NAME

rtnetlink - Linux IPv4 routing socket

SYNOPSIS

```
#include <asm/types.h>
#include linux/if_link.h>
#include linux/netlink.h>
#include linux/rtnetlink.h>
#include <sys/socket.h>
```

rtnetlink_socket = socket(AF_NETLINK, int socket_type, NETLINK_ROUTE);

DESCRIPTION

Rtnetlink allows the kernel's routing tables to be read and altered. It is used within the kernel to communicate between various subsystems, though this usage is not documented here, and for communication with user-space programs. Network routes, IP addresses, link parameters, neighbor setups, queueing disciplines, traffic classes and packet classifiers may all be controlled through **NETLINK_ROUTE** sockets. It is based on netlink messages; see **netlink**(7) for more information.

Routing attributes

Some rtnetlink messages have optional attributes after the initial header:

These attributes should be manipulated using only the RTA_* macros or libretlink, see **rtnetlink**(3).

Messages

Rtnetlink consists of these message types (in addition to standard netlink messages):

RTM NEWLINK, RTM DELLINK, RTM GETLINK

Create, remove or get information about a specific network interface. These messages contain an *ifinfomsg* structure followed by a series of *rtattr* structures.

ifi_flags contains the device flags, see **netdevice**(7); *ifi_index* is the unique interface index (since Linux 3.7, it is possible to feed a nonzero value with the **RTM_NEWLINK** message, thus creating a link with the given *ifindex*); *ifi_change* is reserved for future use and should be always set to 0xFFFFFFFF.

rta_type	Routing attributes value type	description
IFLA_UNSPEC	-	unspecified.
IFLA_ADDRESS	hardware address	interface L2 address
IFLA_BROADCAST	hardware address	L2 broadcast address.
IFLA_IFNAME	asciiz string	Device name.
IFLA_MTU	unsigned int	MTU of the device.
IFLA_LINK	int	Link type.
IFLA_QDISC	asciiz string	Queueing discipline.
IFLA_STATS	see below	Interface Statistics.

The value type for IFLA_STATS is struct rtnl_link_stats (struct net_device_stats in Linux 2.4 and earlier).

Linux 2020-02-09 1

RTM NEWADDR, RTM DELADDR, RTM GETADDR

Add, remove or receive information about an IP address associated with an interface. In Linux 2.2, an interface can carry multiple IP addresses, this replaces the alias device concept in 2.0. In Linux 2.2, these messages support IPv4 and IPv6 addresses. They contain an *ifaddrmsg* structure, optionally followed by *rtattr* routing attributes.

ifa_family is the address family type (currently AF_INET or AF_INET6), ifa_prefixlen is the length of the address mask of the address if defined for the family (like for IPv4), ifa_scope is the address scope, ifa_index is the interface index of the interface the address is associated with. ifa_flags is a flag word of IFA_F_SECONDARY for secondary address (old alias interface), IFA_F_PERMANENT for a permanent address set by the user and other undocumented flags.

Attributes

rta_type	value type	description
IFA_UNSPEC	-	unspecified.
IFA_ADDRESS	raw protocol address	interface address
IFA_LOCAL	raw protocol address	local address
IFA_LABEL	asciiz string	name of the interface
IFA_BROADCAST	raw protocol address	broadcast address.
IFA_ANYCAST	raw protocol address	anycast address
IFA_CACHEINFO	struct ifa_cacheinfo	Address information.

RTM_NEWROUTE, RTM_DELROUTE, RTM_GETROUTE

Create, remove or receive information about a network route. These messages contain an *rtmsg* structure with an optional sequence of *rtattr* structures following. For **RTM_GETROUTE**, setting *rtm_dst_len* and *rtm_src_len* to 0 means you get all entries for the specified routing table. For the other fields, except *rtm_table* and *rtm_protocol*, 0 is the wildcard.

```
struct rtmsq {
   unsigned char rtm_family; /* Address family of route */
    unsigned char rtm_dst_len; /* Length of destination */
    unsigned char rtm_src_len; /* Length of source */
    unsigned char rtm_table; /* Routing table ID */
    unsigned char rtm_protocol; /* Routing protocol; see below */
    unsigned char rtm_scope; /* See below */
    unsigned char rtm_type;
                             /* See below */
    unsigned int rtm_flags;
};
                  Route type
rtm_type
RTN_UNSPEC
                  unknown route
RTN_UNICAST
                  a gateway or direct route
RTN_LOCAL
                  a local interface route
RTN BROADCAST
                  a local broadcast route (sent as a broad-
                  cast)
```

Linux 2020-02-09 2

RTN_ANYCAST a local broadcast route (sent as a uni-

cast)

RTN_MULTICAST a multicast route
RTN_BLACKHOLE a packet dropping route
RTN_UNREACHABLE an unreachable destination
RTN_PROHIBIT a packet rejection route

RTN_THROW continue routing lookup in another table
RTN_NAT a network address translation rule
RTN_XRESOLVE refer to an external resolver (not imple-

mented)

rtm_protocol Route origin.

RTPROT_UNSPEC unknown

RTPROT_REDIRECT by an ICMP redirect (currently un-

used)

RTPROT_KERNEL by the kernel RTPROT_BOOT during boot

RTPROT_STATIC by the administrator

Values larger than **RTPROT_STATIC** are not interpreted by the kernel, they are just for user information. They may be used to tag the source of a routing information or to distinguish between multiple routing daemons. See *linux/rtnetlink.h>* for the routing daemon identifiers which are already assigned.

rtm_scope is the distance to the destination:

RT_SCOPE_UNIVERSE global route

RT_SCOPE_SITE interior route in the local autonomous

system

RT_SCOPE_LINK route on this link
RT_SCOPE_HOST route on the local host
RT_SCOPE_NOWHERE destination doesn't exist

The values between RT_SCOPE_UNIVERSE and RT_SCOPE_SITE are available to the user.

The *rtm_flags* have the following meanings:

RTM_F_NOTIFY if the route changes, notify the user via rt-

netlink

RTM_F_CLONED route is cloned from another route

RTM_F_EQUALIZE a multipath equalizer (not yet implemented)

rtm_table specifies the routing table

RT TABLE UNSPEC an unspecified routing table

RT_TABLE_DEFAULT the default table RT_TABLE_MAIN the main table RT_TABLE_LOCAL the local table

The user may assign arbitrary values between RT_TABLE_UNSPEC and RT_TABLE_DE-FAULT.

Attributes	
type	des

	1 Itti loutes	
rta_type	value type	description
RTA_UNSPEC	-	ignored.
RTA_DST	protocol address	Route destination address.
RTA_SRC	protocol address	Route source address.
RTA_IIF	int	Input interface index.
RTA_OIF	int	Output interface index.
RTA_GATEWAY	protocol address	The gateway of the route
RTA_PRIORITY	int	Priority of route.
RTA_PREFSRC		
RTA_METRICS	int	Route metric
RTA_MULTIPATH		
RTA_PROTOINFO		
RTA_FLOW		
RTA_CACHEINFO		

Fill these values in!

RTM_NEWNEIGH, RTM_DELNEIGH, RTM_GETNEIGH

Add, remove or receive information about a neighbor table entry (e.g., an ARP entry). The message contains an *ndmsg* structure.

```
struct ndmsq {
    unsigned char ndm_family;
            ndm_ifindex; /* Interface index */
    int
    __u16
              ndm_state; /* State */
ndm_flags; /* Flags */
    __u8
    __u8
                 ndm_type;
};
struct nda_cacheinfo {
    __u32 ndm_confirmed;
               ndm_used;
ndm_updated;
ndm_refcnt;
    ___u32
    __u32
    __u32
};
ndm_state is a bit mask of the following states:
NUD_INCOMPLETE
                   a currently resolving cache entry
```

```
NUD_REACHABLE a confirmed working cache entry
NUD_STALE an expired cache entry
NUD_DELAY an entry waiting for a timer
NUD_PROBE a cache entry that is currently reprobed
NUD_FAILED an invalid cache entry
NUD_NOARP a device with no destination cache
```

NUD_PERMANENT a static entry

Valid *ndm_flags* are:

```
NTF_PROXY a proxy arp entry NTF_ROUTER an IPv6 router
```

The *rtattr* struct has the following meanings for the *rta_type* field:

```
NDA UNSPEC unknown type
```

NDA_DST a neighbor cache n/w layer destination address

NDA_LLADDR a neighbor cache link layer address NDA CACHEINFO cache statistics.

If the rta_type field is NDA_CACHEINFO, then a struct nda_cacheinfo header follows

RTM_NEWRULE, RTM_DELRULE, RTM_GETRULE

Add, delete or retrieve a routing rule. Carries a struct rtmsg

RTM NEWQDISC, RTM DELQDISC, RTM GETQDISC

Add, remove or get a queueing discipline. The message contains a *struct tcmsg* and may be followed by a series of attributes.

Attributes

rta_type	value type	Description
TCA_UNSPEC	-	unspecified
TCA_KIND	asciiz string	Name of queueing discipline
TCA_OPTIONS	byte sequence	Qdisc-specific options follow
TCA_STATS	struct tc_stats	Qdisc statistics.
TCA_XSTATS	qdisc-specific	Module-specific statistics.
TCA RATE	struct to estimator	Rate limit.

In addition, various other qdisc-module-specific attributes are allowed. For more information see the appropriate include files.

RTM NEWTCLASS, RTM DELTCLASS, RTM GETTCLASS

Add, remove or get a traffic class. These messages contain a *struct tcmsg* as described above.

RTM NEWTFILTER, RTM DELTFILTER, RTM GETTFILTER

Add, remove or receive information about a traffic filter. These messages contain a *struct temsg* as described above.

VERSIONS

rtnetlink is a new feature of Linux 2.2.

BUGS

This manual page is incomplete.

SEE ALSO

```
cmsg(3), rtnetlink(3), ip(7), netlink(7)
```

COLOPHON

This page is part of release 5.05 of the Linux *man-pages* project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.

Linux 2020-02-09 5