
RANDOM(7) Linux Programmer’s Manual RANDOM(7)

NAME
random − overview of interfaces for obtaining randomness

DESCRIPTION
The kernel random-number generator relies on entropy gathered from device drivers and other sources of

environmental noise to seed a cryptographically secure pseudorandom number generator (CSPRNG). It is

designed for security, rather than speed.

The following interfaces provide access to output from the kernel CSPRNG:

* The /dev/urandom and /dev/random devices, both described in random(4). These devices have been

present on Linux since early times, and are also available on many other systems.

* The Linux-specific getrandom(2) system call, available since Linux 3.17. This system call provides

access either to the same source as /dev/urandom (called the urandom source in this page) or to the

same source as /dev/random (called the random source in this page). The default is the urandom

source; the random source is selected by specifying the GRND_RANDOM flag to the system call.

(The getentropy(3) function provides a slightly more portable interface on top of getrandom(2).)

Initialization of the entropy pool

The kernel collects bits of entropy from the environment. When a sufficient number of random bits has

been collected, the entropy pool is considered to be initialized.

Choice of random source

Unless you are doing long-term key generation (and most likely not even then), you probably shouldn’t be

reading from the /dev/random device or employing getrandom(2) with the GRND_RANDOM flag. In-

stead, either read from the /dev/urandom device or employ getrandom(2) without the GRND_RANDOM

flag. The cryptographic algorithms used for the urandom source are quite conservative, and so should be

sufficient for all purposes.

The disadvantage of GRND_RANDOM and reads from /dev/random is that the operation can block for an

indefinite period of time. Furthermore, dealing with the partially fulfilled requests that can occur when us-

ing GRND_RANDOM or when reading from /dev/random increases code complexity.

Monte Carlo and other probabilistic sampling applications

Using these interfaces to provide large quantities of data for Monte Carlo simulations or other programs/al-

gorithms which are doing probabilistic sampling will be slow. Furthermore, it is unnecessary, because such

applications do not need cryptographically secure random numbers. Instead, use the interfaces described in

this page to obtain a small amount of data to seed a user-space pseudorandom number generator for use by

such applications.

Comparison between getrandom, /dev/urandom, and /dev/random

The following table summarizes the behavior of the various interfaces that can be used to obtain random-

ness. GRND_NONBLOCK is a flag that can be used to control the blocking behavior of getrandom(2).

The final column of the table considers the case that can occur in early boot time when the entropy pool is

not yet initialized.

Linux 2017-03-13 1



RANDOM(7) Linux Programmer’s Manual RANDOM(7)

Interface Pool Blocking

behavior

Behavior when pool

is not yet ready

/dev/random Blocking pool If entropy too

low, blocks until

there is enough

entropy again

Blocks until enough

entropy gathered

/dev/urandom CSPRNG out-

put

Never blocks Returns output from

uninitialized

CSPRNG (may be

low entropy and un-

suitable for cryptogra-

phy)

getrandom() Same as

/dev/urandom

Does not block

once is pool

ready

Blocks until pool

ready

getrandom()

GRND_RAN-

DOM

Same as

/dev/random

If entropy too

low, blocks until

there is enough

entropy again

Blocks until pool

ready

getrandom()

GRND_NON-

BLOCK

Same as

/dev/urandom

Does not block

once is pool

ready

EAGAIN

getrandom()

GRND_RAN-

DOM +

GRND_NON-

BLOCK

Same as

/dev/random

EAGAIN if not

enough entropy

available

EAGAIN

Generating cryptographic keys

The amount of seed material required to generate a cryptographic key equals the effective key size of the

key. For example, a 3072-bit RSA or Diffie-Hellman private key has an effective key size of 128 bits (it re-

quires about 2ˆ128 operations to break) so a key generator needs only 128 bits (16 bytes) of seed material

from /dev/random.

While some safety margin above that minimum is reasonable, as a guard against flaws in the CSPRNG al-

gorithm, no cryptographic primitive available today can hope to promise more than 256 bits of security, so

if any program reads more than 256 bits (32 bytes) from the kernel random pool per invocation, or per rea-

sonable reseed interval (not less than one minute), that should be taken as a sign that its cryptography is not

skillfully implemented.

SEE ALSO
getrandom(2), getauxval(3), getentropy(3), random(4), urandom(4), signal(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2017-03-13 2


