NAME

drem, dremf, dreml, remainder, remainderf, remainderl - floating-point remainder function

SYNOPSIS

#include <math.h>

```
/* The C99 versions */
    double remainder(double x, double y);
    float remainderf(float x, float y);
    long double remainderl(long double x, long double y);
    /* Obsolete synonyms */
    double drem(double x, double y);
    float dremf(float x, float y);
    long double dreml(long double x, long double y);
    Link with -lm.
Feature Test Macro Requirements for glibc (see feature test macros(7)):
    remainder():
        _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L
           \parallel _XOPEN_SOURCE >= 500
           /* Since glibc 2.19: */_DEFAULT_SOURCE
          | /* Glibc versions <= 2.19: */ BSD_SOURCE | _SVID_SOURCE
    remainderf(), remainderl():
        _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L
           /* Since glibc 2.19: */_DEFAULT_SOURCE
           | /* Glibc versions <= 2.19: */ BSD_SOURCE | _SVID_SOURCE
    drem(), dremf(), dreml():
        /* Since glibc 2.19: */ _DEFAULT_SOURCE
          || /* Glibc versions <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE
```

DESCRIPTION

These functions compute the remainder of dividing x by y. The return value is $x-n^*y$, where n is the value x/y, rounded to the nearest integer. If the absolute value of $x-n^*y$ is 0.5, n is chosen to be even.

These functions are unaffected by the current rounding mode (see **fenv**(3)).

The drem() function does precisely the same thing.

RETURN VALUE

On success, these functions return the floating-point remainder, $x-n^*y$. If the return value is 0, it has the sign of x.

If x or y is a NaN, a NaN is returned.

If x is an infinity, and y is not a NaN, a domain error occurs, and a NaN is returned.

If y is zero, and x is not a NaN, a domain error occurs, and a NaN is returned.

ERRORS

See **math_error**(7) for information on how to determine whether an error has occurred when calling these functions.

The following errors can occur:

Domain error: x is an infinity and y is not a NaN

errno is set to **EDOM** (but see BUGS). An invalid floating-point exception (**FE_INVALID**) is raised.

These functions do not set *errno* for this case.

2017-09-15

Domain error: y is zero

errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is raised.

ATTRIBUTES

For an explanation of the terms used in this section, see **attributes**(7).

Interface	Attribute	Value
<pre>drem(), dremf(), dreml(),</pre>	Thread safety	MT-Safe
remainder(), remainderf(),		
remainderl()		

CONFORMING TO

The functions **remainder()**, **remainderf()**, and **remainderl()** are specified in C99, POSIX.1-2001, and POSIX.1-2008.

The function **drem()** is from 4.3BSD. The *float* and *long double* variants **dremf()** and **dreml()** exist on some systems, such as Tru64 and glibc2. Avoid the use of these functions in favor of **remainder()** etc.

BUGS

Before glibc 2.15, the call

remainder(nan(""), 0);

returned a NaN, as expected, but wrongly caused a domain error. Since glibc 2.15, a silent NaN (i.e., no domain error) is returned.

Before glibc 2.15, errno was not set to **EDOM** for the domain error that occurs when x is an infinity and y is not a NaN.

EXAMPLE

The call "remainder(29.0, 3.0)" returns -1.

SEE ALSO

div(3), fmod(3), remquo(3)

COLOPHON

This page is part of release 5.05 of the Linux *man-pages* project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.

2017-09-15