
RAND(3) Linux Programmer’s Manual RAND(3)

NAME
rand, rand_r, srand − pseudo-random number generator

SYNOPSIS
#include <stdlib.h>

int rand(void);

int rand_r(unsigned int *seedp);

void srand(unsigned int seed);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

rand_r():

Since glibc 2.24:

_POSIX_C_SOURCE >= 199506L

Glibc 2.23 and earlier

_POSIX_C_SOURCE

DESCRIPTION
The rand() function returns a pseudo-random integer in the range 0 to RAND_MAX inclusive (i.e., the

mathematical range [0, RAND_MAX]).

The srand() function sets its argument as the seed for a new sequence of pseudo-random integers to be re-

turned by rand(). These sequences are repeatable by calling srand() with the same seed value.

If no seed value is provided, the rand() function is automatically seeded with a value of 1.

The function rand() is not reentrant, since it uses hidden state that is modified on each call. This might just

be the seed value to be used by the next call, or it might be something more elaborate. In order to get re-

producible behavior in a threaded application, this state must be made explicit; this can be done using the

reentrant function rand_r().

Like rand(), rand_r() returns a pseudo-random integer in the range [0, RAND_MAX]. The seedp argu-

ment is a pointer to an unsigned int that is used to store state between calls. If rand_r() is called with the

same initial value for the integer pointed to by seedp, and that value is not modified between calls, then the

same pseudo-random sequence will result.

The value pointed to by the seedp argument of rand_r() provides only a very small amount of state, so this

function will be a weak pseudo-random generator. Try drand48_r(3) instead.

RETURN VALUE
The rand() and rand_r() functions return a value between 0 and RAND_MAX (inclusive). The srand()

function returns no value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value

Thread safety MT-Saferand(), rand_r(), srand()

CONFORMING TO
The functions rand() and srand() conform to SVr4, 4.3BSD, C89, C99, POSIX.1-2001. The function

rand_r() is from POSIX.1-2001. POSIX.1-2008 marks rand_r() as obsolete.

NOTES
The versions of rand() and srand() in the Linux C Library use the same random number generator as ran-

dom(3) and srandom(3), so the lower-order bits should be as random as the higher-order bits. However,

on older rand() implementations, and on current implementations on different systems, the lower-order bits

are much less random than the higher-order bits. Do not use this function in applications intended to be

portable when good randomness is needed. (Use random(3) instead.)

2019-03-06 1

RAND(3) Linux Programmer’s Manual RAND(3)

EXAMPLE
POSIX.1-2001 gives the following example of an implementation of rand() and srand(), possibly useful

when one needs the same sequence on two different machines.

static unsigned long next = 1;

/* RAND_MAX assumed to be 32767 */

int myrand(void) {

next = next * 1103515245 + 12345;

return((unsigned)(next/65536) % 32768);

}

void mysrand(unsigned int seed) {

next = seed;

}

The following program can be used to display the pseudo-random sequence produced by rand() when

given a particular seed.

#include <stdlib.h>

#include <stdio.h>

int

main(int argc, char *argv[])

{

int j, r, nloops;

unsigned int seed;

if (argc != 3) {

fprintf(stderr, "Usage: %s <seed> <nloops>\n", argv[0]);

exit(EXIT_FAILURE);

}

seed = atoi(argv[1]);

nloops = atoi(argv[2]);

srand(seed);

for (j = 0; j < nloops; j++) {

r = rand();

printf("%d\n", r);

}

exit(EXIT_SUCCESS);

}

SEE ALSO
drand48(3), random(3)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

2019-03-06 2

