling priority, sched_priority. The

scheduler makes its decisions based on knowledge of the scheduling policy and static priority of all threads

on the system.

For threads scheduled under one of the normal scheduling policies (SCHED_OTHER, SCHED_IDLE,

SCHED_BATCH), sched_priority is not used in scheduling decisions (it must be specified as 0).

Linux 2019-08-02 1

SCHED(7) Linux Programmer’s Manual SCHED(7)

Processes scheduled under one of the real-time policies (SCHED_FIFO, SCHED_RR) hav e a sched_pri-

ority value in the range 1 (low) to 99 (high). (As the numbers imply, real-time threads always have higher

priority than normal threads.) Note well: POSIX.1 requires an implementation to support only a minimum

32 distinct priority levels for the real-time policies, and some systems supply just this minimum. Portable

programs should use sched_get_priority_min(2) and sched_get_priority_max(2) to find the range of pri-

orities supported for a particular policy.

Conceptually, the scheduler maintains a list of runnable threads for each possible sched_priority value. In

order to determine which thread runs next, the scheduler looks for the nonempty list with the highest static

priority and selects the thread at the head of this list.

A thread’s scheduling policy determines where it will be inserted into the list of threads with equal static

priority and how it will move inside this list.

All scheduling is preemptive: if a thread with a higher static priority becomes ready to run, the currently

running thread will be preempted and returned to the wait list for its static priority level. The scheduling

policy determines the ordering only within the list of runnable threads with equal static priority.

SCHED_FIFO: First in-first out scheduling

SCHED_FIFO can be used only with static priorities higher than 0, which means that when a

SCHED_FIFO thread becomes runnable, it will always immediately preempt any currently running

SCHED_OTHER, SCHED_BATCH, or SCHED_IDLE thread. SCHED_FIFO is a simple scheduling

algorithm without time slicing. For threads scheduled under the SCHED_FIFO policy, the following rules

apply:

1) A running SCHED_FIFO thread that has been preempted by another thread of higher priority will stay

at the head of the list for its priority and will resume execution as soon as all threads of higher priority

are blocked again.

2) When a blocked SCHED_FIFO thread becomes runnable, it will be inserted at the end of the list for its

priority.

3) If a call to sched_setscheduler(2), sched_setparam(2), sched_setattr(2), pthread_setsched-

param(3), or pthread_setschedprio(3) changes the priority of the running or runnable SCHED_FIFO

thread identified by pid the effect on the thread’s position in the list depends on the direction of the

change to threads priority:

• If the thread’s priority is raised, it is placed at the end of the list for its new priority. As a conse-

quence, it may preempt a currently running thread with the same priority.

• If the thread’s priority is unchanged, its position in the run list is unchanged.

• If the thread’s priority is lowered, it is placed at the front of the list for its new priority.

According to POSIX.1-2008, changes to a thread’s priority (or policy) using any mechanism other than

pthread_setschedprio(3) should result in the thread being placed at the end of the list for its priority.

4) A thread calling sched_yield(2) will be put at the end of the list.

No other events will move a thread scheduled under the SCHED_FIFO policy in the wait list of runnable

threads with equal static priority.

A SCHED_FIFO thread runs until either it is blocked by an I/O request, it is preempted by a higher prior-

ity thread, or it calls sched_yield(2).

SCHED_RR: Round-robin scheduling

SCHED_RR is a simple enhancement of SCHED_FIFO. Everything described above for SCHED_FIFO

also applies to SCHED_RR, except that each thread is allowed to run only for a maximum time quantum.

If a SCHED_RR thread has been running for a time period equal to or longer than the time quantum, it will

be put at the end of the list for its priority. A SCHED_RR thread that has been preempted by a higher pri-

ority thread and subsequently resumes execution as a running thread will complete the unexpired portion of

its round-robin time quantum. The length of the time quantum can be retrieved using sched_rr_get_inter-

val(2).

Linux 2019-08-02 2

SCHED(7) Linux Programmer’s Manual SCHED(7)

SCHED_DEADLINE: Sporadic task model deadline scheduling

Since version 3.14, Linux provides a deadline scheduling policy (SCHED_DEADLINE). This policy is

currently implemented using GEDF (Global Earliest Deadline First) in conjunction with CBS (Constant

Bandwidth Server). To set and fetch this policy and associated attributes, one must use the Linux-specific

sched_setattr(2) and sched_getattr(2) system calls.

A sporadic task is one that has a sequence of jobs, where each job is activated at most once per period.

Each job also has a relative deadline, before which it should finish execution, and a computation time,

which is the CPU time necessary for executing the job. The moment when a task wakes up because a new

job has to be executed is called the arrival time (also referred to as the request time or release time). The

start time is the time at which a task starts its execution. The absolute deadline is thus obtained by adding

the relative deadline to the arrival time.

The following diagram clarifies these terms:

arrival/wakeup absolute deadline
| start time |
| | |
v v v

-----x--------xooooooooooooooooo--------x--------x---
|<- comp. time ->|

|<------- relative deadline ------>|
|<-------------- period ------------------->|

When setting a SCHED_DEADLINE policy for a thread using sched_setattr(2), one can specify three pa-

rameters: Runtime, Deadline, and Period . These parameters do not necessarily correspond to the afore-

mentioned terms: usual practice is to set Runtime to something bigger than the average computation time

(or worst-case execution time for hard real-time tasks), Deadline to the relative deadline, and Period to the

period of the task. Thus, for SCHED_DEADLINE scheduling, we have:

arrival/wakeup absolute deadline
| start time |
| | |
v v v

-----x--------xooooooooooooooooo--------x--------x---
|<-- Runtime ------->|

|<----------- Deadline ----------->|
|<-------------- Period ------------------->|

The three deadline-scheduling parameters correspond to the sched_runtime, sched_deadline, and sched_pe-

riod fields of the sched_attr structure; see sched_setattr(2). These fields express values in nanoseconds.

If sched_period is specified as 0, then it is made the same as sched_deadline.

The kernel requires that:

sched_runtime <= sched_deadline <= sched_period

In addition, under the current implementation, all of the parameter values must be at least 1024 (i.e., just

over one microsecond, which is the resolution of the implementation), and less than 2ˆ63. If any of these

checks fails, sched_setattr(2) fails with the error EINVAL.

The CBS guarantees non-interference between tasks, by throttling threads that attempt to over-run their

specified Runtime.

To ensure deadline scheduling guarantees, the kernel must prevent situations where the set of

SCHED_DEADLINE threads is not feasible (schedulable) within the given constraints. The kernel thus

performs an admittance test when setting or changing SCHED_DEADLINE policy and attributes. This

admission test calculates whether the change is feasible; if it is not, sched_setattr(2) fails with the error

EBUSY.

For example, it is required (but not necessarily sufficient) for the total utilization to be less than or equal to

the total number of CPUs available, where, since each thread can maximally run for Runtime per Period,

Linux 2019-08-02 3

SCHED(7) Linux Programmer’s Manual SCHED(7)

that thread’s utilization is its Runtime divided by its Period.

In order to fulfill the guarantees that are made when a thread is admitted to the SCHED_DEADLINE pol-

icy, SCHED_DEADLINE threads are the highest priority (user controllable) threads in the system; if any

SCHED_DEADLINE thread is runnable, it will preempt any thread scheduled under one of the other poli-

cies.

A call to fork(2) by a thread scheduled under the SCHED_DEADLINE policy fails with the error EA-

GAIN, unless the thread has its reset-on-fork flag set (see below).

A SCHED_DEADLINE thread that calls sched_yield(2) will yield the current job and wait for a new pe-

riod to begin.

SCHED_OTHER: Default Linux time-sharing scheduling

SCHED_OTHER can be used at only static priority 0 (i.e., threads under real-time policies always have

priority over SCHED_OTHER processes). SCHED_OTHER is the standard Linux time-sharing sched-

uler that is intended for all threads that do not require the special real-time mechanisms.

The thread to run is chosen from the static priority 0 list based on a dynamic priority that is determined only

inside this list. The dynamic priority is based on the nice value (see below) and is increased for each time

quantum the thread is ready to run, but denied to run by the scheduler. This ensures fair progress among all

SCHED_OTHER threads.

In the Linux kernel source code, the SCHED_OTHER policy is actually named SCHED_NORMAL.

The nice value

The nice value is an attribute that can be used to influence the CPU scheduler to favor or disfavor a process

in scheduling decisions. It affects the scheduling of SCHED_OTHER and SCHED_BATCH (see below)

processes. The nice value can be modified using nice(2), setpriority(2), or sched_setattr(2).

According to POSIX.1, the nice value is a per-process attribute; that is, the threads in a process should

share a nice value. However, on Linux, the nice value is a per-thread attribute: different threads in the same

process may have different nice values.

The range of the nice value varies across UNIX systems. On modern Linux, the range is −20 (high priority)

to +19 (low priority). On some other systems, the range is −20..20. Very early Linux kernels (Before

Linux 2.0) had the range −infinity..15.

The degree to which the nice value affects the relative scheduling of SCHED_OTHER processes likewise

varies across UNIX systems and across Linux kernel versions.

With the advent of the CFS scheduler in kernel 2.6.23, Linux adopted an algorithm that causes relative dif-

ferences in nice values to have a much stronger effect. In the current implementation, each unit of differ-

ence in the nice values of two processes results in a factor of 1.25 in the degree to which the scheduler fa-

vors the higher priority process. This causes very low nice values (+19) to truly provide little CPU to a

process whenever there is any other higher priority load on the system, and makes high nice values (−20)

deliver most of the CPU to applications that require it (e.g., some audio applications).

On Linux, the RLIMIT_NICE resource limit can be used to define a limit to which an unprivileged

process’s nice value can be raised; see setrlimit(2) for details.

For further details on the nice value, see the subsections on the autogroup feature and group scheduling, be-

low.

SCHED_BATCH: Scheduling batch processes

(Since Linux 2.6.16.) SCHED_BATCH can be used only at static priority 0. This policy is similar to

SCHED_OTHER in that it schedules the thread according to its dynamic priority (based on the nice

value). The difference is that this policy will cause the scheduler to always assume that the thread is CPU-

intensive. Consequently, the scheduler will apply a small scheduling penalty with respect to wakeup behav-

ior, so that this thread is mildly disfavored in scheduling decisions.

This policy is useful for workloads that are noninteractive, but do not want to lower their nice value, and for

workloads that want a deterministic scheduling policy without interactivity causing extra preemptions

Linux 2019-08-02 4

SCHED(7) Linux Programmer’s Manual SCHED(7)

(between the workload’s tasks).

SCHED_IDLE: Scheduling very low priority jobs

(Since Linux 2.6.23.) SCHED_IDLE can be used only at static priority 0; the process nice value has no in-

fluence for this policy.

This policy is intended for running jobs at extremely low priority (lower even than a +19 nice value with

the SCHED_OTHER or SCHED_BATCH policies).

Resetting scheduling policy for child processes

Each thread has a reset-on-fork scheduling flag. When this flag is set, children created by fork(2) do not

inherit privileged scheduling policies. The reset-on-fork flag can be set by either:

* ORing the SCHED_RESET_ON_FORK flag into the policy argument when calling sched_setsched-

uler(2) (since Linux 2.6.32); or

* specifying the SCHED_FLAG_RESET_ON_FORK flag in attr.sched_flags when calling sched_se-

tattr(2).

Note that the constants used with these two APIs have different names. The state of the reset-on-fork flag

can analogously be retrieved using sched_getscheduler(2) and sched_getattr(2).

The reset-on-fork feature is intended for media-playback applications, and can be used to prevent applica-

tions evading the RLIMIT_RTTIME resource limit (see getrlimit(2)) by creating multiple child pro-

cesses.

More precisely, if the reset-on-fork flag is set, the following rules apply for subsequently created children:

* If the calling thread has a scheduling policy of SCHED_FIFO or SCHED_RR, the policy is reset to

SCHED_OTHER in child processes.

* If the calling process has a negative nice value, the nice value is reset to zero in child processes.

After the reset-on-fork flag has been enabled, it can be reset only if the thread has the CAP_SYS_NICE ca-

pability. This flag is disabled in child processes created by fork(2).

Privileges and resource limits

In Linux kernels before 2.6.12, only privileged (CAP_SYS_NICE) threads can set a nonzero static priority

(i.e., set a real-time scheduling policy). The only change that an unprivileged thread can make is to set the

SCHED_OTHER policy, and this can be done only if the effective user ID of the caller matches the real or

effective user ID of the target thread (i.e., the thread specified by pid) whose policy is being changed.

A thread must be privileged (CAP_SYS_NICE) in order to set or modify a SCHED_DEADLINE policy.

Since Linux 2.6.12, the RLIMIT_RTPRIO resource limit defines a ceiling on an unprivileged thread’s

static priority for the SCHED_RR and SCHED_FIFO policies. The rules for changing scheduling policy

and priority are as follows:

* If an unprivileged thread has a nonzero RLIMIT_RTPRIO soft limit, then it can change its scheduling

policy and priority, subject to the restriction that the priority cannot be set to a value higher than the

maximum of its current priority and its RLIMIT_RTPRIO soft limit.

* If the RLIMIT_RTPRIO soft limit is 0, then the only permitted changes are to lower the priority, or to

switch to a non-real-time policy.

* Subject to the same rules, another unprivileged thread can also make these changes, as long as the effec-

tive user ID of the thread making the change matches the real or effective user ID of the target thread.

* Special rules apply for the SCHED_IDLE policy. In Linux kernels before 2.6.39, an unprivileged

thread operating under this policy cannot change its policy, reg ardless of the value of its RLIMIT_RT-

PRIO resource limit. In Linux kernels since 2.6.39, an unprivileged thread can switch to either the

SCHED_BATCH or the SCHED_OTHER policy so long as its nice value falls within the range per-

mitted by its RLIMIT_NICE resource limit (see getrlimit(2)).

Privileged (CAP_SYS_NICE) threads ignore the RLIMIT_RTPRIO limit; as with older kernels, they can

make arbitrary changes to scheduling policy and priority. See getrlimit(2) for further information on

Linux 2019-08-02 5

SCHED(7) Linux Programmer’s Manual SCHED(7)

RLIMIT_RTPRIO.

Limiting the CPU usage of real-time and deadline processes

A nonblocking infinite loop in a thread scheduled under the SCHED_FIFO, SCHED_RR, or

SCHED_DEADLINE policy can potentially block all other threads from accessing the CPU forever. Prior

to Linux 2.6.25, the only way of preventing a runaway real-time process from freezing the system was to

run (at the console) a shell scheduled under a higher static priority than the tested application. This allows

an emergency kill of tested real-time applications that do not block or terminate as expected.

Since Linux 2.6.25, there are other techniques for dealing with runaway real-time and deadline processes.

One of these is to use the RLIMIT_RTTIME resource limit to set a ceiling on the CPU time that a real-

time process may consume. See getrlimit(2) for details.

Since version 2.6.25, Linux also provides two /proc files that can be used to reserve a certain amount of

CPU time to be used by non-real-time processes. Reserving CPU time in this fashion allows some CPU

time to be allocated to (say) a root shell that can be used to kill a runaway process. Both of these files spec-

ify time values in microseconds:

/proc/sys/kernel/sched_rt_period_us

This file specifies a scheduling period that is equivalent to 100% CPU bandwidth. The value in

this file can range from 1 to INT_MAX, giving an operating range of 1 microsecond to around 35

minutes. The default value in this file is 1,000,000 (1 second).

/proc/sys/kernel/sched_rt_runtime_us

The value in this file specifies how much of the "period" time can be used by all real-time and

deadline scheduled processes on the system. The value in this file can range from −1 to

INT_MAX−1. Specifying −1 makes the run time the same as the period; that is, no CPU time is

set aside for non-real-time processes (which was the Linux behavior before kernel 2.6.25). The

default value in this file is 950,000 (0.95 seconds), meaning that 5% of the CPU time is reserved

for processes that don’t run under a real-time or deadline scheduling policy.

Response time

A blocked high priority thread waiting for I/O has a certain response time before it is scheduled again. The

device driver writer can greatly reduce this response time by using a "slow interrupt" interrupt handler.

Miscellaneous

Child processes inherit the scheduling policy and parameters across a fork(2). The scheduling policy and

parameters are preserved across execve(2).

Memory locking is usually needed for real-time processes to avoid paging delays; this can be done with

mlock(2) or mlockall(2).

The autogroup feature

Since Linux 2.6.38, the kernel provides a feature known as autogrouping to improve interactive desktop

performance in the face of multiprocess, CPU-intensive workloads such as building the Linux kernel with

large numbers of parallel build processes (i.e., the make(1) −j flag).

This feature operates in conjunction with the CFS scheduler and requires a kernel that is configured with

CONFIG_SCHED_AUTOGROUP. On a running system, this feature is enabled or disabled via the file

/proc/sys/kernel/sched_autogroup_enabled; a value of 0 disables the feature, while a value of 1 enables it.

The default value in this file is 1, unless the kernel was booted with the noautogroup parameter.

A new autogroup is created when a new session is created via setsid(2); this happens, for example, when a

new terminal window is started. A new process created by fork(2) inherits its parent’s autogroup member-

ship. Thus, all of the processes in a session are members of the same autogroup. An autogroup is automat-

ically destroyed when the last process in the group terminates.

When autogrouping is enabled, all of the members of an autogroup are placed in the same kernel scheduler

"task group". The CFS scheduler employs an algorithm that equalizes the distribution of CPU cycles across

task groups. The benefits of this for interactive desktop performance can be described via the following ex-

ample.

Linux 2019-08-02 6

SCHED(7) Linux Programmer’s Manual SCHED(7)

Suppose that there are two autogroups competing for the same CPU (i.e., presume either a single CPU sys-

tem or the use of taskset(1) to confine all the processes to the same CPU on an SMP system). The first

group contains ten CPU-bound processes from a kernel build started with make −j10. The other contains a

single CPU-bound process: a video player. The effect of autogrouping is that the two groups will each re-

ceive half of the CPU cycles. That is, the video player will receive 50% of the CPU cycles, rather than just

9% of the cycles, which would likely lead to degraded video playback. The situation on an SMP system is

more complex, but the general effect is the same: the scheduler distributes CPU cycles across task groups

such that an autogroup that contains a large number of CPU-bound processes does not end up hogging CPU

cycles at the expense of the other jobs on the system.

A process’s autogroup (task group) membership can be viewed via the file /proc/[pid]/autogroup:

$ cat /proc/1/autogroup

/autogroup-1 nice 0

This file can also be used to modify the CPU bandwidth allocated to an autogroup. This is done by writing

a number in the "nice" range to the file to set the autogroup’s nice value. The allowed range is from +19

(low priority) to −20 (high priority). (Writing values outside of this range causes write(2) to fail with the

error EINVAL.)

The autogroup nice setting has the same meaning as the process nice value, but applies to distribution of

CPU cycles to the autogroup as a whole, based on the relative nice values of other autogroups. For a

process inside an autogroup, the CPU cycles that it receives will be a product of the autogroup’s nice value

(compared to other autogroups) and the process’s nice value (compared to other processes in the same auto-

group.

The use of the cgroups(7) CPU controller to place processes in cgroups other than the root CPU cgroup

overrides the effect of autogrouping.

The autogroup feature groups only processes scheduled under non-real-time policies (SCHED_OTHER,

SCHED_BATCH, and SCHED_IDLE). It does not group processes scheduled under real-time and dead-

line policies. Those processes are scheduled according to the rules described earlier.

The nice value and group scheduling

When scheduling non-real-time processes (i.e., those scheduled under the SCHED_OTHER,

SCHED_BATCH, and SCHED_IDLE policies), the CFS scheduler employs a technique known as "group

scheduling", if the kernel was configured with the CONFIG_FAIR_GROUP_SCHED option (which is

typical).

Under group scheduling, threads are scheduled in "task groups". Task groups have a hierarchical relation-

ship, rooted under the initial task group on the system, known as the "root task group". Task groups are

formed in the following circumstances:

* All of the threads in a CPU cgroup form a task group. The parent of this task group is the task group of

the corresponding parent cgroup.

* If autogrouping is enabled, then all of the threads that are (implicitly) placed in an autogroup (i.e., the

same session, as created by setsid(2)) form a task group. Each new autogroup is thus a separate task

group. The root task group is the parent of all such autogroups.

* If autogrouping is enabled, then the root task group consists of all processes in the root CPU cgroup that

were not otherwise implicitly placed into a new autogroup.

* If autogrouping is disabled, then the root task group consists of all processes in the root CPU cgroup.

* If group scheduling was disabled (i.e., the kernel was configured without CON-

FIG_FAIR_GROUP_SCHED), then all of the processes on the system are notionally placed in a sin-

gle task group.

Under group scheduling, a thread’s nice value has an effect for scheduling decisions only relative to other

threads in the same task group. This has some surprising consequences in terms of the traditional seman-

tics of the nice value on UNIX systems. In particular, if autogrouping is enabled (which is the default in

various distributions), then employing setpriority(2) or nice(1) on a process has an effect only for

Linux 2019-08-02 7

SCHED(7) Linux Programmer’s Manual SCHED(7)

scheduling relative to other processes executed in the same session (typically: the same terminal window).

Conversely, for two processes that are (for example) the sole CPU-bound processes in different sessions

(e.g., different terminal windows, each of whose jobs are tied to different autogroups), modifying the nice

value of the process in one of the sessions has no effect in terms of the scheduler’s decisions relative to the

process in the other session. A possibly useful workaround here is to use a command such as the following

to modify the autogroup nice value for all of the processes in a terminal session:

$ echo 10 > /proc/self/autogroup

Real-time features in the mainline Linux kernel

Since kernel version 2.6.18, Linux is gradually becoming equipped with real-time capabilities, most of

which are derived from the former realtime-preempt patch set. Until the patches have been completely

merged into the mainline kernel, they must be installed to achieve the best real-time performance. These

patches are named:

patch-kernelversion-rtpatchversion

and can be downloaded from 〈http://www.kernel.org/pub/linux/kernel/projects/rt/〉 .

Without the patches and prior to their full inclusion into the mainline kernel, the kernel configuration offers

only the three preemption classes CONFIG_PREEMPT_NONE, CONFIG_PREEMPT_VOLUN-

TARY, and CONFIG_PREEMPT_DESKTOP which respectively provide no, some, and considerable re-

duction of the worst-case scheduling latency.

With the patches applied or after their full inclusion into the mainline kernel, the additional configuration

item CONFIG_PREEMPT_RT becomes available. If this is selected, Linux is transformed into a regular

real-time operating system. The FIFO and RR scheduling policies are then used to run a thread with true

real-time priority and a minimum worst-case scheduling latency.

NOTES
The cgroups(7) CPU controller can be used to limit the CPU consumption of groups of processes.

Originally, Standard Linux was intended as a general-purpose operating system being able to handle back-

ground processes, interactive applications, and less demanding real-time applications (applications that

need to usually meet timing deadlines). Although the Linux kernel 2.6 allowed for kernel preemption and

the newly introduced O(1) scheduler ensures that the time needed to schedule is fixed and deterministic ir-

respective of the number of active tasks, true real-time computing was not possible up to kernel version

2.6.17.

SEE ALSO
chcpu(1), chrt(1), lscpu(1), ps(1), taskset(1), top(1), getpriority(2), mlock(2), mlockall(2), munlock(2),

munlockall(2), nice(2), sched_get_priority_max(2), sched_get_priority_min(2), sched_getaffinity(2),

sched_getparam(2), sched_getscheduler(2), sched_rr_get_interval(2), sched_setaffinity(2),

sched_setparam(2), sched_setscheduler(2), sched_yield(2), setpriority(2), pthread_getaffinity_np(3),

pthread_getschedparam(3), pthread_setaffinity_np(3), sched_getcpu(3), capabilities(7), cpuset(7)

Programming for the real world − POSIX.4 by Bill O. Gallmeister, O’Reilly & Associates, Inc., ISBN

1-56592-074-0.

The Linux kernel source files Documentation/scheduler/sched-deadline.txt,

Documentation/scheduler/sched-rt-group.txt, Documentation/scheduler/sched-design-CFS.txt, and

Documentation/scheduler/sched-nice-design.txt

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-08-02 8

