
REGEX(7) Linux Programmer’s Manual REGEX(7)

NAME
regex − POSIX.2 regular expressions

DESCRIPTION
Regular expressions ("RE"s), as defined in POSIX.2, come in two forms: modern REs (roughly those of
egrep; POSIX.2 calls these "extended" REs) and obsolete REs (roughly those of ed(1); POSIX.2 "basic"
REs). Obsolete REs mostly exist for backward compatibility in some old programs; they will be discussed
at the end. POSIX.2 leaves some aspects of RE syntax and semantics open; "†" marks decisions on these
aspects that may not be fully portable to other POSIX.2 implementations.

A (modern) RE is one† or more nonempty† branches, separated by '|'. It matches anything that matches
one of the branches.

A branch is one† or more pieces, concatenated. It matches a match for the first, followed by a match for the
second, and so on.

A piece is an atom possibly followed by a single† '*', '+', '?', or bound. An atom followed by '*' matches a
sequence of 0 or more matches of the atom. An atom followed by '+' matches a sequence of 1 or more
matches of the atom. An atom followed by '?' matches a sequence of 0 or 1 matches of the atom.

A bound is '{' followed by an unsigned decimal integer, possibly followed by ',' possibly followed by an-
other unsigned decimal integer, always followed by '}'. The integers must lie between 0 and
RE_DUP_MAX (255†) inclusive, and if there are two of them, the first may not exceed the second. An
atom followed by a bound containing one integer i and no comma matches a sequence of exactly i matches
of the atom. An atom followed by a bound containing one integer i and a comma matches a sequence of i
or more matches of the atom. An atom followed by a bound containing two integers i and j matches a se-
quence of i through j (inclusive) matches of the atom.

An atom is a regular expression enclosed in "()" (matching a match for the regular expression), an empty
set of "()" (matching the null string)†, a bracket expression (see below), '.' (matching any single character),
'ˆ' (matching the null string at the beginning of a line), '$' (matching the null string at the end of a line), a '\'
followed by one of the characters "ˆ.[$()|*+?{\" (matching that character taken as an ordinary character), a
'\' followed by any other character† (matching that character taken as an ordinary character, as if the '\' had
not been present†), or a single character with no other significance (matching that character). A '{' fol-
lowed by a character other than a digit is an ordinary character, not the beginning of a bound†. It is illegal
to end an RE with '\'.

A bracket expression is a list of characters enclosed in "[]". It normally matches any single character from
the list (but see below). If the list begins with 'ˆ', it matches any single character (but see below) not from
the rest of the list. If two characters in the list are separated by '−', this is shorthand for the full range of
characters between those two (inclusive) in the collating sequence, for example, "[0−9]" in ASCII matches
any decimal digit. It is illegal† for two ranges to share an endpoint, for example, "a−c−e". Ranges are
very collating-sequence-dependent, and portable programs should avoid relying on them.

To include a literal ']' in the list, make it the first character (following a possible 'ˆ'). To include a literal '−',
make it the first or last character, or the second endpoint of a range. To use a literal '−' as the first endpoint
of a range, enclose it in "[." and ".]" to make it a collating element (see below). With the exception of
these and some combinations using '[' (see next paragraphs), all other special characters, including '\', lose
their special significance within a bracket expression.

Within a bracket expression, a collating element (a character, a multicharacter sequence that collates as if it
were a single character, or a collating-sequence name for either) enclosed in "[." and ".]" stands for the se-
quence of characters of that collating element. The sequence is a single element of the bracket expression’s
list. A bracket expression containing a multicharacter collating element can thus match more than one
character, for example, if the collating sequence includes a "ch" collating element, then the RE "[[.ch.]]*c"
matches the first five characters of "chchcc".

Within a bracket expression, a collating element enclosed in "[=" and "=]" is an equivalence class, standing
for the sequences of characters of all collating elements equivalent to that one, including itself. (If there are
no other equivalent collating elements, the treatment is as if the enclosing delimiters were "[." and ".]".)

2009-01-12 1

REGEX(7) Linux Programmer’s Manual REGEX(7)

For example, if o and ô are the members of an equivalence class, then "[[=o=]]", "[[=ô=]]", and "[oô]"
are all synonymous. An equivalence class may not† be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in "[:" and ":]" stands for the list of all
characters belonging to that class. Standard character class names are:

alnum digit punct
alpha graph space
blank lower upper
cntrl print xdigit

These stand for the character classes defined in wctype(3). A locale may provide others. A character class
may not be used as an endpoint of a range.

In the event that an RE could match more than one substring of a given string, the RE matches the one start-
ing earliest in the string. If the RE could match more than one substring starting at that point, it matches
the longest. Subexpressions also match the longest possible substrings, subject to the constraint that the
whole match be as long as possible, with subexpressions starting earlier in the RE taking priority over ones
starting later. Note that higher-level subexpressions thus take priority over their lower-level component
subexpressions.

Match lengths are measured in characters, not collating elements. A null string is considered longer than
no match at all. For example, "bb*" matches the three middle characters of "abbbc",
"(wee|week)(knights|nights)" matches all ten characters of "weeknights", when "(.*).*" is matched against
"abc" the parenthesized subexpression matches all three characters, and when "(a*)*" is matched against
"bc" both the whole RE and the parenthesized subexpression match the null string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside a
bracket expression, it is effectively transformed into a bracket expression containing both cases, for exam-
ple, 'x' becomes "[xX]". When it appears inside a bracket expression, all case counterparts of it are added to
the bracket expression, so that, for example, "[x]" becomes "[xX]" and "[ˆx]" becomes "[ˆxX]".

No particular limit is imposed on the length of REs†. Programs intended to be portable should not employ
REs longer than 256 bytes, as an implementation can refuse to accept such REs and remain POSIX-compli-
ant.

Obsolete ("basic") regular expressions differ in several respects. '|', '+', and '?' are ordinary characters and
there is no equivalent for their functionality. The delimiters for bounds are "\{" and "\}", with '{' and '}' by
themselves ordinary characters. The parentheses for nested subexpressions are "\(" and "\)", with '(' and ')'
by themselves ordinary characters. 'ˆ' is an ordinary character except at the beginning of the RE or† the be-
ginning of a parenthesized subexpression, '$' is an ordinary character except at the end of the RE or† the
end of a parenthesized subexpression, and '*' is an ordinary character if it appears at the beginning of the
RE or the beginning of a parenthesized subexpression (after a possible leading 'ˆ').

Finally, there is one new type of atom, a back reference: '\' followed by a nonzero decimal digit d matches
the same sequence of characters matched by the dth parenthesized subexpression (numbering subexpres-
sions by the positions of their opening parentheses, left to right), so that, for example, "\([bc]\)\1" matches
"bb" or "cc" but not "bc".

BUGS
Having two kinds of REs is a botch.

The current POSIX.2 spec says that ')' is an ordinary character in the absence of an unmatched '('; this was
an unintentional result of a wording error, and change is likely. Avoid relying on it.

Back references are a dreadful botch, posing major problems for efficient implementations. They are also
somewhat vaguely defined (does "a\(\(b\)*\2\)*d" match "abbbd"?). Av oid using them.

POSIX.2’s specification of case-independent matching is vague. The "one case implies all cases" definition
given above is current consensus among implementors as to the right interpretation.

2009-01-12 2

REGEX(7) Linux Programmer’s Manual REGEX(7)

AUTHOR
This page was taken from Henry Spencer’s regex package.

SEE ALSO
grep(1), regex(3)

POSIX.2, section 2.8 (Regular Expression Notation).

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man−pages/.

2009-01-12 3

