
QEMU.1(1) QEMU.1(1)

NAME
qemu−doc − QEMU version 4.2.1 User Documentation

SYNOPSIS
qemu−system−x86_64 [options] [disk_image]

DESCRIPTION
The QEMU PC System emulator simulates the following peripherals:

− i440FX host PCI bridge and PIIX3 PCI to ISA bridge

− Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA extensions (hardware level,
including all non standard modes).

− PS/2 mouse and keyboard

− 2 PCI IDE interfaces with hard disk and CD-ROM support

− Floppy disk

− PCI and ISA network adapters

− Serial ports

− IPMI BMC, either and internal or external one

− Creative SoundBlaster 16 sound card

− ENSONIQ AudioPCI ES1370 sound card

− Intel 82801AA AC97 Audio compatible sound card

− Intel HD Audio Controller and HDA codec

− Adlib (OPL2) − Yamaha YM3812 compatible chip

− Gravis Ultrasound GF1 sound card

− CS4231A compatible sound card

− PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB−1.1 hub.

SMP is supported with up to 255 CPUs.

QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL VGA BIOS.

QEMU uses YM3812 emulation by Tatsuyuki Satoh.

QEMU uses GUS emulation (GUSEMU32 <http://www.deinmeister.de/gusemu/>) by Tibor ‘‘TS’’ Schütz.

Note that, by default, GUS shares IRQ (7) with parallel ports and so QEMU must be told to not have parallel
ports to have working GUS.

qemu−system−x86_64 dos.img −soundhw gus −parallel none

Alternatively:

qemu−system−x86_64 dos.img −device gus,irq=5

Or some other unclaimed IRQ.

CS4231A is the chip used in Windows Sound System and GUSMAX products

OPTIONS
disk_image is a raw hard disk image for IDE hard disk 0. Some targets do not need a disk image.

Standard options

−h Display help and exit

−version
Display version information and exit

2022-12-08 1

QEMU.1(1) QEMU.1(1)

−machine [type=]name[,prop=value[,...]]
Select the emulated machine by name. Use −machine help to list available machines.

For architectures which aim to support live migration compatibility across releases, each release will
introduce a new versioned machine type. For example, the 2.8.0 release introduced machine types
‘‘pc−i440fx−2.8’’ and ‘‘pc−q35−2.8’’ for the x86_64/i686 architectures.

To allow liv e migration of guests from QEMU version 2.8.0, to QEMU version 2.9.0, the 2.9.0 version
must support the ‘‘pc−i440fx−2.8’’ and ‘‘pc−q35−2.8’’ machines too. To allow users live migrating
VMs to skip multiple intermediate releases when upgrading, new releases of QEMU will support
machine types from many previous versions.

Supported machine properties are:

accel=accels1[:accels2[:...]]
This is used to enable an accelerator. Depending on the target architecture, kvm, xen, hax, hvf,
whpx or tcg can be available. By default, tcg is used. If there is more than one accelerator
specified, the next one is used if the previous one fails to initialize.

kernel_irqchip=on|off
Controls in-kernel irqchip support for the chosen accelerator when available.

gfx_passthru=on|off
Enables IGD GFX passthrough support for the chosen machine when available.

vmport=on|off|auto
Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the value based on
accel. For accel=xen the default is off otherwise the default is on.

kvm_shadow_mem=size
Defines the size of the KVM shadow MMU.

dump−guest−core=on|off
Include guest memory in a core dump. The default is on.

mem−merge=on|off
Enables or disables memory merge support. This feature, when supported by the host, de-
duplicates identical memory pages among VMs instances (enabled by default).

aes−key−wrap=on|off
Enables or disables AES key wrapping support on s390−ccw hosts. This feature controls whether
AES wrapping keys will be created to allow execution of AES cryptographic functions. The
default is on.

dea−key−wrap=on|off
Enables or disables DEA key wrapping support on s390−ccw hosts. This feature controls whether
DEA wrapping keys will be created to allow execution of DEA cryptographic functions. The
default is on.

nvdimm=on|off
Enables or disables NVDIMM support. The default is off.

enforce−config−section=on|off
If enforce-config-section is set to on, force migration code to send configuration section even if
the machine-type sets the migration.send−configuration property to off. NOTE: this parameter
is deprecated. Please use −global migration.send−configuration=on|off instead.

memory−encryption=
Memory encryption object to use. The default is none.

−cpu model
Select CPU model (−cpu help for list and additional feature selection)

2022-12-08 2

QEMU.1(1) QEMU.1(1)

−accel name[,prop=value[,...]]
This is used to enable an accelerator. Depending on the target architecture, kvm, xen, hax, hvf, whpx
or tcg can be available. By default, tcg is used. If there is more than one accelerator specified, the next
one is used if the previous one fails to initialize.

thread=single|multi
Controls number of TCG threads. When the TCG is multi-threaded there will be one thread per
vCPU therefor taking advantage of additional host cores. The default is to enable multi-threading
where both the back-end and front-ends support it and no incompatible TCG features have been
enabled (e.g. icount/replay).

−smp [cpus=]n[,cores=cores][,threads=threads][,dies=dies][,sockets=sockets][,maxcpus=maxcpus]
Simulate an SMP system with n CPUs. On the PC target, up to 255 CPUs are supported. On Sparc32
target, Linux limits the number of usable CPUs to 4. For the PC target, the number of cores per die,
the number of threads per cores, the number of dies per packages and the total number of sockets can
be specified. Missing values will be computed. If any on the three values is given, the total number of
CPUs n can be omitted. maxcpus specifies the maximum number of hotpluggable CPUs.

−numa node[,mem=size][,cpus=firstcpu[−lastcpu]][,nodeid=node]
−numa node[,memdev=id][,cpus=firstcpu[−lastcpu]][,nodeid=node]
−numa dist,src=source,dst=destination,val=distance
−numa cpu,node−id=node[,socket−id=x][,core−id=y][,thread−id=z]

Define a NUMA node and assign RAM and VCPUs to it. Set the NUMA distance from a source node to
a destination node.

Legacy VCPU assignment uses cpus option where firstcpu and lastcpu are CPU indexes. Each cpus
option represent a contiguous range of CPU indexes (or a single VCPU if lastcpu is omitted). A non-
contiguous set of VCPUs can be represented by providing multiple cpus options. If cpus is omitted on
all nodes, VCPUs are automatically split between them.

For example, the following option assigns VCPUs 0, 1, 2 and 5 to a NUMA node:

−numa node,cpus=0−2,cpus=5

cpu option is a new alternative to cpus option which uses socket−id|core−id|thread−id properties to
assign CPU objects to a node using topology layout properties of CPU. The set of properties is
machine specific, and depends on used machine type/smp options. It could be queried with
hotpluggable-cpus monitor command. node-id property specifies node to which CPU object will be
assigned, it’s required for node to be declared with node option before it’s used with cpu option.

For example:

−M pc \
−smp 1,sockets=2,maxcpus=2 \
−numa node,nodeid=0 −numa node,nodeid=1 \
−numa cpu,node−id=0,socket−id=0 −numa cpu,node−id=1,socket−id=1

mem assigns a given RAM amount to a node. memdev assigns RAM from a given memory backend
device to a node. If mem and memdev are omitted in all nodes, RAM is split equally between them.

mem and memdev are mutually exclusive. Furthermore, if one node uses memdev, all of them have to
use it.

source and destination are NUMA node IDs. distance is the NUMA distance from source to
destination. The distance from a node to itself is always 10. If any pair of nodes is given a distance,
then all pairs must be given distances. Although, when distances are only given in one direction for
each pair of nodes, then the distances in the opposite directions are assumed to be the same. If,
however, an asymmetrical pair of distances is given for even one node pair, then all node pairs must be
provided distance values for both directions, even when they are symmetrical. When a node is
unreachable from another node, set the pair’s distance to 255.

2022-12-08 3

QEMU.1(1) QEMU.1(1)

Note that the −numa option doesn’t allocate any of the specified resources, it just assigns existing
resources to NUMA nodes. This means that one still has to use the −m, −smp options to allocate RAM

and VCPUs respectively.

−add−fd fd=fd,set=set[,opaque=opaque]
Add a file descriptor to an fd set. Valid options are:

fd=fd
This option defines the file descriptor of which a duplicate is added to fd set. The file descriptor
cannot be stdin, stdout, or stderr.

set=set
This option defines the ID of the fd set to add the file descriptor to.

opaque=opaque
This option defines a free-form string that can be used to describe fd.

You can open an image using pre-opened file descriptors from an fd set:

qemu−system−x86_64 \
−add−fd fd=3,set=2,opaque="rdwr:/path/to/file" \
−add−fd fd=4,set=2,opaque="rdonly:/path/to/file" \
−drive file=/dev/fdset/2,index=0,media=disk

−set group.id.arg=value
Set parameter arg for item id of type group

−global driver.prop=value
−global driver=driver,property=property,value=value

Set default value of driver’s property prop to value, e.g.:

qemu−system−x86_64 −global ide−hd.physical_block_size=4096 disk−image.img

In particular, you can use this to set driver properties for devices which are created automatically by
the machine model. To create a device which is not created automatically and set properties on it, use
−device.

−global driver.prop=value is shorthand for −global driver=driver,property=prop,value=value. The
longhand syntax works even when driver contains a dot.

−boot
[order=drives][,once=drives][,menu=on|off][,splash=sp_name][,splash−time=sp_time][,reboot−timeout=rb_timeout][,strict=on|off]

Specify boot order drives as a string of drive letters. Valid drive letters depend on the target
architecture. The x86 PC uses: a, b (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n−p
(Etherboot from network adapter 1−4), hard disk boot is the default. To apply a particular boot order
only on the first startup, specify it via once. Note that the order or once parameter should not be used
together with the bootindex property of devices, since the firmware implementations normally do not
support both at the same time.

Interactive boot menus/prompts can be enabled via menu=on as far as firmware/BIOS supports them.
The default is non-interactive boot.

A splash picture could be passed to bios, enabling user to show it as logo, when option
splash=sp_name is given and menu=on, If firmware/BIOS supports them. Currently Seabios for X86
system support it. limitation: The splash file could be a jpeg file or a BMP file in 24 BPP format(true
color). The resolution should be supported by the SVGA mode, so the recommended is 320x240,
640x480, 800x640.

A timeout could be passed to bios, guest will pause for rb_timeout ms when boot failed, then reboot. If
rb_timeout is ’−1’, guest will not reboot, qemu passes ’−1’ to bios by default. Currently Seabios for
X86 system support it.

Do strict boot via strict=on as far as firmware/BIOS supports it. This only effects when boot priority

2022-12-08 4

QEMU.1(1) QEMU.1(1)

is changed by bootindex options. The default is non-strict boot.

try to boot from network first, then from hard disk
qemu−system−x86_64 −boot order=nc
boot from CD−ROM first, switch back to default order after reboot
qemu−system−x86_64 −boot once=d
boot with a splash picture for 5 seconds.
qemu−system−x86_64 −boot menu=on,splash=/root/boot.bmp,splash−time=5000

Note: The legacy format ’−boot drives’ is still supported but its use is discouraged as it may be
removed from future versions.

−m [size=]megs[,slots=n,maxmem=size]
Sets guest startup RAM size to megs megabytes. Default is 128 MiB. Optionally, a suffix of ‘‘M’’ or
‘‘G’’ can be used to signify a value in megabytes or gigabytes respectively. Optional pair slots,
maxmem could be used to set amount of hotpluggable memory slots and maximum amount of
memory. Note that maxmem must be aligned to the page size.

For example, the following command-line sets the guest startup RAM size to 1GB, creates 3 slots to
hotplug additional memory and sets the maximum memory the guest can reach to 4GB:

qemu−system−x86_64 −m 1G,slots=3,maxmem=4G

If slots and maxmem are not specified, memory hotplug won’t be enabled and the guest startup RAM

will never increase.

−mem−path path
Allocate guest RAM from a temporarily created file in path.

−mem−prealloc
Preallocate memory when using −mem−path.

−k language
Use keyboard layout language (for example fr for French). This option is only needed where it is not
easy to get raw PC keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses display).
You don’t normally need to use it on PC/Linux or PC/Windows hosts.

The available layouts are:

ar de−ch es fo fr−ca hu ja mk no pt−br sv
da en−gb et fr fr−ch is lt nl pl ru th
de en−us fi fr−be hr it lv nl−be pt sl tr

The default is en−us.

−audio−help
Will show the −audiodev equivalent of the currently specified (deprecated) environment variables.

−audiodev [driver=]driver,id=id[,prop[=value][,...]]
Adds a new audio backend driver identified by id. There are global and driver specific properties.
Some values can be set differently for input and output, they’re marked with in|out.. You can set
the input’s property with in.prop and the output’s property with out.prop. For example:

−audiodev alsa,id=example,in.frequency=44110,out.frequency=8000
−audiodev alsa,id=example,out.channels=1 # leaves in.channels unspecified

NOTE: parameter validation is known to be incomplete, in many cases specifying an invalid option
causes QEMU to print an error message and continue emulation without sound.

Valid global options are:

id=identifier
Identifies the audio backend.

2022-12-08 5

QEMU.1(1) QEMU.1(1)

timer−period=period
Sets the timer period used by the audio subsystem in microseconds. Default is 10000 (10 ms).

in|out.mixing−engine=on|off
Use QEMU’s mixing engine to mix all streams inside QEMU and convert audio formats when not
supported by the backend. When off, fixed-settings must be off too. Note that disabling this
option means that the selected backend must support multiple streams and the audio formats used
by the virtual cards, otherwise you’ll get no sound. It’s not recommended to disable this option
unless you want to use 5.1 or 7.1 audio, as mixing engine only supports mono and stereo audio.
Default is on.

in|out.fixed−settings=on|off
Use fixed settings for host audio. When off, it will change based on how the guest opens the
sound card. In this case you must not specify frequency, channels or format. Default is on.

in|out.frequency=frequency
Specify the frequency to use when using fixed-settings. Default is 44100Hz.

in|out.channels=channels
Specify the number of channels to use when using fixed-settings. Default is 2 (stereo).

in|out.format=format
Specify the sample format to use when using fixed-settings. Valid values are: s8, s16, s32, u8,
u16, u32. Default is s16.

in|out.voices=voices
Specify the number of voices to use. Default is 1.

in|out.buffer−length=usecs
Sets the size of the buffer in microseconds.

−audiodev none,id=id[,prop[=value][,...]]
Creates a dummy backend that discards all outputs. This backend has no backend specific properties.

−audiodev alsa,id=id[,prop[=value][,...]]
Creates backend using the ALSA. This backend is only available on Linux.

ALSA specific options are:

in|out.dev=device
Specify the ALSA device to use for input and/or output. Default is default.

in|out.period−length=usecs
Sets the period length in microseconds.

in|out.try−poll=on|off
Attempt to use poll mode with the device. Default is on.

threshold=threshold
Threshold (in microseconds) when playback starts. Default is 0.

−audiodev coreaudio,id=id[,prop[=value][,...]]
Creates a backend using Apple’s Core Audio. This backend is only available on Mac OS and only
supports playback.

Core Audio specific options are:

in|out.buffer−count=count
Sets the count of the buffers.

−audiodev dsound,id=id[,prop[=value][,...]]
Creates a backend using Microsoft’s DirectSound. This backend is only available on Windows and
only supports playback.

DirectSound specific options are:

2022-12-08 6

QEMU.1(1) QEMU.1(1)

latency=usecs
Add extra usecs microseconds latency to playback. Default is 10000 (10 ms).

−audiodev oss,id=id[,prop[=value][,...]]
Creates a backend using OSS. This backend is available on most Unix-like systems.

OSS specific options are:

in|out.dev=device
Specify the file name of the OSS device to use. Default is /dev/dsp.

in|out.buffer−count=count
Sets the count of the buffers.

in|out.try−poll=on|of
Attempt to use poll mode with the device. Default is on.

try−mmap=on|off
Try using memory mapped device access. Default is off.

exclusive=on|off
Open the device in exclusive mode (vmix won’t work in this case). Default is off.

dsp−policy=policy
Sets the timing policy (between 0 and 10, where smaller number means smaller latency but
higher CPU usage). Use −1 to use buffer sizes specified by buffer and buffer−count. This
option is ignored if you do not have OSS 4. Default is 5.

−audiodev pa,id=id[,prop[=value][,...]]
Creates a backend using PulseAudio. This backend is available on most systems.

PulseAudio specific options are:

server=server
Sets the PulseAudio server to connect to.

in|out.name=sink
Use the specified source/sink for recording/playback.

in|out.latency=usecs
Desired latency in microseconds. The PulseAudio server will try to honor this value but actual
latencies may be lower or higher.

−audiodev sdl,id=id[,prop[=value][,...]]
Creates a backend using SDL. This backend is available on most systems, but you should use your
platform’s native backend if possible. This backend has no backend specific properties.

−audiodev spice,id=id[,prop[=value][,...]]
Creates a backend that sends audio through SPICE. This backend requires −spice and automatically
selected in that case, so usually you can ignore this option. This backend has no backend specific
properties.

−audiodev wav,id=id[,prop[=value][,...]]
Creates a backend that writes audio to a WAV file.

Backend specific options are:

path=path
Write recorded audio into the specified file. Default is qemu.wav.

−soundhw card1[,card2,...] or −soundhw all
Enable audio and selected sound hardware. Use ’help’ to print all available sound hardware. For
example:

2022-12-08 7

QEMU.1(1) QEMU.1(1)

qemu−system−x86_64 −soundhw sb16,adlib disk.img
qemu−system−x86_64 −soundhw es1370 disk.img
qemu−system−x86_64 −soundhw ac97 disk.img
qemu−system−x86_64 −soundhw hda disk.img
qemu−system−x86_64 −soundhw all disk.img
qemu−system−x86_64 −soundhw help

Note that Linux’s i810_audio OSS kernel (for AC97) module might require manually specifying
clocking.

modprobe i810_audio clocking=48000

−device driver[,prop[=value][,...]]
Add device driver. prop=value sets driver properties. Valid properties depend on the driver. To get
help on possible drivers and properties, use −device help and −device driver,help.

Some drivers are:

−device
ipmi−bmc−sim,id=id[,slave_addr=val][,sdrfile=file][,furareasize=val][,furdatafile=file][,guid=uuid]

Add an IPMI BMC. This is a simulation of a hardware management interface processor that normally
sits on a system. It provides a watchdog and the ability to reset and power control the system. You
need to connect this to an IPMI interface to make it useful

The IPMI slave address to use for the BMC. The default is 0x20. This address is the BMC’s address on
the I2C network of management controllers. If you don’t know what this means, it is safe to ignore it.

id=id
The BMC id for interfaces to use this device.

slave_addr=val
Define slave address to use for the BMC. The default is 0x20.

sdrfile=file
file containing raw Sensor Data Records (SDR) data. The default is none.

fruareasize=val
size of a Field Replaceable Unit (FRU) area. The default is 1024.

frudatafile=file
file containing raw Field Replaceable Unit (FRU) inv entory data. The default is none.

guid=uuid
value for the GUID for the BMC, in standard UUID format. If this is set, get ‘‘Get GUID’’

command to the BMC will return it. Otherwise ‘‘Get GUID’’ will return an error.

−device ipmi−bmc−extern,id=id,chardev=id[,slave_addr=val]
Add a connection to an external IPMI BMC simulator. Instead of locally emulating the BMC like the
above item, instead connect to an external entity that provides the IPMI services.

A connection is made to an external BMC simulator. If you do this, it is strongly recommended that
you use the ‘‘reconnect=’’ chardev option to reconnect to the simulator if the connection is lost. Note
that if this is not used carefully, it can be a security issue, as the interface has the ability to send resets,
NMIs, and power off the VM. It’s best if QEMU makes a connection to an external simulator running
on a secure port on localhost, so neither the simulator nor QEMU is exposed to any outside network.

See the ‘‘lanserv/README.vm’’ file in the OpenIPMI library for more details on the external
interface.

−device isa−ipmi−kcs,bmc=id[,ioport=val][,irq=val]
Add a KCS IPMI interafce on the ISA bus. This also adds a corresponding ACPI and SMBIOS entries, if
appropriate.

2022-12-08 8

QEMU.1(1) QEMU.1(1)

bmc=id
The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.

ioport=val
Define the I/O address of the interface. The default is 0xca0 for KCS.

irq=val
Define the interrupt to use. The default is 5. To disable interrupts, set this to 0.

−device isa−ipmi−bt,bmc=id[,ioport=val][,irq=val]
Like the KCS interface, but defines a BT interface. The default port is 0xe4 and the default interrupt is
5.

−name name
Sets the name of the guest. This name will be displayed in the SDL window caption. The name will
also be used for the VNC server. Also optionally set the top visible process name in Linux. Naming of
individual threads can also be enabled on Linux to aid debugging.

−uuid uuid
Set system UUID.

Block device options

−fda file
−fdb file

Use file as floppy disk 0/1 image.

−hda file
−hdb file
−hdc file
−hdd file

Use file as hard disk 0, 1, 2 or 3 image.

−cdrom file
Use file as CD-ROM image (you cannot use −hdc and −cdrom at the same time). You can use the host
CD-ROM by using /dev/cdrom as filename.

−blockdev option[,option[,option[,...]]]
Define a new block driver node. Some of the options apply to all block drivers, other options are only
accepted for a specific block driver. See below for a list of generic options and options for the most
common block drivers.

Options that expect a reference to another node (e.g. file) can be given in two ways. Either you
specify the node name of an already existing node (file=node-name), or you define a new node inline,
adding options for the referenced node after a dot (file.filename=path,file.aio=native).

A block driver node created with −blockdev can be used for a guest device by specifying its node
name for the drive property in a −device argument that defines a block device.

Valid options for any block driver node:
driver

Specifies the block driver to use for the given node.

node−name
This defines the name of the block driver node by which it will be referenced later. The
name must be unique, i.e. it must not match the name of a different block driver node, or (if
you use −drive as well) the ID of a drive.

If no node name is specified, it is automatically generated. The generated node name is not
intended to be predictable and changes between QEMU invocations. For the top level, an
explicit node name must be specified.

2022-12-08 9

QEMU.1(1) QEMU.1(1)

read−only
Open the node read-only. Guest write attempts will fail.

Note that some block drivers support only read-only access, either generally or in certain
configurations. In this case, the default value read−only=off does not work and the option
must be specified explicitly.

auto−read−only
If auto−read−only=on is set, QEMU may fall back to read-only usage even when
read−only=off is requested, or even switch between modes as needed, e.g. depending on
whether the image file is writable or whether a writing user is attached to the node.

force−share
Override the image locking system of QEMU by forcing the node to utilize weaker shared
access for permissions where it would normally request exclusive access. When there is the
potential for multiple instances to have the same file open (whether this invocation of QEMU

is the first or the second instance), both instances must permit shared access for the second
instance to succeed at opening the file.

Enabling force−share=on requires read−only=on.

cache.direct
The host page cache can be avoided with cache.direct=on. This will attempt to do disk IO

directly to the guest’s memory. QEMU may still perform an internal copy of the data.

cache.no−flush
In case you don’t care about data integrity over host failures, you can use
cache.no−flush=on. This option tells QEMU that it never needs to write any data to the disk
but can instead keep things in cache. If anything goes wrong, like your host losing power,
the disk storage getting disconnected accidentally, etc. your image will most probably be
rendered unusable.

discard=discard
discard is one of ‘‘ignore’’ (or ‘‘off’’) or ‘‘unmap’’ (or ‘‘on’’) and controls whether
discard (also known as trim or unmap) requests are ignored or passed to the filesystem.
Some machine types may not support discard requests.

detect−zeroes=detect−zeroes
detect-zeroes is ‘‘off’’, ‘‘on’’ or ‘‘unmap’’ and enables the automatic conversion of plain zero
writes by the OS to driver specific optimized zero write commands. You may even choose
‘‘unmap’’ if discard is set to ‘‘unmap’’ to allow a zero write to be converted to an unmap
operation.

Driver-specific options for file
This is the protocol-level block driver for accessing regular files.

filename
The path to the image file in the local filesystem

aio
Specifies the AIO backend (threads/native, default: threads)

locking
Specifies whether the image file is protected with Linux OFD / POSIX locks. The default is to
use the Linux Open File Descriptor API if available, otherwise no lock is applied.
(auto/on/off, default: auto)

Example:

−blockdev driver=file,node−name=disk,filename=disk.img

2022-12-08 10

QEMU.1(1) QEMU.1(1)

Driver-specific options for raw
This is the image format block driver for raw images. It is usually stacked on top of a protocol
level block driver such as file.

file
Reference to or definition of the data source block driver node (e.g. a file driver node)

Example 1:

−blockdev driver=file,node−name=disk_file,filename=disk.img
−blockdev driver=raw,node−name=disk,file=disk_file

Example 2:

−blockdev driver=raw,node−name=disk,file.driver=file,file.filename=disk.img

Driver-specific options for qcow2
This is the image format block driver for qcow2 images. It is usually stacked on top of a protocol
level block driver such as file.

file
Reference to or definition of the data source block driver node (e.g. a file driver node)

backing
Reference to or definition of the backing file block device (default is taken from the image
file). It is allowed to pass null here in order to disable the default backing file.

lazy−refcounts
Whether to enable the lazy refcounts feature (on/off; default is taken from the image file)

cache−size
The maximum total size of the L2 table and refcount block caches in bytes (default: the sum
of l2−cache−size and refcount-cache-size)

l2−cache−size
The maximum size of the L2 table cache in bytes (default: if cache-size is not specified −
32M on Linux platforms, and 8M on non-Linux platforms; otherwise, as large as possible
within the cache-size, while permitting the requested or the minimal refcount cache size)

refcount−cache−size
The maximum size of the refcount block cache in bytes (default: 4 times the cluster size; or
if cache-size is specified, the part of it which is not used for the L2 cache)

cache−clean−interval
Clean unused entries in the L2 and refcount caches. The interval is in seconds. The default
value is 600 on supporting platforms, and 0 on other platforms. Setting it to 0 disables this
feature.

pass−discard−request
Whether discard requests to the qcow2 device should be forwarded to the data source
(on/off; default: on if discard=unmap is specified, off otherwise)

pass−discard−snapshot
Whether discard requests for the data source should be issued when a snapshot operation
(e.g. deleting a snapshot) frees clusters in the qcow2 file (on/off; default: on)

pass−discard−other
Whether discard requests for the data source should be issued on other occasions where a
cluster gets freed (on/off; default: off)

overlap−check
Which overlap checks to perform for writes to the image (none/constant/cached/all; default:
cached). For details or finer granularity control refer to the QAPI documentation of
blockdev−add.

2022-12-08 11

QEMU.1(1) QEMU.1(1)

Example 1:

−blockdev driver=file,node−name=my_file,filename=/tmp/disk.qcow2
−blockdev driver=qcow2,node−name=hda,file=my_file,overlap−check=none,cache−size=16777216

Example 2:

−blockdev driver=qcow2,node−name=disk,file.driver=http,file.filename=http://example.com/image.qcow2

Driver-specific options for other drivers
Please refer to the QAPI documentation of the blockdev−add QMP command.

−drive option[,option[,option[,...]]]
Define a new drive. This includes creating a block driver node (the backend) as well as a guest device,
and is mostly a shortcut for defining the corresponding −blockdev and −device options.

−drive accepts all options that are accepted by −blockdev. In addition, it knows the following options:

file=file
This option defines which disk image to use with this drive. If the filename contains comma, you
must double it (for instance, ‘‘file=my,,file’’ to use file ‘‘my,file’’).

Special files such as iSCSI devices can be specified using protocol specific URLs. See the section
for ‘‘Device URL Syntax’’ for more information.

if=interface
This option defines on which type on interface the drive is connected. Available types are: ide,
scsi, sd, mtd, floppy, pflash, virtio, none.

bus=bus,unit=unit
These options define where is connected the drive by defining the bus number and the unit id.

index=index
This option defines where is connected the drive by using an index in the list of available
connectors of a given interface type.

media=media
This option defines the type of the media: disk or cdrom.

snapshot=snapshot
snapshot is ‘‘on’’ or ‘‘off’’ and controls snapshot mode for the given drive (see −snapshot).

cache=cache
cache is ‘‘none’’, ‘‘writeback’’, ‘‘unsafe’’, ‘‘directsync’’ or ‘‘writethrough’’ and controls how the
host cache is used to access block data. This is a shortcut that sets the cache.direct and
cache.no−flush options (as in −blockdev), and additionally cache.writeback, which provides a
default for the write-cache option of block guest devices (as in −device). The modes correspond
to the following settings:

cache.writeback cache.direct cache.no−flush

writeback on off off
none on on off
writethrough off off off
directsync off on off
unsafe on off on

The default mode is cache=writeback.

aio=aio
aio is ‘‘threads’’, or ‘‘native’’ and selects between pthread based disk I/O and native Linux AIO.

format=format
Specify which disk format will be used rather than detecting the format. Can be used to specify
format=raw to avoid interpreting an untrusted format header.

2022-12-08 12

QEMU.1(1) QEMU.1(1)

werror=action,rerror=action
Specify which action to take on write and read errors. Valid actions are: ‘‘ignore’’ (ignore the
error and try to continue), ‘‘stop’’ (pause QEMU), ‘‘report’’ (report the error to the guest),
‘‘enospc’’ (pause QEMU only if the host disk is full; report the error to the guest otherwise). The
default setting is werror=enospc and rerror=report.

copy−on−read=copy-on-read
copy-on-read is ‘‘on’’ or ‘‘off’’ and enables whether to copy read backing file sectors into the
image file.

bps=b,bps_rd=r,bps_wr=w
Specify bandwidth throttling limits in bytes per second, either for all request types or for reads or
writes only. Small values can lead to timeouts or hangs inside the guest. A safe minimum for
disks is 2 MB/s.

bps_max=bm,bps_rd_max=rm,bps_wr_max=wm
Specify bursts in bytes per second, either for all request types or for reads or writes only. Bursts
allow the guest I/O to spike above the limit temporarily.

iops=i,iops_rd=r,iops_wr=w
Specify request rate limits in requests per second, either for all request types or for reads or writes
only.

iops_max=bm,iops_rd_max=rm,iops_wr_max=wm
Specify bursts in requests per second, either for all request types or for reads or writes only.
Bursts allow the guest I/O to spike above the limit temporarily.

iops_size=is
Let every is bytes of a request count as a new request for iops throttling purposes. Use this option
to prevent guests from circumventing iops limits by sending fewer but larger requests.

group=g
Join a throttling quota group with given name g. All drives that are members of the same group
are accounted for together. Use this option to prevent guests from circumventing throttling limits
by using many small disks instead of a single larger disk.

By default, the cache.writeback=on mode is used. It will report data writes as completed as soon as
the data is present in the host page cache. This is safe as long as your guest OS makes sure to correctly
flush disk caches where needed. If your guest OS does not handle volatile disk write caches correctly
and your host crashes or loses power, then the guest may experience data corruption.

For such guests, you should consider using cache.writeback=off. This means that the host page cache
will be used to read and write data, but write notification will be sent to the guest only after QEMU has
made sure to flush each write to the disk. Be aware that this has a major impact on performance.

When using the −snapshot option, unsafe caching is always used.

Copy-on-read avoids accessing the same backing file sectors repeatedly and is useful when the
backing file is over a slow network. By default copy-on-read is off.

Instead of −cdrom you can use:

qemu−system−x86_64 −drive file=file,index=2,media=cdrom

Instead of −hda, −hdb, −hdc, −hdd, you can use:

qemu−system−x86_64 −drive file=file,index=0,media=disk
qemu−system−x86_64 −drive file=file,index=1,media=disk
qemu−system−x86_64 −drive file=file,index=2,media=disk
qemu−system−x86_64 −drive file=file,index=3,media=disk

You can open an image using pre-opened file descriptors from an fd set:

2022-12-08 13

QEMU.1(1) QEMU.1(1)

qemu−system−x86_64 \
−add−fd fd=3,set=2,opaque="rdwr:/path/to/file" \
−add−fd fd=4,set=2,opaque="rdonly:/path/to/file" \
−drive file=/dev/fdset/2,index=0,media=disk

You can connect a CDROM to the slave of ide0:

qemu−system−x86_64 −drive file=file,if=ide,index=1,media=cdrom

If you don’t specify the ‘‘file=’’ argument, you define an empty drive:

qemu−system−x86_64 −drive if=ide,index=1,media=cdrom

Instead of −fda, −fdb, you can use:

qemu−system−x86_64 −drive file=file,index=0,if=floppy
qemu−system−x86_64 −drive file=file,index=1,if=floppy

By default, interface is ‘‘ide’’ and index is automatically incremented:

qemu−system−x86_64 −drive file=a −drive file=b"

is interpreted like:

qemu−system−x86_64 −hda a −hdb b

−mtdblock file
Use file as on-board Flash memory image.

−sd file
Use file as SecureDigital card image.

−pflash file
Use file as a parallel flash image.

−snapshot
Write to temporary files instead of disk image files. In this case, the raw disk image you use is not
written back. You can however force the write back by pressing C−a s.

−fsdev local,id=id,path=path,security_model=security_model
[,writeout=writeout][,readonly][,fmode=fmode][,dmode=dmode]
[,throttling.option=value[,throttling.option=value[,...]]]
−fsdev proxy,id=id,socket=socket[,writeout=writeout][,readonly]
−fsdev proxy,id=id,sock_fd=sock_fd[,writeout=writeout][,readonly]
−fsdev synth,id=id[,readonly]

Define a new file system device. Valid options are:

local
Accesses to the filesystem are done by QEMU.

proxy
Accesses to the filesystem are done by virtfs−proxy−helper (1).

synth
Synthetic filesystem, only used by QTests.

id=id
Specifies identifier for this device.

path=path
Specifies the export path for the file system device. Files under this path will be available to the
9p client on the guest.

security_model=security_model
Specifies the security model to be used for this export path. Supported security models are
‘‘passthrough’’, ‘‘mapped-xattr’’, ‘‘mapped-file’’ and ‘‘none’’. In ‘‘passthrough’’ security model,

2022-12-08 14

QEMU.1(1) QEMU.1(1)

files are stored using the same credentials as they are created on the guest. This requires QEMU to
run as root. In ‘‘mapped-xattr’’ security model, some of the file attributes like uid, gid, mode bits
and link target are stored as file attributes. For ‘‘mapped-file’’ these attributes are stored in the
hidden .virtfs_metadata directory. Directories exported by this security model cannot interact
with other unix tools. ‘‘none’’ security model is same as passthrough except the sever won’t
report failures if it fails to set file attributes like ownership. Security model is mandatory only for
local fsdriver. Other fsdrivers (like proxy) don’t take security model as a parameter.

writeout=writeout
This is an optional argument. The only supported value is ‘‘immediate’’. This means that host
page cache will be used to read and write data but write notification will be sent to the guest only
when the data has been reported as written by the storage subsystem.

readonly
Enables exporting 9p share as a readonly mount for guests. By default read-write access is given.

socket=socket
Enables proxy filesystem driver to use passed socket file for communicating with
virtfs−proxy−helper (1).

sock_fd=sock_fd
Enables proxy filesystem driver to use passed socket descriptor for communicating with
virtfs−proxy−helper (1). Usually a helper like libvirt will create socketpair and pass one of the
fds as sock_fd.

fmode=fmode
Specifies the default mode for newly created files on the host. Works only with security models
‘‘mapped-xattr’’ and ‘‘mapped-file’’.

dmode=dmode
Specifies the default mode for newly created directories on the host. Works only with security
models ‘‘mapped-xattr’’ and ‘‘mapped-file’’.

throttling.bps−total=b,throttling.bps−read=r,throttling.bps−write=w
Specify bandwidth throttling limits in bytes per second, either for all request types or for reads or
writes only.

throttling.bps−total−max=bm,bps−read−max=rm,bps−write−max=wm
Specify bursts in bytes per second, either for all request types or for reads or writes only. Bursts
allow the guest I/O to spike above the limit temporarily.

throttling.iops−total=i,throttling.iops−read=r, throttling.iops−write=w
Specify request rate limits in requests per second, either for all request types or for reads or writes
only.

throttling.iops−total−max=im,throttling.iops−read−max=irm, throttling.iops−write−max=iwm
Specify bursts in requests per second, either for all request types or for reads or writes only.
Bursts allow the guest I/O to spike above the limit temporarily.

throttling.iops−size=is
Let every is bytes of a request count as a new request for iops throttling purposes.

−fsdev option is used along with −device driver ‘‘virtio−9p−...’’.

−device virtio−9p−type,fsdev=id,mount_tag=mount_tag
Options for virtio−9p−... driver are:

type
Specifies the variant to be used. Supported values are ‘‘pci’’, ‘‘ccw’’ or ‘‘device’’, depending on
the machine type.

2022-12-08 15

QEMU.1(1) QEMU.1(1)

fsdev=id
Specifies the id value specified along with −fsdev option.

mount_tag=mount_tag
Specifies the tag name to be used by the guest to mount this export point.

−virtfs local,path=path,mount_tag=mount_tag
,security_model=security_model[,writeout=writeout][,readonly]
[,fmode=fmode][,dmode=dmode][,multidevs=multidevs]
−virtfs proxy,socket=socket,mount_tag=mount_tag [,writeout=writeout][,readonly]
−virtfs proxy,sock_fd=sock_fd,mount_tag=mount_tag [,writeout=writeout][,readonly]
−virtfs synth,mount_tag=mount_tag

Define a new filesystem device and expose it to the guest using a virtio−9p−device. The general form
of a Virtual File system pass-through options are:

local
Accesses to the filesystem are done by QEMU.

proxy
Accesses to the filesystem are done by virtfs−proxy−helper (1).

synth
Synthetic filesystem, only used by QTests.

id=id
Specifies identifier for the filesystem device

path=path
Specifies the export path for the file system device. Files under this path will be available to the
9p client on the guest.

security_model=security_model
Specifies the security model to be used for this export path. Supported security models are
‘‘passthrough’’, ‘‘mapped-xattr’’, ‘‘mapped-file’’ and ‘‘none’’. In ‘‘passthrough’’ security model,
files are stored using the same credentials as they are created on the guest. This requires QEMU to
run as root. In ‘‘mapped-xattr’’ security model, some of the file attributes like uid, gid, mode bits
and link target are stored as file attributes. For ‘‘mapped-file’’ these attributes are stored in the
hidden .virtfs_metadata directory. Directories exported by this security model cannot interact
with other unix tools. ‘‘none’’ security model is same as passthrough except the sever won’t
report failures if it fails to set file attributes like ownership. Security model is mandatory only for
local fsdriver. Other fsdrivers (like proxy) don’t take security model as a parameter.

writeout=writeout
This is an optional argument. The only supported value is ‘‘immediate’’. This means that host
page cache will be used to read and write data but write notification will be sent to the guest only
when the data has been reported as written by the storage subsystem.

readonly
Enables exporting 9p share as a readonly mount for guests. By default read-write access is given.

socket=socket
Enables proxy filesystem driver to use passed socket file for communicating with
virtfs−proxy−helper (1). Usually a helper like libvirt will create socketpair and pass one of the
fds as sock_fd.

sock_fd
Enables proxy filesystem driver to use passed ’sock_fd’ as the socket descriptor for interfacing
with virtfs−proxy−helper (1).

fmode=fmode
Specifies the default mode for newly created files on the host. Works only with security models
‘‘mapped-xattr’’ and ‘‘mapped-file’’.

2022-12-08 16

QEMU.1(1) QEMU.1(1)

dmode=dmode
Specifies the default mode for newly created directories on the host. Works only with security
models ‘‘mapped-xattr’’ and ‘‘mapped-file’’.

mount_tag=mount_tag
Specifies the tag name to be used by the guest to mount this export point.

multidevs=multidevs
Specifies how to deal with multiple devices being shared with a 9p export. Supported behaviours
are either ‘‘remap’’, ‘‘forbid’’ or ‘‘warn’’. The latter is the default behaviour on which virtfs 9p
expects only one device to be shared with the same export, and if more than one device is shared
and accessed via the same 9p export then only a warning message is logged (once) by qemu on
host side. In order to avoid file ID collisions on guest you should either create a separate virtfs
export for each device to be shared with guests (recommended way) or you might use ‘‘remap’’
instead which allows you to share multiple devices with only one export instead, which is
achieved by remapping the original inode numbers from host to guest in a way that would prevent
such collisions. Remapping inodes in such use cases is required because the original device IDs
from host are never passed and exposed on guest. Instead all files of an export shared with virtfs
always share the same device id on guest. So two files with identical inode numbers but from
actually different devices on host would otherwise cause a file ID collision and hence potential
misbehaviours on guest. ‘‘forbid’’ on the other hand assumes like ‘‘warn’’ that only one device is
shared by the same export, however it will not only log a warning message but also deny access
to additional devices on guest. Note though that ‘‘forbid’’ does currently not block all possible
file access operations (e.g. readdir() would still return entries from other devices).

−virtfs_synth
Create synthetic file system image. Note that this option is now deprecated. Please use −fsdev
synth and −device virtio−9p−... instead.

−iscsi
Configure iSCSI session parameters.

USB options

−usb
Enable USB emulation on machine types with an on-board USB host controller (if not enabled by
default). Note that on-board USB host controllers may not support USB 3.0. In this case −device
qemu-xhci can be used instead on machines with PCI.

−usbdevice devname
Add the USB device devname. Note that this option is deprecated, please use −device usb−...
instead.

mouse
Virtual Mouse. This will override the PS/2 mouse emulation when activated.

tablet
Pointer device that uses absolute coordinates (like a touchscreen). This means QEMU is able to
report the mouse position without having to grab the mouse. Also overrides the PS/2 mouse
emulation when activated.

braille
Braille device. This will use BrlAPI to display the braille output on a real or fake device.

Display options

−display type
Select type of display to use. This option is a replacement for the old style −sdl/−curses/... options.
Valid values for type are

sdl Display video output via SDL (usually in a separate graphics window; see the SDL documentation
for other possibilities).

2022-12-08 17

QEMU.1(1) QEMU.1(1)

curses
Display video output via curses. For graphics device models which support a text mode, QEMU

can display this output using a curses/ncurses interface. Nothing is displayed when the graphics
device is in graphical mode or if the graphics device does not support a text mode. Generally only
the VGA device models support text mode. The font charset used by the guest can be specified
with the charset option, for example charset=CP850 for IBM CP850 encoding. The default
is CP437.

none
Do not display video output. The guest will still see an emulated graphics card, but its output will
not be displayed to the QEMU user. This option differs from the −nographic option in that it only
affects what is done with video output; −nographic also changes the destination of the serial and
parallel port data.

gtk Display video output in a GTK window. This interface provides drop-down menus and other UI

elements to configure and control the VM during runtime.

vnc Start a VNC server on display <arg>

egl-headless
Offload all OpenGL operations to a local DRI device. For any graphical display, this display
needs to be paired with either VNC or SPICE displays.

spice-app
Start QEMU as a Spice server and launch the default Spice client application. The Spice server
will redirect the serial consoles and QEMU monitors. (Since 4.0)

−nographic
Normally, if QEMU is compiled with graphical window support, it displays output such as guest
graphics, guest console, and the QEMU monitor in a window. With this option, you can totally disable
graphical output so that QEMU is a simple command line application. The emulated serial port is
redirected on the console and muxed with the monitor (unless redirected elsewhere explicitly).
Therefore, you can still use QEMU to debug a Linux kernel with a serial console. Use C−a h for help
on switching between the console and monitor.

−curses
Normally, if QEMU is compiled with graphical window support, it displays output such as guest
graphics, guest console, and the QEMU monitor in a window. With this option, QEMU can display the
VGA output when in text mode using a curses/ncurses interface. Nothing is displayed in graphical
mode.

−alt−grab
Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also affects the special keys (for
fullscreen, monitor-mode switching, etc).

−ctrl−grab
Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also affects the special keys (for
fullscreen, monitor-mode switching, etc).

−no−quit
Disable SDL window close capability.

−sdl
Enable SDL.

−spice option[,option[,...]]
Enable the spice remote desktop protocol. Valid options are

port=<nr>
Set the TCP port spice is listening on for plaintext channels.

2022-12-08 18

QEMU.1(1) QEMU.1(1)

addr=<addr>
Set the IP address spice is listening on. Default is any address.

ipv4
ipv6
unix

Force using the specified IP version.

password=<secret>
Set the password you need to authenticate.

sasl
Require that the client use SASL to authenticate with the spice. The exact choice of
authentication method used is controlled from the system / user’s SASL configuration file for the
’qemu’ service. This is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
unprivileged user, an environment variable SASL_CONF_PATH can be used to make it search
alternate locations for the service config. While some SASL auth methods can also provide data
encryption (eg GSSAPI), it is recommended that SASL always be combined with the ’tls’ and
’x509’ settings to enable use of SSL and server certificates. This ensures a data encryption
preventing compromise of authentication credentials.

disable-ticketing
Allow client connects without authentication.

disable-copy-paste
Disable copy paste between the client and the guest.

disable-agent-file-xfer
Disable spice-vdagent based file-xfer between the client and the guest.

tls−port=<nr>
Set the TCP port spice is listening on for encrypted channels.

x509−dir=<dir>
Set the x509 file directory. Expects same filenames as −vnc $display,x509=$dir

x509−key−file=<file>
x509−key−password=<file>
x509−cert−file=<file>
x509−cacert−file=<file>
x509−dh−key−file=<file>

The x509 file names can also be configured individually.

tls−ciphers=<list>
Specify which ciphers to use.

tls−channel=[main|display|cursor|inputs|record|playback]
plaintext−channel=[main|display|cursor|inputs|record|playback]

Force specific channel to be used with or without TLS encryption. The options can be specified
multiple times to configure multiple channels. The special name ‘‘default’’ can be used to set the
default mode. For channels which are not explicitly forced into one mode the spice client is
allowed to pick tls/plaintext as he pleases.

image−compression=[auto_glz|auto_lz|quic|glz|lz|off]
Configure image compression (lossless). Default is auto_glz.

jpeg−wan−compression=[auto|never|always]
zlib−glz−wan−compression=[auto|never|always]

Configure wan image compression (lossy for slow links). Default is auto.

streaming−video=[off|all|filter]
Configure video stream detection. Default is off.

2022-12-08 19

QEMU.1(1) QEMU.1(1)

agent−mouse=[on|off]
Enable/disable passing mouse events via vdagent. Default is on.

playback−compression=[on|off]
Enable/disable audio stream compression (using celt 0.5.1). Default is on.

seamless−migration=[on|off]
Enable/disable spice seamless migration. Default is off.

gl=[on|off]
Enable/disable OpenGL context. Default is off.

rendernode=<file>
DRM render node for OpenGL rendering. If not specified, it will pick the first available. (Since
2.9)

−portrait
Rotate graphical output 90 deg left (only PXA LCD).

−rotate deg
Rotate graphical output some deg left (only PXA LCD).

−vga type
Select type of VGA card to emulate. Valid values for type are

cirrus
Cirrus Logic GD5446 Video card. All Windows versions starting from Windows 95 should
recognize and use this graphic card. For optimal performances, use 16 bit color depth in the guest
and the host OS. (This card was the default before QEMU 2.2)

std Standard VGA card with Bochs VBE extensions. If your guest OS supports the VESA 2.0 VBE

extensions (e.g. Windows XP) and if you want to use high resolution modes (>= 1280x1024x16)
then you should use this option. (This card is the default since QEMU 2.2)

vmware
VMWare SVGA-II compatible adapter. Use it if you have sufficiently recent XFree86/XOrg
server or Windows guest with a driver for this card.

qxl QXL paravirtual graphic card. It is VGA compatible (including VESA 2.0 VBE support). Works
best with qxl guest drivers installed though. Recommended choice when using the spice
protocol.

tcx (sun4m only) Sun TCX framebuffer. This is the default framebuffer for sun4m machines and
offers both 8−bit and 24−bit colour depths at a fixed resolution of 1024x768.

cg3 (sun4m only) Sun cgthree framebuffer. This is a simple 8−bit framebuffer for sun4m machines
available in both 1024x768 (OpenBIOS) and 1152x900 (OBP) resolutions aimed at people
wishing to run older Solaris versions.

virtio
Virtio VGA card.

none
Disable VGA card.

−full−screen
Start in full screen.

−g widthxheight[xdepth]
Set the initial graphical resolution and depth (PPC, SPARC only).

−vnc display[,option[,option[,...]]]
Normally, if QEMU is compiled with graphical window support, it displays output such as guest
graphics, guest console, and the QEMU monitor in a window. With this option, you can have QEMU

listen on VNC display display and redirect the VGA display over the VNC session. It is very useful to

2022-12-08 20

QEMU.1(1) QEMU.1(1)

enable the usb tablet device when using this option (option −device usb-tablet). When using the VNC

display, you must use the −k parameter to set the keyboard layout if you are not using en-us. Valid
syntax for the display is

to=L
With this option, QEMU will try next available VNC displays, until the number L, if the origianlly
defined "−vnc display" is not available, e.g. port 5900+display is already used by another
application. By default, to=0.

host:d
TCP connections will only be allowed from host on display d. By convention the TCP port is
5900+d. Optionally, host can be omitted in which case the server will accept connections from
any host.

unix:path
Connections will be allowed over UNIX domain sockets where path is the location of a unix
socket to listen for connections on.

none
VNC is initialized but not started. The monitor change command can be used to later start the
VNC server.

Following the display value there may be one or more option flags separated by commas. Valid options
are

re verse
Connect to a listening VNC client via a ‘‘reverse’’ connection. The client is specified by the
display. For reverse network connections (host:d,reverse), the d argument is a TCP port
number, not a display number.

websocket
Opens an additional TCP listening port dedicated to VNC Websocket connections. If a bare
websocket option is given, the Websocket port is 5700+display. An alternative port can be
specified with the syntax websocket=port.

If host is specified connections will only be allowed from this host. It is possible to control the
websocket listen address independently, using the syntax websocket=host:port.

If no TLS credentials are provided, the websocket connection runs in unencrypted mode. If TLS

credentials are provided, the websocket connection requires encrypted client connections.

password
Require that password based authentication is used for client connections.

The password must be set separately using the set_password command in the
pcsys_monitor. The syntax to change your password is: set_password <protocol>
<password> where <protocol> could be either ‘‘vnc’’ or ‘‘spice’’.

If you would like to change <protocol> password expiration, you should use
expire_password <protocol> <expiration−time> where expiration time could be
one of the following options: now, nev er, +seconds or UNIX time of expiration, e.g. +60 to make
password expire in 60 seconds, or 1335196800 to make password expire on ‘‘Mon Apr 23
12:00:00 EDT 2012’’ (UNIX time for this date and time).

You can also use keywords ‘‘now’’ or ‘‘never’’ for the expiration time to allow <protocol>
password to expire immediately or never expire.

tls−creds=ID

Provides the ID of a set of TLS credentials to use to secure the VNC server. They will apply to
both the normal VNC server socket and the websocket socket (if enabled). Setting TLS credentials
will cause the VNC server socket to enable the VeNCrypt auth mechanism. The credentials
should have been previously created using the −object tls-creds argument.

2022-12-08 21

QEMU.1(1) QEMU.1(1)

tls−authz=ID

Provides the ID of the QAuthZ authorization object against which the client’s x509 distinguished
name will validated. This object is only resolved at time of use, so can be deleted and recreated
on the fly while the VNC server is active. If missing, it will default to denying access.

sasl
Require that the client use SASL to authenticate with the VNC server. The exact choice of
authentication method used is controlled from the system / user’s SASL configuration file for the
’qemu’ service. This is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
unprivileged user, an environment variable SASL_CONF_PATH can be used to make it search
alternate locations for the service config. While some SASL auth methods can also provide data
encryption (eg GSSAPI), it is recommended that SASL always be combined with the ’tls’ and
’x509’ settings to enable use of SSL and server certificates. This ensures a data encryption
preventing compromise of authentication credentials. See the vnc_security section for details on
using SASL authentication.

sasl−authz=ID

Provides the ID of the QAuthZ authorization object against which the client’s SASL username
will validated. This object is only resolved at time of use, so can be deleted and recreated on the
fly while the VNC server is active. If missing, it will default to denying access.

acl Legacy method for enabling authorization of clients against the x509 distinguished name and
SASL username. It results in the creation of two authz−list objects with IDs of
vnc.username and vnc.x509dname. The rules for these objects must be configured with
the HMP ACL commands.

This option is deprecated and should no longer be used. The new sasl-authz and tls-authz
options are a replacement.

lossy
Enable lossy compression methods (gradient, JPEG, ...). If this option is set, VNC client may
receive lossy framebuffer updates depending on its encoding settings. Enabling this option can
save a lot of bandwidth at the expense of quality.

non-adaptive
Disable adaptive encodings. Adaptive encodings are enabled by default. An adaptive encoding
will try to detect frequently updated screen regions, and send updates in these regions using a
lossy encoding (like JPEG). This can be really helpful to save bandwidth when playing videos.
Disabling adaptive encodings restores the original static behavior of encodings like Tight.

share=[allow−exclusive|force−shared|ignore]
Set display sharing policy. ’allow−exclusive’ allows clients to ask for exclusive access. As
suggested by the rfb spec this is implemented by dropping other connections. Connecting
multiple clients in parallel requires all clients asking for a shared session (vncviewer: −shared
switch). This is the default. ’force−shared’ disables exclusive client access. Useful for shared
desktop sessions, where you don’t want someone forgetting specify −shared disconnect
ev erybody else. ’ignore’ completely ignores the shared flag and allows everybody connect
unconditionally. Doesn’t conform to the rfb spec but is traditional QEMU behavior.

key-delay-ms
Set keyboard delay, for key down and key up events, in milliseconds. Default is 10. Ke yboards
are low-bandwidth devices, so this slowdown can help the device and guest to keep up and not
lose events in case events are arriving in bulk. Possible causes for the latter are flaky network
connections, or scripts for automated testing.

audiodev=audiodev
Use the specified audiodev when the VNC client requests audio transmission. When not using an
−audiodev argument, this option must be omitted, otherwise is must be present and specify a
valid audiodev.

2022-12-08 22

QEMU.1(1) QEMU.1(1)

i386 target only

−win2k−hack
Use it when installing Windows 2000 to avoid a disk full bug. After Windows 2000 is installed, you no
longer need this option (this option slows down the IDE transfers).

−no−fd−bootchk
Disable boot signature checking for floppy disks in BIOS. May be needed to boot from old floppy
disks.

−no−acpi
Disable ACPI (Advanced Configuration and Power Interface) support. Use it if your guest OS

complains about ACPI problems (PC target machine only).

−no−hpet
Disable HPET support.

−acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n]
[,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]

Add ACPI table with specified header fields and context from specified files. For file=, take whole
ACPI table from the specified files, including all ACPI headers (possible overridden by other options).
For data=, only data portion of the table is used, all header information is specified in the command
line. If a SLIC table is supplied to QEMU, then the SLIC’s oem_id and oem_table_id fields will
override the same in the RSDT and the FADT (a.k.a. FA CP), in order to ensure the field matches
required by the Microsoft SLIC spec and the ACPI spec.

−smbios file=binary
Load SMBIOS entry from binary file.

−smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d][,uefi=on|off]
Specify SMBIOS type 0 fields

−smbios
type=1[,manufacturer=str][,product=str][,version=str][,serial=str][,uuid=uuid][,sku=str][,family=str]

Specify SMBIOS type 1 fields

−smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str][,asset=str][,location=str]
Specify SMBIOS type 2 fields

−smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str][,sku=str]
Specify SMBIOS type 3 fields

−smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str][,asset=str][,part=str]
Specify SMBIOS type 4 fields

−smbios
type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str][,asset=str][,part=str][,speed=%d]

Specify SMBIOS type 17 fields

Network options

−nic [tap|bridge|user|l2tpv3|vde|netmap|vhost−user|socket][,...][,mac=macaddr][,model=mn]
This option is a shortcut for configuring both the on-board (default) guest NIC hardware and the host
network backend in one go. The host backend options are the same as with the corresponding −netdev
options below. The guest NIC model can be set with model=modelname. Use model=help to list the
available device types. The hardware MAC address can be set with mac=macaddr.

The following two example do exactly the same, to show how −nic can be used to shorten the
command line length (note that the e1000 is the default on i386, so the model=e1000 parameter could
ev en be omitted here, too):

qemu−system−x86_64 −netdev user,id=n1,ipv6=off −device e1000,netdev=n1,mac=52:54:98:76:54:32
qemu−system−x86_64 −nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32

2022-12-08 23

QEMU.1(1) QEMU.1(1)

−nic none
Indicate that no network devices should be configured. It is used to override the default configuration
(default NIC with ‘‘user’’ host network backend) which is activated if no other networking options are
provided.

−netdev user,id=id[,option][,option][,...]
Configure user mode host network backend which requires no administrator privilege to run. Valid
options are:

id=id
Assign symbolic name for use in monitor commands.

ipv4=on|off and ipv6=on|off
Specify that either IPv4 or IPv6 must be enabled. If neither is specified both protocols are
enabled.

net=addr[/mask]
Set IP network address the guest will see. Optionally specify the netmask, either in the form
a.b.c.d or as number of valid top-most bits. Default is 10.0.2.0/24.

host=addr
Specify the guest-visible address of the host. Default is the 2nd IP in the guest network, i.e.
x.x.x.2.

ipv6−net=addr[/int]
Set IPv6 network address the guest will see (default is fec0::/64). The network prefix is given in
the usual hexadecimal IPv6 address notation. The prefix size is optional, and is given as the
number of valid top-most bits (default is 64).

ipv6−host=addr
Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in the guest network,
i.e. xxxx::2.

restrict=on|off
If this option is enabled, the guest will be isolated, i.e. it will not be able to contact the host and
no guest IP packets will be routed over the host to the outside. This option does not affect any
explicitly set forwarding rules.

hostname=name
Specifies the client hostname reported by the built-in DHCP server.

dhcpstart=addr
Specify the first of the 16 IPs the built-in DHCP server can assign. Default is the 15th to 31st IP in
the guest network, i.e. x.x.x.15 to x.x.x.31.

dns=addr
Specify the guest-visible address of the virtual nameserver. The address must be different from
the host address. Default is the 3rd IP in the guest network, i.e. x.x.x.3.

ipv6−dns=addr
Specify the guest-visible address of the IPv6 virtual nameserver. The address must be different
from the host address. Default is the 3rd IP in the guest network, i.e. xxxx::3.

dnssearch=domain
Provides an entry for the domain-search list sent by the built-in DHCP server. More than one
domain suffix can be transmitted by specifying this option multiple times. If supported, this will
cause the guest to automatically try to append the given domain suffix(es) in case a domain name
can not be resolved.

Example:

qemu−system−x86_64 −nic user,dnssearch=mgmt.example.org,dnssearch=example.org

2022-12-08 24

QEMU.1(1) QEMU.1(1)

domainname=domain
Specifies the client domain name reported by the built-in DHCP server.

tftp=dir
When using the user mode network stack, activate a built-in TFTP server. The files in dir will be
exposed as the root of a TFTP server. The TFTP client on the guest must be configured in binary
mode (use the command bin of the Unix TFTP client).

tftp−server−name=name
In BOOTP reply, broadcast name as the ‘‘TFTP server name’’ (RFC2132 option 66). This can be
used to advise the guest to load boot files or configurations from a different server than the host
address.

bootfile=file
When using the user mode network stack, broadcast file as the BOOTP filename. In conjunction
with tftp, this can be used to network boot a guest from a local directory.

Example (using pxelinux):

qemu−system−x86_64 −hda linux.img −boot n −device e1000,netdev=n1 \
−netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0

smb=dir[,smbserver=addr]
When using the user mode network stack, activate a built-in SMB server so that Windows OSes
can access to the host files in dir transparently. The IP address of the SMB server can be set to
addr. By default the 4th IP in the guest network is used, i.e. x.x.x.4.

In the guest Windows OS, the line:

10.0.2.4 smbserver

must be added in the file C:\WINDOWS\LMHOSTS (for windows 9x/Me) or
C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS (Windows NT/2000).

Then dir can be accessed in \\smbserver\qemu.

Note that a SAMBA server must be installed on the host OS.

hostfwd=[tcp|udp]:[hostaddr]:hostport−[guestaddr]:guestport
Redirect incoming TCP or UDP connections to the host port hostport to the guest IP address
guestaddr on guest port guestport. If guestaddr is not specified, its value is x.x.x.15 (default first
address given by the built-in DHCP server). By specifying hostaddr, the rule can be bound to a
specific host interface. If no connection type is set, TCP is used. This option can be given multiple
times.

For example, to redirect host X11 connection from screen 1 to guest screen 0, use the following:

on the host
qemu−system−x86_64 −nic user,hostfwd=tcp:127.0.0.1:6001−:6000
this host xterm should open in the guest X11 server
xterm −display :1

To redirect telnet connections from host port 5555 to telnet port on the guest, use the following:

on the host
qemu−system−x86_64 −nic user,hostfwd=tcp::5555−:23
telnet localhost 5555

Then when you use on the host telnet localhost 5555, you connect to the guest telnet
server.

guestfwd=[tcp]:server:port−dev

2022-12-08 25

QEMU.1(1) QEMU.1(1)

guestfwd=[tcp]:server:port−cmd:command
Forward guest TCP connections to the IP address server on port port to the character device dev or
to a program executed by cmd:command which gets spawned for each connection. This option
can be given multiple times.

You can either use a chardev directly and have that one used throughout QEMU’s lifetime, like in
the following example:

open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
the guest accesses it
qemu−system−x86_64 −nic user,guestfwd=tcp:10.0.2.100:1234−tcp:10.10.1.1:4321

Or you can execute a command on every TCP connection established by the guest, so that QEMU

behaves similar to an inetd process for that virtual server:

call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
and connect the TCP stream to its stdin/stdout
qemu−system−x86_64 −nic 'user,id=n1,guestfwd=tcp:10.0.2.100:1234−cmd:netcat 10.10.1.1 4321'

−netdev tap,id=id[,fd=h][,ifname=name][,script=file][,downscript=dfile][,br=bridge][,helper=helper]
Configure a host TAP network backend with ID id.

Use the network script file to configure it and the network script dfile to deconfigure it. If name is not
provided, the OS automatically provides one. The default network configure script is /etc/qemu−ifup
and the default network deconfigure script is /etc/qemu−ifdown. Use script=no or downscript=no to
disable script execution.

If running QEMU as an unprivileged user, use the network helper helper to configure the TAP interface
and attach it to the bridge. The default network helper executable is /path/to/qemu−bridge−helper and
the default bridge device is br0.

fd=h can be used to specify the handle of an already opened host TAP interface.

Examples:

#launch a QEMU instance with the default network script
qemu−system−x86_64 linux.img −nic tap

#launch a QEMU instance with two NICs, each one connected
#to a TAP device
qemu−system−x86_64 linux.img \
−netdev tap,id=nd0,ifname=tap0 −device e1000,netdev=nd0 \
−netdev tap,id=nd1,ifname=tap1 −device rtl8139,netdev=nd1

#launch a QEMU instance with the default network helper to
#connect a TAP device to bridge br0
qemu−system−x86_64 linux.img −device virtio−net−pci,netdev=n1 \
−netdev tap,id=n1,"helper=/path/to/qemu−bridge−helper"

−netdev bridge,id=id[,br=bridge][,helper=helper]
Connect a host TAP network interface to a host bridge device.

Use the network helper helper to configure the TAP interface and attach it to the bridge. The default
network helper executable is /path/to/qemu−bridge−helper and the default bridge device is br0.

Examples:

2022-12-08 26

QEMU.1(1) QEMU.1(1)

#launch a QEMU instance with the default network helper to
#connect a TAP device to bridge br0
qemu−system−x86_64 linux.img −netdev bridge,id=n1 −device virtio−net,netdev=n1

#launch a QEMU instance with the default network helper to
#connect a TAP device to bridge qemubr0
qemu−system−x86_64 linux.img −netdev bridge,br=qemubr0,id=n1 −device virtio−net,netdev=n1

−netdev socket,id=id[,fd=h][,listen=[host]:port][,connect=host:port]
This host network backend can be used to connect the guest’s network to another QEMU virtual
machine using a TCP socket connection. If listen is specified, QEMU waits for incoming connections
on port (host is optional). connect is used to connect to another QEMU instance using the listen
option. fd=h specifies an already opened TCP socket.

Example:

launch a first QEMU instance
qemu−system−x86_64 linux.img \
−device e1000,netdev=n1,mac=52:54:00:12:34:56 \
−netdev socket,id=n1,listen=:1234
connect the network of this instance to the network of the first instance
qemu−system−x86_64 linux.img \
−device e1000,netdev=n2,mac=52:54:00:12:34:57 \
−netdev socket,id=n2,connect=127.0.0.1:1234

−netdev socket,id=id[,fd=h][,mcast=maddr:port[,localaddr=addr]]
Configure a socket host network backend to share the guest’s network traffic with another QEMU

virtual machines using a UDP multicast socket, effectively making a bus for every QEMU with same
multicast address maddr and port. NOTES:

1. Several QEMU can be running on different hosts and share same bus (assuming correct multicast
setup for these hosts).

2. mcast support is compatible with User Mode Linux (argument ethN=mcast), see
<http://user−mode−linux.sf.net>.

3. Use fd=h to specify an already opened UDP multicast socket.

Example:

launch one QEMU instance
qemu−system−x86_64 linux.img \
−device e1000,netdev=n1,mac=52:54:00:12:34:56 \
−netdev socket,id=n1,mcast=230.0.0.1:1234
launch another QEMU instance on same "bus"
qemu−system−x86_64 linux.img \
−device e1000,netdev=n2,mac=52:54:00:12:34:57 \
−netdev socket,id=n2,mcast=230.0.0.1:1234
launch yet another QEMU instance on same "bus"
qemu−system−x86_64 linux.img \
−device e1000,netdev=n3,mac=52:54:00:12:34:58 \
−netdev socket,id=n3,mcast=230.0.0.1:1234

Example (User Mode Linux compat.):

2022-12-08 27

QEMU.1(1) QEMU.1(1)

launch QEMU instance (note mcast address selected is UML's default)
qemu−system−x86_64 linux.img \
−device e1000,netdev=n1,mac=52:54:00:12:34:56 \
−netdev socket,id=n1,mcast=239.192.168.1:1102
launch UML
/path/to/linux ubd0=/path/to/root_fs eth0=mcast

Example (send packets from host’s 1.2.3.4):

qemu−system−x86_64 linux.img \
−device e1000,netdev=n1,mac=52:54:00:12:34:56 \
−netdev socket,id=n1,mcast=239.192.168.1:1102,localaddr=1.2.3.4

−netdev
l2tpv3,id=id,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport],txsession=txsession[,rxsession=rxsession][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=

Configure a L2TPv3 pseudowire host network backend. L2TPv3 (RFC3391) is a popular protocol to
transport Ethernet (and other Layer 2) data frames between two systems. It is present in routers,
firewalls and the Linux kernel (from version 3.3 onwards).

This transport allows a VM to communicate to another VM, router or firewall directly.

src=srcaddr
source address (mandatory)

dst=dstaddr
destination address (mandatory)

udp
select udp encapsulation (default is ip).

srcport=srcport
source udp port.

dstport=dstport
destination udp port.

ipv6
force v6, otherwise defaults to v4.

rxcookie=rxcookie
txcookie=txcookie

Cookies are a weak form of security in the l2tpv3 specification. Their function is mostly to
prevent misconfiguration. By default they are 32 bit.

cookie64
Set cookie size to 64 bit instead of the default 32

counter=off
Force a ’cut−down’ L2TPv3 with no counter as in
draft−mkonstan−l2tpext−keyed−ipv6−tunnel−00

pincounter=on
Work around broken counter handling in peer. This may also help on networks which have packet
reorder.

offset=offset
Add an extra offset between header and data

For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan on the remote
Linux host 1.2.3.4:

2022-12-08 28

QEMU.1(1) QEMU.1(1)

Setup tunnel on linux host using raw ip as encapsulation
on 1.2.3.4
ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
encap udp udp_sport 16384 udp_dport 16384
ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
0xFFFFFFFF peer_session_id 0xFFFFFFFF
ifconfig vmtunnel0 mtu 1500
ifconfig vmtunnel0 up
brctl addif br−lan vmtunnel0

on 4.3.2.1
launch QEMU instance − if your network has reorder or is very lossy add ,pincounter

qemu−system−x86_64 linux.img −device e1000,netdev=n1 \
−netdev l2tpv3,id=n1,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter

−netdev vde,id=id[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]
Configure VDE backend to connect to PORT n of a vde switch running on host and listening for
incoming connections on socketpath. Use GROUP groupname and MODE octalmode to change default
ownership and permissions for communication port. This option is only available if QEMU has been
compiled with vde support enabled.

Example:

launch vde switch
vde_switch −F −sock /tmp/myswitch
launch QEMU instance
qemu−system−x86_64 linux.img −nic vde,sock=/tmp/myswitch

−netdev vhost−user,chardev=id[,vhostforce=on|off][,queues=n]
Establish a vhost-user netdev, backed by a chardev id. The chardev should be a unix domain socket
backed one. The vhost-user uses a specifically defined protocol to pass vhost ioctl replacement
messages to an application on the other end of the socket. On non-MSIX guests, the feature can be
forced with vhostforce. Use ’queues=n’ to specify the number of queues to be created for multiqueue
vhost-user.

Example:

qemu −m 512 −object memory−backend−file,id=mem,size=512M,mem−path=/hugetlbfs,share=on \
−numa node,memdev=mem \
−chardev socket,id=chr0,path=/path/to/socket \
−netdev type=vhost−user,id=net0,chardev=chr0 \
−device virtio−net−pci,netdev=net0

−netdev hubport,id=id,hubid=hubid[,netdev=nd]
Create a hub port on the emulated hub with ID hubid.

The hubport netdev lets you connect a NIC to a QEMU emulated hub instead of a single netdev.
Alternatively, you can also connect the hubport to another netdev with ID nd by using the netdev=nd
option.

−net nic[,netdev=nd][,macaddr=mac][,model=type] [,name=name][,addr=addr][,vectors=v]
Legacy option to configure or create an on-board (or machine default) Network Interface Card(NIC)
and connect it either to the emulated hub with ID 0 (i.e. the default hub), or to the netdev nd. The NIC

is an e1000 by default on the PC target. Optionally, the MAC address can be changed to mac, the
device address set to addr (PCI cards only), and a name can be assigned for use in monitor commands.
Optionally, for PCI cards, you can specify the number v of MSI-X vectors that the card should have;
this option currently only affects virtio cards; set v = 0 to disable MSI-X. If no −net option is

2022-12-08 29

QEMU.1(1) QEMU.1(1)

specified, a single NIC is created. QEMU can emulate several different models of network card. Use
−net nic,model=help for a list of available devices for your target.

−net user|tap|bridge|socket|l2tpv3|vde[,...][,name=name]
Configure a host network backend (with the options corresponding to the same −netdev option) and
connect it to the emulated hub 0 (the default hub). Use name to specify the name of the hub port.

Character device options

The general form of a character device option is:

−chardev backend,id=id[,mux=on|off][,options]
Backend is one of: null, socket, udp, msmouse, vc, ringbuf, file, pipe, console, serial, pty, stdio,
braille, tty, parallel, parport, spicevmc, spiceport. The specific backend will determine the
applicable options.

Use −chardev help to print all available chardev backend types.

All devices must have an id, which can be any string up to 127 characters long. It is used to uniquely
identify this device in other command line directives.

A character device may be used in multiplexing mode by multiple front-ends. Specify mux=on to
enable this mode. A multiplexer is a ‘‘1:N’’ device, and here the ‘‘1’’ end is your specified chardev
backend, and the ‘‘N’’ end is the various parts of QEMU that can talk to a chardev. If you create a
chardev with id=myid and mux=on, QEMU will create a multiplexer with your specified ID, and you
can then configure multiple front ends to use that chardev ID for their input/output. Up to four different
front ends can be connected to a single multiplexed chardev. (Without multiplexing enabled, a chardev
can only be used by a single front end.) For instance you could use this to allow a single stdio chardev
to be used by two serial ports and the QEMU monitor:

−chardev stdio,mux=on,id=char0 \
−mon chardev=char0,mode=readline \
−serial chardev:char0 \
−serial chardev:char0

You can have more than one multiplexer in a system configuration; for instance you could have a TCP

port multiplexed between UART 0 and UART 1, and stdio multiplexed between the QEMU monitor and
a parallel port:

−chardev stdio,mux=on,id=char0 \
−mon chardev=char0,mode=readline \
−parallel chardev:char0 \
−chardev tcp,...,mux=on,id=char1 \
−serial chardev:char1 \
−serial chardev:char1

When you’re using a multiplexed character device, some escape sequences are interpreted in the input.

Note that some other command line options may implicitly create multiplexed character backends; for
instance −serial mon:stdio creates a multiplexed stdio backend connected to the serial port and the
QEMU monitor, and −nographic also multiplexes the console and the monitor to stdio.

There is currently no support for multiplexing in the other direction (where a single QEMU front end
takes input and output from multiple chardevs).

Every backend supports the logfile option, which supplies the path to a file to record all data
transmitted via the backend. The logappend option controls whether the log file will be truncated or
appended to when opened.

The available backends are:

2022-12-08 30

QEMU.1(1) QEMU.1(1)

−chardev null,id=id
A void device. This device will not emit any data, and will drop any data it receives. The null backend
does not take any options.

−chardev socket,id=id[,TCP options or unix
options][,server][,nowait][,telnet][,websocket][,reconnect=seconds][,tls−creds=id][,tls−authz=id]

Create a two-way stream socket, which can be either a TCP or a unix socket. A unix socket will be
created if path is specified. Behaviour is undefined if TCP options are specified for a unix socket.

server specifies that the socket shall be a listening socket.

nowait specifies that QEMU should not block waiting for a client to connect to a listening socket.

telnet specifies that traffic on the socket should interpret telnet escape sequences.

websocket specifies that the socket uses WebSocket protocol for communication.

reconnect sets the timeout for reconnecting on non-server sockets when the remote end goes away.
qemu will delay this many seconds and then attempt to reconnect. Zero disables reconnecting, and is
the default.

tls-creds requests enablement of the TLS protocol for encryption, and specifies the id of the TLS

credentials to use for the handshake. The credentials must be previously created with the −object tls-
creds argument.

tls-auth provides the ID of the QAuthZ authorization object against which the client’s x509
distinguished name will be validated. This object is only resolved at time of use, so can be deleted and
recreated on the fly while the chardev server is active. If missing, it will default to denying access.

TCP and unix socket options are given below:

TCP options: port=port[,host=host][,to=to][,ipv4][,ipv6][,nodelay]
host for a listening socket specifies the local address to be bound. For a connecting socket
species the remote host to connect to. host is optional for listening sockets. If not specified it
defaults to 0.0.0.0.

port for a listening socket specifies the local port to be bound. For a connecting socket specifies
the port on the remote host to connect to. port can be given as either a port number or a service
name. port is required.

to is only relevant to listening sockets. If it is specified, and port cannot be bound, QEMU will
attempt to bind to subsequent ports up to and including to until it succeeds. to must be specified
as a port number.

ipv4 and ipv6 specify that either IPv4 or IPv6 must be used. If neither is specified the socket
may use either protocol.

nodelay disables the Nagle algorithm.

unix options: path=path
path specifies the local path of the unix socket. path is required.

−chardev udp,id=id[,host=host],port=port[,localaddr=localaddr][,localport=localport][,ipv4][,ipv6]
Sends all traffic from the guest to a remote host over UDP.

host specifies the remote host to connect to. If not specified it defaults to localhost.

port specifies the port on the remote host to connect to. port is required.

localaddr specifies the local address to bind to. If not specified it defaults to 0.0.0.0.

localport specifies the local port to bind to. If not specified any available local port will be used.

ipv4 and ipv6 specify that either IPv4 or IPv6 must be used. If neither is specified the device may use
either protocol.

2022-12-08 31

QEMU.1(1) QEMU.1(1)

−chardev msmouse,id=id
Forward QEMU’s emulated msmouse events to the guest. msmouse does not take any options.

−chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]
Connect to a QEMU text console. vc may optionally be given a specific size.

width and height specify the width and height respectively of the console, in pixels.

cols and ro ws specify that the console be sized to fit a text console with the given dimensions.

−chardev ringbuf,id=id[,size=size]
Create a ring buffer with fixed size size. size must be a power of two and defaults to 64K.

−chardev file,id=id,path=path
Log all traffic received from the guest to a file.

path specifies the path of the file to be opened. This file will be created if it does not already exist, and
overwritten if it does. path is required.

−chardev pipe,id=id,path=path
Create a two-way connection to the guest. The behaviour differs slightly between Windows hosts and
other hosts:

On Windows, a single duplex pipe will be created at \\.pipe\path.

On other hosts, 2 pipes will be created called path.in and path.out. Data written to path.in will be
received by the guest. Data written by the guest can be read from path.out. QEMU will not create these
fifos, and requires them to be present.

path forms part of the pipe path as described above. path is required.

−chardev console,id=id
Send traffic from the guest to QEMU’s standard output. console does not take any options.

console is only available on Windows hosts.

−chardev serial,id=id,path=path
Send traffic from the guest to a serial device on the host.

On Unix hosts serial will actually accept any tty device, not only serial lines.

path specifies the name of the serial device to open.

−chardev pty,id=id
Create a new pseudo-terminal on the host and connect to it. pty does not take any options.

pty is not available on Windows hosts.

−chardev stdio,id=id[,signal=on|off]
Connect to standard input and standard output of the QEMU process.

signal controls if signals are enabled on the terminal, that includes exiting QEMU with the key
sequence Control-c. This option is enabled by default, use signal=off to disable it.

−chardev braille,id=id
Connect to a local BrlAPI server. braille does not take any options.

−chardev tty,id=id,path=path
tty is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and DragonFlyBSD hosts. It is an
alias for serial.

path specifies the path to the tty. path is required.

−chardev parallel,id=id,path=path
−chardev parport,id=id,path=path

parallel is only available on Linux, FreeBSD and DragonFlyBSD hosts.

Connect to a local parallel port.

2022-12-08 32

QEMU.1(1) QEMU.1(1)

path specifies the path to the parallel port device. path is required.

−chardev spicevmc,id=id,debug=debug,name=name
spicevmc is only available when spice support is built in.

debug debug level for spicevmc

name name of spice channel to connect to

Connect to a spice virtual machine channel, such as vdiport.

−chardev spiceport,id=id,debug=debug,name=name
spiceport is only available when spice support is built in.

debug debug level for spicevmc

name name of spice port to connect to

Connect to a spice port, allowing a Spice client to handle the traffic identified by a name (preferably a
fqdn).

Bluetooth(R) options

−bt hci[...]
Defines the function of the corresponding Bluetooth HCI. −bt options are matched with the HCIs
present in the chosen machine type. For example when emulating a machine with only one HCI built
into it, only the first −bt hci[...] option is valid and defines the HCI’s logic. The Transport
Layer is decided by the machine type. Currently the machines n800 and n810 have one HCI and all
other machines have none.

Note: This option and the whole bluetooth subsystem is considered as deprecated. If you still use it,
please send a mail to <qemu−devel@nongnu.org> where you describe your usecase.

The following three types are recognized:

−bt hci,null
(default) The corresponding Bluetooth HCI assumes no internal logic and will not respond to any
HCI commands or emit events.

−bt hci,host[:id]
(bluez only) The corresponding HCI passes commands / events to / from the physical HCI

identified by the name id (default: hci0) on the computer running QEMU. Only available on
bluez capable systems like Linux.

−bt hci[,vlan=n]
Add a virtual, standard HCI that will participate in the Bluetooth scatternet n (default 0).
Similarly to −net VLANs, devices inside a bluetooth network n can only communicate with other
devices in the same network (scatternet).

−bt vhci[,vlan=n]
(Linux-host only) Create a HCI in scatternet n (default 0) attached to the host bluetooth stack instead
of to the emulated target. This allows the host and target machines to participate in a common
scatternet and communicate. Requires the Linux vhci driver installed. Can be used as following:

qemu−system−x86_64 [...OPTIONS...] −bt hci,vlan=5 −bt vhci,vlan=5

−bt device:dev[,vlan=n]
Emulate a bluetooth device dev and place it in network n (default 0). QEMU can only emulate one
type of bluetooth devices currently:

keyboard
Virtual wireless keyboard implementing the HIDP bluetooth profile.

TPM device options

The general form of a TPM device option is:

2022-12-08 33

QEMU.1(1) QEMU.1(1)

−tpmdev backend,id=id[,options]
The specific backend type will determine the applicable options. The −tpmdev option creates the
TPM backend and requires a −device option that specifies the TPM frontend interface model.

Use −tpmdev help to print all available TPM backend types.

The available backends are:

−tpmdev passthrough,id=id,path=path,cancel−path=cancel-path
(Linux-host only) Enable access to the host’s TPM using the passthrough driver.

path specifies the path to the host’s TPM device, i.e., on a Linux host this would be /dev/tpm0.
path is optional and by default /dev/tpm0 is used.

cancel-path specifies the path to the host TPM device’s sysfs entry allowing for cancellation of an
ongoing TPM command. cancel-path is optional and by default QEMU will search for the sysfs entry
to use.

Some notes about using the host’s TPM with the passthrough driver:

The TPM device accessed by the passthrough driver must not be used by any other application on the
host.

Since the host’s firmware (BIOS/UEFI) has already initialized the TPM, the VM’s firmware (BIOS/UEFI)
will not be able to initialize the TPM again and may therefore not show a TPM-specific menu that
would otherwise allow the user to configure the TPM, e.g., allow the user to enable/disable or
activate/deactivate the TPM. Further, if TPM ownership is released from within a VM then the host’s
TPM will get disabled and deactivated. To enable and activate the TPM again afterwards, the host has
to be rebooted and the user is required to enter the firmware’s menu to enable and activate the TPM. If
the TPM is left disabled and/or deactivated most TPM commands will fail.

To create a passthrough TPM use the following two options:

−tpmdev passthrough,id=tpm0 −device tpm−tis,tpmdev=tpm0

Note that the −tpmdev id is tpm0 and is referenced by tpmdev=tpm0 in the device option.

−tpmdev emulator,id=id,chardev=dev
(Linux-host only) Enable access to a TPM emulator using Unix domain socket based chardev backend.

chardev specifies the unique ID of a character device backend that provides connection to the software
TPM server.

To create a TPM emulator backend device with chardev socket backend:

−chardev socket,id=chrtpm,path=/tmp/swtpm−sock −tpmdev emulator,id=tpm0,chardev=chrtpm −device tpm−tis,tpmdev=tpm0

Linux/Multiboot boot specific

When using these options, you can use a given Linux or Multiboot kernel without installing it in the disk
image. It can be useful for easier testing of various kernels.

−kernel bzImage
Use bzImage as kernel image. The kernel can be either a Linux kernel or in multiboot format.

−append cmdline
Use cmdline as kernel command line

−initrd file
Use file as initial ram disk.

−initrd ‘‘file1 arg=foo,file2’’
This syntax is only available with multiboot.

Use file1 and file2 as modules and pass arg=foo as parameter to the first module.

2022-12-08 34

QEMU.1(1) QEMU.1(1)

−dtb file
Use file as a device tree binary (dtb) image and pass it to the kernel on boot.

Debug/Expert options

−fw_cfg [name=]name,file=file
Add named fw_cfg entry with contents from file file.

−fw_cfg [name=]name,string=str
Add named fw_cfg entry with contents from string str.

The terminating NUL character of the contents of str will not be included as part of the fw_cfg item
data. To insert contents with embedded NUL characters, you have to use the file parameter.

The fw_cfg entries are passed by QEMU through to the guest.

Example:

−fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin

creates an fw_cfg entry named opt/com.mycompany/blob with contents from ./my_blob.bin.

−serial dev
Redirect the virtual serial port to host character device dev. The default device is vc in graphical mode
and stdio in non graphical mode.

This option can be used several times to simulate up to 4 serial ports.

Use −serial none to disable all serial ports.

Av ailable character devices are:

vc[:WxH]
Virtual console. Optionally, a width and height can be given in pixel with

vc:800x600

It is also possible to specify width or height in characters:

vc:80Cx24C

pty [Linux only] Pseudo TTY (a new PTY is automatically allocated)

none
No device is allocated.

null
void device

chardev:id
Use a named character device defined with the −chardev option.

/dev/XXX
[Linux only] Use host tty, e.g. /dev/ttyS0. The host serial port parameters are set according to the
emulated ones.

/dev/parportN
[Linux only, parallel port only] Use host parallel port N. Currently SPP and EPP parallel port
features can be used.

file:filename
Write output to filename. No character can be read.

stdio
[Unix only] standard input/output

2022-12-08 35

QEMU.1(1) QEMU.1(1)

pipe:filename
name pipe filename

COMn
[Windows only] Use host serial port n

udp:[remote_host]:remote_port[@[src_ip]:src_port]
This implements UDP Net Console. When remote_host or src_ip are not specified they default to
0.0.0.0. When not using a specified src_port a random port is automatically chosen.

If you just want a simple readonly console you can use netcat or nc, by starting QEMU with:
−serial udp::4555 and nc as: nc −u −l −p 4555. Any time QEMU writes something
to that port it will appear in the netconsole session.

If you plan to send characters back via netconsole or you want to stop and start QEMU a lot of
times, you should have QEMU use the same source port each time by using something like
−serial udp::4555@4556 to QEMU. Another approach is to use a patched version of
netcat which can listen to a TCP port and send and receive characters via udp. If you have a
patched version of netcat which activates telnet remote echo and single char transfer, then you
can use the following options to set up a netcat redirector to allow telnet on port 5555 to access
the QEMU port.

QEMU Options:
−serial udp::4555@4556

netcat options:
−u −P 4555 −L 0.0.0.0:4556 −t −p 5555 −I −T

telnet options:
localhost 5555

tcp:[host]:port[,server][,nowait][,nodelay][,reconnect=seconds]
The TCP Net Console has two modes of operation. It can send the serial I/O to a location or wait
for a connection from a location. By default the TCP Net Console is sent to host at the port. If
you use the server option QEMU will wait for a client socket application to connect to the port
before continuing, unless the nowait option was specified. The nodelay option disables the
Nagle buffering algorithm. The reconnect option only applies if noserver is set, if the
connection goes down it will attempt to reconnect at the given interval. If host is omitted, 0.0.0.0
is assumed. Only one TCP connection at a time is accepted. You can use telnet to connect to
the corresponding character device.

Example to send tcp console to 192.168.0.2 port 4444
−serial tcp:192.168.0.2:4444

Example to listen and wait on port 4444 for connection
−serial tcp::4444,server

Example to not wait and listen on ip 192.168.0.100 port 4444
−serial tcp:192.168.0.100:4444,server,nowait

telnet:host:port[,server][,nowait][,nodelay]
The telnet protocol is used instead of raw tcp sockets. The options work the same as if you had
specified −serial tcp. The difference is that the port acts like a telnet server or client using
telnet option negotiation. This will also allow you to send the MAGIC_SYSRQ sequence if you
use a telnet that supports sending the break sequence. Typically in unix telnet you do it with
Control−] and then type ‘‘send break’’ followed by pressing the enter key.

websocket:host:port,server[,nowait][,nodelay]
The WebSocket protocol is used instead of raw tcp socket. The port acts as a WebSocket server.
Client mode is not supported.

2022-12-08 36

QEMU.1(1) QEMU.1(1)

unix:path[,server][,nowait][,reconnect=seconds]
A unix domain socket is used instead of a tcp socket. The option works the same as if you had
specified −serial tcp except the unix domain socket path is used for connections.

mon:dev_string
This is a special option to allow the monitor to be multiplexed onto another serial port. The
monitor is accessed with key sequence of Control-a and then pressing c. dev_string should be
any one of the serial devices specified above. An example to multiplex the monitor onto a telnet
server listening on port 4444 would be:

−serial mon:telnet::4444,server,nowait

When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate QEMU any more
but will be passed to the guest instead.

braille
Braille device. This will use BrlAPI to display the braille output on a real or fake device.

msmouse
Three button serial mouse. Configure the guest to use Microsoft protocol.

−parallel dev
Redirect the virtual parallel port to host device dev (same devices as the serial port). On Linux hosts,
/dev/parportN can be used to use hardware devices connected on the corresponding host parallel port.

This option can be used several times to simulate up to 3 parallel ports.

Use −parallel none to disable all parallel ports.

−monitor dev
Redirect the monitor to host device dev (same devices as the serial port). The default device is vc in
graphical mode and stdio in non graphical mode. Use −monitor none to disable the default
monitor.

−qmp dev
Like −monitor but opens in ’control’ mode.

−qmp−pretty dev
Like −qmp but uses pretty JSON formatting.

−mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]
Setup monitor on chardev name. pretty turns on JSON pretty printing easing human reading and
debugging.

−debugcon dev
Redirect the debug console to host device dev (same devices as the serial port). The debug console is
an I/O port which is typically port 0xe9; writing to that I/O port sends output to this device. The
default device is vc in graphical mode and stdio in non graphical mode.

−pidfile file
Store the QEMU process PID in file. It is useful if you launch QEMU from a script.

−singlestep
Run the emulation in single step mode.

−−preconfig
Pause QEMU for interactive configuration before the machine is created, which allows querying and
configuring properties that will affect machine initialization. Use QMP command ’x−exit−preconfig’
to exit the preconfig state and move to the next state (i.e. run guest if −S isn’t used or pause the second
time if −S is used). This option is experimental.

−S Do not start CPU at startup (you must type ’c’ in the monitor).

2022-12-08 37

QEMU.1(1) QEMU.1(1)

−realtime mlock=on|off
Run qemu with realtime features. mlocking qemu and guest memory can be enabled via mlock=on
(enabled by default).

−overcommit mem−lock=on|off
−overcommit cpu−pm=on|off

Run qemu with hints about host resource overcommit. The default is to assume that host overcommits
all resources.

Locking qemu and guest memory can be enabled via mem−lock=on (disabled by default). This works
when host memory is not overcommitted and reduces the worst-case latency for guest. This is
equivalent to realtime.

Guest ability to manage power state of host cpus (increasing latency for other processes on the same
host cpu, but decreasing latency for guest) can be enabled via cpu−pm=on (disabled by default). This
works best when host CPU is not overcommitted. When used, host estimates of CPU cycle and power
utilization will be incorrect, not taking into account guest idle time.

−gdb dev
Wait for gdb connection on device dev. Typical connections will likely be TCP-based, but also UDP,

pseudo TTY, or even stdio are reasonable use case. The latter is allowing to start QEMU from within
gdb and establish the connection via a pipe:

(gdb) target remote | exec qemu−system−x86_64 −gdb stdio ...

−s Shorthand for −gdb tcp::1234, i.e. open a gdbserver on TCP port 1234.

−d item1[,...]
Enable logging of specified items. Use ’−d help’ for a list of log items.

−D logfile
Output log in logfile instead of to stderr

−dfilter range1[,...]
Filter debug output to that relevant to a range of target addresses. The filter spec can be either
start+size, start−size or start..end where start end and size are the addresses and sizes required. For
example:

−dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000−0x1000

Will dump output for any code in the 0x1000 sized block starting at 0x8000 and the 0x200 sized block
starting at 0xffffffc000080000 and another 0x1000 sized block starting at 0xffffffc00005f000.

−seed number
Force the guest to use a deterministic pseudo-random number generator, seeded with number. This
does not affect crypto routines within the host.

−L path
Set the directory for the BIOS, VGA BIOS and keymaps.

To list all the data directories, use −L help.

−bios file
Set the filename for the BIOS.

−enable−kvm
Enable KVM full virtualization support. This option is only available if KVM support is enabled when
compiling.

−xen−domid id
Specify xen guest domain id (XEN only).

−xen−attach
Attach to existing xen domain. libxl will use this when starting QEMU (XEN only). Restrict set of
available xen operations to specified domain id (XEN only).

2022-12-08 38

QEMU.1(1) QEMU.1(1)

−no−reboot
Exit instead of rebooting.

−no−shutdown
Don’t exit QEMU on guest shutdown, but instead only stop the emulation. This allows for instance
switching to monitor to commit changes to the disk image.

−loadvm file
Start right away with a saved state (loadvm in monitor)

−daemonize
Daemonize the QEMU process after initialization. QEMU will not detach from standard IO until it is
ready to receive connections on any of its devices. This option is a useful way for external programs
to launch QEMU without having to cope with initialization race conditions.

−option−rom file
Load the contents of file as an option ROM. This option is useful to load things like EtherBoot.

−rtc [base=utc|localtime|datetime][,clock=host|rt|vm][,driftfix=none|slew]
Specify base as utc or localtime to let the RTC start at the current UTC or local time, respectively.
localtime is required for correct date in MS-DOS or Windows. To start at a specific point in time,
provide datetime in the format 2006−06−17T16:01:21 or 2006−06−17. The default base is
UTC.

By default the RTC is driven by the host system time. This allows using of the RTC as accurate
reference clock inside the guest, specifically if the host time is smoothly following an accurate external
reference clock, e.g. via NTP. If you want to isolate the guest time from the host, you can set clock to
rt instead, which provides a host monotonic clock if host support it. To even prevent the RTC from
progressing during suspension, you can set clock to vm (virtual clock). clock=vm is recommended
especially in icount mode in order to preserve determinism; however, note that in icount mode the
speed of the virtual clock is variable and can in general differ from the host clock.

Enable driftfix (i386 targets only) if you experience time drift problems, specifically with Windows’
ACPI HAL. This option will try to figure out how many timer interrupts were not processed by the
Windows guest and will re-inject them.

−icount [shift=N|auto][,rr=record|replay,rrfile=filename,rrsnapshot=snapshot]
Enable virtual instruction counter. The virtual cpu will execute one instruction every 2ˆN ns of virtual
time. If auto is specified then the virtual cpu speed will be automatically adjusted to keep virtual
time within a few seconds of real time.

When the virtual cpu is sleeping, the virtual time will advance at default speed unless sleep=on|off is
specified. With sleep=on|off, the virtual time will jump to the next timer deadline instantly whenever
the virtual cpu goes to sleep mode and will not advance if no timer is enabled. This behavior give
deterministic execution times from the guest point of view.

Note that while this option can give deterministic behavior, it does not provide cycle accurate
emulation. Modern CPUs contain superscalar out of order cores with complex cache hierarchies. The
number of instructions executed often has little or no correlation with actual performance.

align=on will activate the delay algorithm which will try to synchronise the host clock and the virtual
clock. The goal is to have a guest running at the real frequency imposed by the shift option. Whenever
the guest clock is behind the host clock and if align=on is specified then we print a message to the
user to inform about the delay. Currently this option does not work when shift is auto. Note: The
sync algorithm will work for those shift values for which the guest clock runs ahead of the host clock.
Typically this happens when the shift value is high (how high depends on the host machine).

When rr option is specified deterministic record/replay is enabled. Replay log is written into filename
file in record mode and read from this file in replay mode.

Option rrsnapshot is used to create new vm snapshot named snapshot at the start of execution
recording. In replay mode this option is used to load the initial VM state.

2022-12-08 39

QEMU.1(1) QEMU.1(1)

−watchdog model
Create a virtual hardware watchdog device. Once enabled (by a guest action), the watchdog must be
periodically polled by an agent inside the guest or else the guest will be restarted. Choose a model for
which your guest has drivers.

The model is the model of hardware watchdog to emulate. Use −watchdog help to list available
hardware models. Only one watchdog can be enabled for a guest.

The following models may be available:

ib700
iBASE 700 is a very simple ISA watchdog with a single timer.

i6300esb
Intel 6300ESB I/O controller hub is a much more featureful PCI-based dual-timer watchdog.

diag288
A virtual watchdog for s390x backed by the diagnose 288 hypercall (currently KVM only).

−watchdog−action action
The action controls what QEMU will do when the watchdog timer expires. The default is reset
(forcefully reset the guest). Other possible actions are: shutdown (attempt to gracefully shutdown
the guest), poweroff (forcefully poweroff the guest), inject−nmi (inject a NMI into the guest),
pause (pause the guest), debug (print a debug message and continue), or none (do nothing).

Note that the shutdown action requires that the guest responds to ACPI signals, which it may not be
able to do in the sort of situations where the watchdog would have expired, and thus
−watchdog−action shutdown is not recommended for production use.

Examples:

−watchdog i6300esb −watchdog−action pause
−watchdog ib700

−echr numeric_ascii_value
Change the escape character used for switching to the monitor when using monitor and serial sharing.
The default is 0x01 when using the −nographic option. 0x01 is equal to pressing Control−a.
You can select a different character from the ascii control keys where 1 through 26 map to Control-a
through Control-z. For instance you could use the either of the following to change the escape
character to Control-t.

−echr 0x14
−echr 20

−show−cursor
Show cursor.

−tb−size n
Set TB size.

−incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]
−incoming rdma:host:port[,ipv4][,ipv6]

Prepare for incoming migration, listen on a given tcp port.

−incoming unix:socketpath
Prepare for incoming migration, listen on a given unix socket.

−incoming fd:fd
Accept incoming migration from a given filedescriptor.

−incoming exec:cmdline
Accept incoming migration as an output from specified external command.

−incoming defer
Wait for the URI to be specified via migrate_incoming. The monitor can be used to change settings
(such as migration parameters) prior to issuing the migrate_incoming to allow the migration to begin.

2022-12-08 40

QEMU.1(1) QEMU.1(1)

−only−migratable
Only allow migratable devices. Devices will not be allowed to enter an unmigratable state.

−nodefaults
Don’t create default devices. Normally, QEMU sets the default devices like serial port, parallel port,
virtual console, monitor device, VGA adapter, floppy and CD-ROM drive and others. The
−nodefaults option will disable all those default devices.

−chroot dir
Immediately before starting guest execution, chroot to the specified directory. Especially useful in
combination with −runas.

−runas user
Immediately before starting guest execution, drop root privileges, switching to the specified user.

−prom−env variable=value
Set OpenBIOS nvram variable to given value (PPC, SPARC only).

−semihosting
Enable semihosting mode (ARM, M68K, Xtensa, MIPS, Nios II only).

−semihosting−config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]
Enable and configure semihosting (ARM, M68K, Xtensa, MIPS, Nios II only).

target=native|gdb|auto
Defines where the semihosting calls will be addressed, to QEMU (native) or to GDB (gdb).
The default is auto, which means gdb during debug sessions and native otherwise.

chardev=str1
Send the output to a chardev backend output for native or auto output when not in gdb

arg=str1,arg=str2,...
Allows the user to pass input arguments, and can be used multiple times to build up a list. The
old-style −kernel/−append method of passing a command line is still supported for backward
compatibility. If both the −−semihosting−config arg and the −kernel/−append are
specified, the former is passed to semihosting as it always takes precedence.

−old−param
Old param mode (ARM only).

−sandbox arg[,obsolete=string][,elevateprivileges=string][,spawn=string][,resourcecontrol=string]
Enable Seccomp mode 2 system call filter. ’on’ will enable syscall filtering and ’off’ will disable it.
The default is ’off’.

obsolete=string
Enable Obsolete system calls

elevateprivileges=string
Disable set*uid|gid system calls

spawn=string
Disable *fork and execve

resourcecontrol=string
Disable process affinity and schedular priority

−readconfig file
Read device configuration from file. This approach is useful when you want to spawn QEMU process
with many command line options but you don’t want to exceed the command line character limit.

−writeconfig file
Write device configuration to file. The file can be either filename to save command line and device
configuration into file or dash −) character to print the output to stdout. This can be later used as input
file for −readconfig option.

2022-12-08 41

QEMU.1(1) QEMU.1(1)

−no−user−config
The −no−user−config option makes QEMU not load any of the user-provided config files on
sysconfdir.

−trace [[enable=]pattern][,events=file][,file=file]
Specify tracing options.

[enable=]pattern
Immediately enable events matching pattern (either event name or a globbing pattern). This
option is only available if QEMU has been compiled with the simple, log or ftrace tracing
backend. To specify multiple events or patterns, specify the −trace option multiple times.

Use −trace help to print a list of names of trace points.

ev ents=file
Immediately enable events listed in file. The file must contain one event name (as listed in the
trace-events-all file) per line; globbing patterns are accepted too. This option is only available if
QEMU has been compiled with the simple, log or ftrace tracing backend.

file=file
Log output traces to file. This option is only available if QEMU has been compiled with the
simple tracing backend.

−plugin file=file[,arg=string]
Load a plugin.

file=file
Load the given plugin from a shared library file.

arg=string
Argument string passed to the plugin. (Can be given multiple times.)

−enable−fips
Enable FIPS 140−2 compliance mode.

−msg timestamp[=on|off]
prepend a timestamp to each log message.(default:on)

−dump−vmstate file
Dump json-encoded vmstate information for current machine type to file in file

−enable−sync−profile
Enable synchronization profiling.

Generic object creation

−object typename[,prop1=value1,...]
Create a new object of type typename setting properties in the order they are specified. Note that the
’id’ property must be set. These objects are placed in the ’/objects’ path.

−object
memory−backend−file,id=id,size=size,mem−path=dir,share=on|off,discard−data=on|off,merge=on|off,dump=on|off,pr
nodes,policy=default|preferred|bind|interleave,align=align

Creates a memory file backend object, which can be used to back the guest RAM with huge
pages.

The id parameter is a unique ID that will be used to reference this memory region when
configuring the −numa argument.

The size option provides the size of the memory region, and accepts common suffixes, eg 500M.

The mem-path provides the path to either a shared memory or huge page filesystem mount.

The share boolean option determines whether the memory region is marked as private to QEMU,

or shared. The latter allows a co-operating external process to access the QEMU memory region.

2022-12-08 42

QEMU.1(1) QEMU.1(1)

The share is also required for pvrdma devices due to limitations in the RDMA API provided by
Linux.

Setting share=on might affect the ability to configure NUMA bindings for the memory backend
under some circumstances, see Documentation/vm/numa_memory_policy.txt on the Linux kernel
source tree for additional details.

Setting the discard-data boolean option to on indicates that file contents can be destroyed when
QEMU exits, to avoid unnecessarily flushing data to the backing file. Note that discard-data is
only an optimization, and QEMU might not discard file contents if it aborts unexpectedly or is
terminated using SIGKILL.

The merge boolean option enables memory merge, also known as MADV_MERGEABLE, so that
Kernel Samepage Merging will consider the pages for memory deduplication.

Setting the dump boolean option to off excludes the memory from core dumps. This feature is
also known as MADV_DONTDUMP.

The prealloc boolean option enables memory preallocation.

The host-nodes option binds the memory range to a list of NUMA host nodes.

The policy option sets the NUMA policy to one of the following values:

default
default host policy

preferred
prefer the given host node list for allocation

bind
restrict memory allocation to the given host node list

interleave
interleave memory allocations across the given host node list

The align option specifies the base address alignment when QEMU mmap (2) mem-path, and
accepts common suffixes, eg 2M. Some backend store specified by mem-path requires an
alignment different than the default one used by QEMU, eg the device DAX /dev/dax0.0 requires
2M alignment rather than 4K. In such cases, users can specify the required alignment via this
option.

The pmem option specifies whether the backing file specified by mem-path is in host persistent
memory that can be accessed using the SNIA NVM programming model (e.g. Intel NVDIMM). If
pmem is set to ’on’, QEMU will take necessary operations to guarantee the persistence of its own
writes to mem-path (e.g. in vNVDIMM label emulation and live migration). Also, we will map
the backend-file with MAP_SYNC flag, which ensures the file metadata is in sync for mem-path
in case of host crash or a power failure. MAP_SYNC requires support from both the host kernel
(since Linux kernel 4.15) and the filesystem of mem-path mounted with DAX option.

−object
memory−backend−ram,id=id,merge=on|off,dump=on|off,share=on|off,prealloc=on|off,size=size,host−nodes=host-
nodes,policy=default|preferred|bind|interleave

Creates a memory backend object, which can be used to back the guest RAM. Memory backend
objects offer more control than the −m option that is traditionally used to define guest RAM.

Please refer to memory-backend-file for a description of the options.

−object
memory−backend−memfd,id=id,merge=on|off,dump=on|off,share=on|off,prealloc=on|off,size=size,host−nodes=host-
nodes,policy=default|preferred|bind|interleave,seal=on|off,hugetlb=on|off,hugetlbsize=size

Creates an anonymous memory file backend object, which allows QEMU to share the memory
with an external process (e.g. when using vhost-user). The memory is allocated with memfd and
optional sealing. (Linux only)

2022-12-08 43

QEMU.1(1) QEMU.1(1)

The seal option creates a sealed-file, that will block further resizing the memory (’on’ by default).

The hugetlb option specify the file to be created resides in the hugetlbfs filesystem (since Linux
4.14). Used in conjunction with the hugetlb option, the hugetlbsize option specify the hugetlb
page size on systems that support multiple hugetlb page sizes (it must be a power of 2 value
supported by the system).

In some versions of Linux, the hugetlb option is incompatible with the seal option (requires at
least Linux 4.16).

Please refer to memory-backend-file for a description of the other options.

The share boolean option is on by default with memfd.

−object rng−builtin,id=id
Creates a random number generator backend which obtains entropy from QEMU builtin functions.
The id parameter is a unique ID that will be used to reference this entropy backend from the
virtio-rng device. By default, the virtio-rng device uses this RNG backend.

−object rng−random,id=id,filename=/dev/random
Creates a random number generator backend which obtains entropy from a device on the host.
The id parameter is a unique ID that will be used to reference this entropy backend from the
virtio-rng device. The filename parameter specifies which file to obtain entropy from and if
omitted defaults to /dev/urandom.

−object rng−egd,id=id,chardev=chardevid
Creates a random number generator backend which obtains entropy from an external daemon
running on the host. The id parameter is a unique ID that will be used to reference this entropy
backend from the virtio-rng device. The chardev parameter is the unique ID of a character
device backend that provides the connection to the RNG daemon.

−object tls−creds−anon,id=id,endpoint=endpoint,dir=/path/to/cred/dir,verify−peer=on|off
Creates a TLS anonymous credentials object, which can be used to provide TLS support on
network backends. The id parameter is a unique ID which network backends will use to access
the credentials. The endpoint is either server or client depending on whether the QEMU network
backend that uses the credentials will be acting as a client or as a server. If verify-peer is enabled
(the default) then once the handshake is completed, the peer credentials will be verified, though
this is a no-op for anonymous credentials.

The dir parameter tells QEMU where to find the credential files. For server endpoints, this
directory may contain a file dh−params.pem providing diffie-hellman parameters to use for the
TLS server. If the file is missing, QEMU will generate a set of DH parameters at startup. This is a
computationally expensive operation that consumes random pool entropy, so it is recommended
that a persistent set of parameters be generated upfront and saved.

−object tls−creds−psk,id=id,endpoint=endpoint,dir=/path/to/keys/dir[,username=username]
Creates a TLS Pre-Shared Keys (PSK) credentials object, which can be used to provide TLS

support on network backends. The id parameter is a unique ID which network backends will use
to access the credentials. The endpoint is either server or client depending on whether the
QEMU network backend that uses the credentials will be acting as a client or as a server. For
clients only, username is the username which will be sent to the server. If omitted it defaults to
‘‘qemu’’.

The dir parameter tells QEMU where to find the keys file. It is called "dir/keys.psk‘‘ and contains
’’username:key" pairs. This file can most easily be created using the GnuTLS psktool
program.

For server endpoints, dir may also contain a file dh−params.pem providing diffie-hellman
parameters to use for the TLS server. If the file is missing, QEMU will generate a set of DH

parameters at startup. This is a computationally expensive operation that consumes random pool
entropy, so it is recommended that a persistent set of parameters be generated up front and saved.

2022-12-08 44

QEMU.1(1) QEMU.1(1)

−object
tls−creds−x509,id=id,endpoint=endpoint,dir=/path/to/cred/dir,priority=priority,verify−peer=on|off,passwordid=id

Creates a TLS anonymous credentials object, which can be used to provide TLS support on
network backends. The id parameter is a unique ID which network backends will use to access
the credentials. The endpoint is either server or client depending on whether the QEMU network
backend that uses the credentials will be acting as a client or as a server. If verify-peer is enabled
(the default) then once the handshake is completed, the peer credentials will be verified. With
x509 certificates, this implies that the clients must be provided with valid client certificates too.

The dir parameter tells QEMU where to find the credential files. For server endpoints, this
directory may contain a file dh−params.pem providing diffie-hellman parameters to use for the
TLS server. If the file is missing, QEMU will generate a set of DH parameters at startup. This is a
computationally expensive operation that consumes random pool entropy, so it is recommended
that a persistent set of parameters be generated upfront and saved.

For x509 certificate credentials the directory will contain further files providing the x509
certificates. The certificates must be stored in PEM format, in filenames ca−cert.pem, ca−crl.pem
(optional), server−cert.pem (only servers), server−key.pem (only servers), client−cert.pem (only
clients), and client−key.pem (only clients).

For the server−key.pem and client−key.pem files which contain sensitive private keys, it is
possible to use an encrypted version by providing the passwordid parameter. This provides the ID

of a previously created secret object containing the password for decryption.

The priority parameter allows to override the global default priority used by gnutls. This can be
useful if the system administrator needs to use a weaker set of crypto priorities for QEMU without
potentially forcing the weakness onto all applications. Or conversely if one wants wants a
stronger default for QEMU than for all other applications, they can do this through this parameter.
Its format is a gnutls priority string as described at
<https://gnutls.org/manual/html_node/Priority−Strings.html>.

−object filter−buffer,id=id,netdev=netdevid,interval=t[,queue=all|rx|tx][,status=on|off]
Interval t can’t be 0, this filter batches the packet delivery: all packets arriving in a given interval
on netdev netdevid are delayed until the end of the interval. Interval is in microseconds. status is
optional that indicate whether the netfilter is on (enabled) or off (disabled), the default status for
netfilter will be ’on’.

queue all|rx|tx is an option that can be applied to any netfilter.

all: the filter is attached both to the receive and the transmit queue of the netdev (default).

rx: the filter is attached to the receive queue of the netdev, where it will receive packets sent to the
netdev.

tx: the filter is attached to the transmit queue of the netdev, where it will receive packets sent by
the netdev.

−object filter−mirror,id=id,netdev=netdevid,outdev=chardevid,queue=all|rx|tx[,vnet_hdr_support]
filter-mirror on netdev netdevid,mirror net packet to chardevchardevid, if it has the
vnet_hdr_support flag, filter-mirror will mirror packet with vnet_hdr_len.

−object
filter−redirector,id=id,netdev=netdevid,indev=chardevid,outdev=chardevid,queue=all|rx|tx[,vnet_hdr_support]

filter-redirector on netdev netdevid,redirect filter’s net packet to chardev chardevid,and redirect
indev’s packet to filter.if it has the vnet_hdr_support flag, filter-redirector will redirect packet with
vnet_hdr_len. Create a filter-redirector we need to differ outdev id from indev id, id can not be
the same. we can just use indev or outdev, but at least one of indev or outdev need to be specified.

−object filter−rewriter,id=id,netdev=netdevid,queue=all|rx|tx,[vnet_hdr_support]
Filter-rewriter is a part of COLO project.It will rewrite tcp packet to secondary from primary to
keep secondary tcp connection,and rewrite tcp packet to primary from secondary make tcp packet

2022-12-08 45

QEMU.1(1) QEMU.1(1)

can be handled by client.if it has the vnet_hdr_support flag, we can parse packet with vnet header.

usage: colo secondary: −object filter−redirector,id=f1,netdev=hn0,queue=tx,indev=red0 −object
filter−redirector,id=f2,netdev=hn0,queue=rx,outdev=red1 −object
filter−rewriter,id=rew0,netdev=hn0,queue=all

−object filter−dump,id=id,netdev=dev[,file=filename][,maxlen=len]
Dump the network traffic on netdev dev to the file specified by filename. At most len bytes (64k
by default) per packet are stored. The file format is libpcap, so it can be analyzed with tools such
as tcpdump or Wireshark.

−object
colo−compare,id=id,primary_in=chardevid,secondary_in=chardevid,outdev=chardevid,iothread=id[,vnet_hdr_support][,notify_de

Colo-compare gets packet from primary_inchardevid and secondary_inchardevid, than compare
primary packet with secondary packet. If the packets are same, we will output primary packet to
outdevchardevid, else we will notify colo-frame do checkpoint and send primary packet to
outdevchardevid. In order to improve efficiency, we need to put the task of comparison in
another thread. If it has the vnet_hdr_support flag, colo compare will send/recv packet with
vnet_hdr_len. If you want to use Xen COLO, will need the notify_dev to notify Xen colo-frame
to do checkpoint.

we must use it with the help of filter-mirror and filter-redirector.

KVM COLO

primary:
−netdev tap,id=hn0,vhost=off,script=/etc/qemu−ifup,downscript=/etc/qemu−ifdown
−device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
−chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
−chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
−chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
−chardev socket,id=compare0−0,host=3.3.3.3,port=9001
−chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
−chardev socket,id=compare_out0,host=3.3.3.3,port=9005
−object iothread,id=iothread1
−object filter−mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
−object filter−redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
−object filter−redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
−object colo−compare,id=comp0,primary_in=compare0−0,secondary_in=compare1,outdev=compare_out0,iothread=iothread1

secondary:
−netdev tap,id=hn0,vhost=off,script=/etc/qemu−ifup,down script=/etc/qemu−ifdown
−device e1000,netdev=hn0,mac=52:a4:00:12:78:66
−chardev socket,id=red0,host=3.3.3.3,port=9003
−chardev socket,id=red1,host=3.3.3.3,port=9004
−object filter−redirector,id=f1,netdev=hn0,queue=tx,indev=red0
−object filter−redirector,id=f2,netdev=hn0,queue=rx,outdev=red1

Xen COLO

primary:
−netdev tap,id=hn0,vhost=off,script=/etc/qemu−ifup,downscript=/etc/qemu−ifdown
−device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
−chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
−chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
−chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait

2022-12-08 46

QEMU.1(1) QEMU.1(1)

−chardev socket,id=compare0−0,host=3.3.3.3,port=9001
−chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
−chardev socket,id=compare_out0,host=3.3.3.3,port=9005
−chardev socket,id=notify_way,host=3.3.3.3,port=9009,server,nowait
−object filter−mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
−object filter−redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
−object filter−redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
−object iothread,id=iothread1
−object colo−compare,id=comp0,primary_in=compare0−0,secondary_in=compare1,outdev=compare_out0,notify_dev=nofity_way,iothread=iothread1

secondary:
−netdev tap,id=hn0,vhost=off,script=/etc/qemu−ifup,down script=/etc/qemu−ifdown
−device e1000,netdev=hn0,mac=52:a4:00:12:78:66
−chardev socket,id=red0,host=3.3.3.3,port=9003
−chardev socket,id=red1,host=3.3.3.3,port=9004
−object filter−redirector,id=f1,netdev=hn0,queue=tx,indev=red0
−object filter−redirector,id=f2,netdev=hn0,queue=rx,outdev=red1

If you want to know the detail of above command line, you can read the colo-compare git log.

−object cryptodev−backend−builtin,id=id[,queues=queues]
Creates a cryptodev backend which executes crypto opreation from the QEMU cipher APIS. The
id parameter is a unique ID that will be used to reference this cryptodev backend from the virtio-
crypto device. The queues parameter is optional, which specify the queue number of cryptodev
backend, the default of queues is 1.

qemu−system−x86_64 \
[...] \
−object cryptodev−backend−builtin,id=cryptodev0 \
−device virtio−crypto−pci,id=crypto0,cryptodev=cryptodev0 \
[...]

−object cryptodev−vhost−user,id=id,chardev=chardevid[,queues=queues]
Creates a vhost-user cryptodev backend, backed by a chardev chardevid. The id parameter is a
unique ID that will be used to reference this cryptodev backend from the virtio-crypto device.
The chardev should be a unix domain socket backed one. The vhost-user uses a specifically
defined protocol to pass vhost ioctl replacement messages to an application on the other end of
the socket. The queues parameter is optional, which specify the queue number of cryptodev
backend for multiqueue vhost-user, the default of queues is 1.

qemu−system−x86_64 \
[...] \
−chardev socket,id=chardev0,path=/path/to/socket \
−object cryptodev−vhost−user,id=cryptodev0,chardev=chardev0 \
−device virtio−crypto−pci,id=crypto0,cryptodev=cryptodev0 \
[...]

−object secret,id=id,data=string,format=raw|base64[,keyid=secretid,iv=string]
−object secret,id=id,file=filename,format=raw|base64[,keyid=secretid,iv=string]

Defines a secret to store a password, encryption key, or some other sensitive data. The sensitive
data can either be passed directly via the data parameter, or indirectly via the file parameter.
Using the data parameter is insecure unless the sensitive data is encrypted.

The sensitive data can be provided in raw format (the default), or base64. When encoded as
JSON, the raw format only supports valid UTF−8 characters, so base64 is recommended for
sending binary data. QEMU will convert from which ever format is provided to the format it needs
internally. eg, an RBD password can be provided in raw format, even though it will be base64
encoded when passed onto the RBD sever.

2022-12-08 47

QEMU.1(1) QEMU.1(1)

For added protection, it is possible to encrypt the data associated with a secret using the
AES−256−CBC cipher. Use of encryption is indicated by providing the keyid and iv parameters.
The keyid parameter provides the ID of a previously defined secret that contains the AES−256

decryption key. This key should be 32−bytes long and be base64 encoded. The iv parameter
provides the random initialization vector used for encryption of this particular secret and should
be a base64 encrypted string of the 16−byte IV.

The simplest (insecure) usage is to provide the secret inline

qemu−system−x86_64 −object secret,id=sec0,data=letmein,format=raw

The simplest secure usage is to provide the secret via a file

printf ‘‘letmein’’ > mypasswd.txt # qemu−system−x86_64 −object
secret,id=sec0,file=mypasswd.txt,format=raw

For greater security, AES−256−CBC should be used. To illustrate usage, consider the openssl
command line tool which can encrypt the data. Note that when encrypting, the plaintext must be
padded to the cipher block size (32 bytes) using the standard PKCS#5/6 compatible padding
algorithm.

First a master key needs to be created in base64 encoding:

openssl rand −base64 32 > key.b64
KEY=$(base64 −d key.b64 | hexdump −v −e '/1 "%02X"')

Each secret to be encrypted needs to have a random initialization vector generated. These do not
need to be kept secret

openssl rand −base64 16 > iv.b64
IV=$(base64 −d iv.b64 | hexdump −v −e '/1 "%02X"')

The secret to be defined can now be encrypted, in this case we’re telling openssl to base64 encode
the result, but it could be left as raw bytes if desired.

SECRET=$(printf "letmein" |
openssl enc −aes−256−cbc −a −K $KEY −iv $IV)

When launching QEMU, create a master secret pointing to key.b64 and specify that to be used
to decrypt the user password. Pass the contents of iv.b64 to the second secret

qemu−system−x86_64 \
−object secret,id=secmaster0,format=base64,file=key.b64 \
−object secret,id=sec0,keyid=secmaster0,format=base64,\
data=$SECRET,iv=$(<iv.b64)

−object
sev−guest,id=id,cbitpos=cbitpos,reduced−phys−bits=val,[sev−device=string,policy=policy,handle=handle,dh−cert−file=

Create a Secure Encrypted Virtualization (SEV) guest object, which can be used to provide the
guest memory encryption support on AMD processors.

When memory encryption is enabled, one of the physical address bit (aka the C−bit) is utilized to
mark if a memory page is protected. The cbitpos is used to provide the C−bit position. The C−bit
position is Host family dependent hence user must provide this value. On EPYC, the value should
be 47.

When memory encryption is enabled, we loose certain bits in physical address space. The
reduced-phys-bits is used to provide the number of bits we loose in physical address space.
Similar to C−bit, the value is Host family dependent. On EPYC, the value should be 5.

The sev-device provides the device file to use for communicating with the SEV firmware running
inside AMD Secure Processor. The default device is ’/dev/sev’. If hardware supports memory
encryption then /dev/sev devices are created by CCP driver.

2022-12-08 48

QEMU.1(1) QEMU.1(1)

The policy provides the guest policy to be enforced by the SEV firmware and restrict what
configuration and operational commands can be performed on this guest by the hypervisor. The
policy should be provided by the guest owner and is bound to the guest and cannot be changed
throughout the lifetime of the guest. The default is 0.

If guest policy allows sharing the key with another SEV guest then handle can be use to provide
handle of the guest from which to share the key.

The dh-cert-file and session-file provides the guest owner’s Public Diffie-Hillman key defined in
SEV spec. The PDH and session parameters are used for establishing a cryptographic session with
the guest owner to negotiate keys used for attestation. The file must be encoded in base64.

e.g to launch a SEV guest

qemu−system−x86_64 \
......
−object sev−guest,id=sev0,cbitpos=47,reduced−phys−bits=5 \
−machine ...,memory−encryption=sev0
.....

−object authz−simple,id=id,identity=string
Create an authorization object that will control access to network services.

The identity parameter is identifies the user and its format depends on the network service that
authorization object is associated with. For authorizing based on TLS x509 certificates, the
identity must be the x509 distinguished name. Note that care must be taken to escape any
commas in the distinguished name.

An example authorization object to validate a x509 distinguished name would look like:

qemu−system−x86_64 \
...
−object 'authz−simple,id=auth0,identity=CN=laptop.example.com,,O=Example Org,,L=London,,ST=London,,C=GB' \
...

Note the use of quotes due to the x509 distinguished name containing whitespace, and escaping
of ’,’.

−object authz−listfile,id=id,filename=path,refresh=yes|no
Create an authorization object that will control access to network services.

The filename parameter is the fully qualified path to a file containing the access control list rules
in JSON format.

An example set of rules that match against SASL usernames might look like:

{
"rules": [
{ "match": "fred", "policy": "allow", "format": "exact" },
{ "match": "bob", "policy": "allow", "format": "exact" },
{ "match": "danb", "policy": "deny", "format": "glob" },
{ "match": "dan*", "policy": "allow", "format": "exact" },
],
"policy": "deny"
}

When checking access the object will iterate over all the rules and the first rule to match will have
its policy value returned as the result. If no rules match, then the default policy value is returned.

The rules can either be an exact string match, or they can use the simple UNIX glob pattern
matching to allow wildcards to be used.

If refresh is set to true the file will be monitored and automatically reloaded whenever its content

2022-12-08 49

QEMU.1(1) QEMU.1(1)

changes.

As with the authz−simple object, the format of the identity strings being matched depends on
the network service, but is usually a TLS x509 distinguished name, or a SASL username.

An example authorization object to validate a SASL username would look like:

qemu−system−x86_64 \
...
−object authz−simple,id=auth0,filename=/etc/qemu/vnc−sasl.acl,refresh=yes
...

−object authz−pam,id=id,service=string
Create an authorization object that will control access to network services.

The service parameter provides the name of a PAM service to use for authorization. It requires
that a file /etc/pam.d/service exist to provide the configuration for the account
subsystem.

An example authorization object to validate a TLS x509 distinguished name would look like:

qemu−system−x86_64 \
...
−object authz−pam,id=auth0,service=qemu−vnc
...

There would then be a corresponding config file for PAM at /etc/pam.d/qemu−vnc that
contains:

account requisite pam_listfile.so item=user sense=allow \
file=/etc/qemu/vnc.allow

Finally the /etc/qemu/vnc.allow file would contain the list of x509 distingished names
that are permitted access

CN=laptop.example.com,O=Example Home,L=London,ST=London,C=GB

During the graphical emulation, you can use special key combinations to change modes. The default key
mappings are shown below, but if you use −alt−grab then the modifier is Ctrl-Alt-Shift (instead of Ctrl-
Alt) and if you use −ctrl−grab then the modifier is the right Ctrl key (instead of Ctrl-Alt):

Ctrl-Alt-f
Toggle full screen

Ctrl−Alt−+
Enlarge the screen

Ctrl−Alt —
Shrink the screen

Ctrl-Alt-u
Restore the screen’s un-scaled dimensions

Ctrl-Alt-n
Switch to virtual console ’n’. Standard console mappings are:

1 Target system display

2 Monitor

3 Serial port

Ctrl-Alt
Toggle mouse and keyboard grab.

In the virtual consoles, you can use Ctrl-Up, Ctrl-Down, Ctrl-PageUp and Ctrl-PageDown to move in
the back log.

2022-12-08 50

QEMU.1(1) QEMU.1(1)

During emulation, if you are using a character backend multiplexer (which is the default if you are using
−nographic) then several commands are available via an escape sequence. These key sequences all start
with an escape character, which is Ctrl-a by default, but can be changed with −echr. The list below
assumes you’re using the default.

Ctrl-a h
Print this help

Ctrl-a x
Exit emulator

Ctrl-a s
Save disk data back to file (if −snapshot)

Ctrl-a t
Toggle console timestamps

Ctrl-a b
Send break (magic sysrq in Linux)

Ctrl-a c
Rotate between the frontends connected to the multiplexer (usually this switches between the monitor
and the console)

Ctrl-a Ctrl-a
Send the escape character to the frontend

The following options are specific to the PowerPC emulation:

−g WxH[xDEPTH]
Set the initial VGA graphic mode. The default is 800x600x32.

−prom−env string
Set OpenBIOS variables in NVRAM, for example:

qemu−system−ppc −prom−env 'auto−boot?=false' \
−prom−env 'boot−device=hd:2,\yaboot' \
−prom−env 'boot−args=conf=hd:2,\yaboot.conf'

These variables are not used by Open Hack’Ware.

The following options are specific to the Sparc32 emulation:

−g WxHx[xDEPTH]
Set the initial graphics mode. For TCX, the default is 1024x768x8 with the option of 1024x768x24.
For cgthree, the default is 1024x768x8 with the option of 1152x900x8 for people who wish to use
OBP.

−prom−env string
Set OpenBIOS variables in NVRAM, for example:

qemu−system−sparc −prom−env 'auto−boot?=false' \
−prom−env 'boot−device=sd(0,2,0):d' −prom−env 'boot−args=linux single'

−M [SS−4|SS−5|SS−10|SS−20|SS−600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
Set the emulated machine type. Default is SS−5.

The following options are specific to the Sparc64 emulation:

−prom−env string
Set OpenBIOS variables in NVRAM, for example:

qemu−system−sparc64 −prom−env 'auto−boot?=false'

−M [sun4u|sun4v|niagara]
Set the emulated machine type. The default is sun4u.

2022-12-08 51

QEMU.1(1) QEMU.1(1)

The following options are specific to the ARM emulation:

−semihosting
Enable semihosting syscall emulation.

On ARM this implements the ‘‘Angel’’ interface.

Note that this allows guest direct access to the host filesystem, so should only be used with trusted
guest OS.

The following options are specific to the ColdFire emulation:

−semihosting
Enable semihosting syscall emulation.

On M68K this implements the ‘‘ColdFire GDB’’ interface used by libgloss.

Note that this allows guest direct access to the host filesystem, so should only be used with trusted
guest OS.

The following options are specific to the Xtensa emulation:

−semihosting
Enable semihosting syscall emulation.

Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select. Tensilica
baremetal libc for ISS and linux platform ‘‘sim’’ use this interface.

Note that this allows guest direct access to the host filesystem, so should only be used with trusted
guest OS.

NOTES
In addition to using normal file images for the emulated storage devices, QEMU can also use networked
resources such as iSCSI devices. These are specified using a special URL syntax.

iSCSI
iSCSI support allows QEMU to access iSCSI resources directly and use as images for the guest
storage. Both disk and cdrom images are supported.

Syntax for specifying iSCSI LUNs is ‘‘iscsi://<target−ip>[:<port>]/<target−iqn>/<lun>’’

By default qemu will use the iSCSI initiator-name ’iqn.2008−11.org.linux−kvm[:<name>]’ but this
can also be set from the command line or a configuration file.

Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect stalled requests and
force a reestablishment of the session. The timeout is specified in seconds. The default is 0 which
means no timeout. Libiscsi 1.15.0 or greater is required for this feature.

Example (without authentication):

qemu−system−x86_64 −iscsi initiator−name=iqn.2001−04.com.example:my−initiator \
−cdrom iscsi://192.0.2.1/iqn.2001−04.com.example/2 \
−drive file=iscsi://192.0.2.1/iqn.2001−04.com.example/1

Example (CHAP username/password via URL):

qemu−system−x86_64 −drive file=iscsi://user%password@192.0.2.1/iqn.2001−04.com.example/1

Example (CHAP username/password via environment variables):

LIBISCSI_CHAP_USERNAME="user" \
LIBISCSI_CHAP_PASSWORD="password" \
qemu−system−x86_64 −drive file=iscsi://192.0.2.1/iqn.2001−04.com.example/1

NBD

QEMU supports NBD (Network Block Devices) both using TCP protocol as well as Unix Domain
Sockets. With TCP, the default port is 10809.

2022-12-08 52

QEMU.1(1) QEMU.1(1)

Syntax for specifying a NBD device using TCP, in preferred URI form:
‘‘nbd://<server−ip>[:<port>]/[<export>]’’

Syntax for specifying a NBD device using Unix Domain Sockets; remember that ’?’ is a shell glob
character and may need quoting: ‘‘nbd+unix:///[<export>]?socket=<domain−socket>’’

Older syntax that is also recognized: ‘‘nbd:<server−ip>:<port>[:exportname=<export>]’’

Syntax for specifying a NBD device using Unix Domain Sockets
‘‘nbd:unix:<domain−socket>[:exportname=<export>]’’

Example for TCP

qemu−system−x86_64 −−drive file=nbd:192.0.2.1:30000

Example for Unix Domain Sockets

qemu−system−x86_64 −−drive file=nbd:unix:/tmp/nbd−socket

SSH

QEMU supports SSH (Secure Shell) access to remote disks.

Examples:

qemu−system−x86_64 −drive file=ssh://user@host/path/to/disk.img
qemu−system−x86_64 −drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img

Currently authentication must be done using ssh-agent. Other authentication methods may be
supported in future.

Sheepdog
Sheepdog is a distributed storage system for QEMU. QEMU supports using either local sheepdog
devices or remote networked devices.

Syntax for specifying a sheepdog device

sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]

Example

qemu−system−x86_64 −−drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine

See also <https://sheepdog.github.io/sheepdog/>.

GlusterFS
GlusterFS is a user space distributed file system. QEMU supports the use of GlusterFS volumes for
hosting VM disk images using TCP, Unix Domain Sockets and RDMA transport protocols.

Syntax for specifying a VM disk image on GlusterFS volume is

URI:
gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]

JSON:
'json:{"driver":"qcow2","file":{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",

"server":[{"type":"tcp","host":"...","port":"..."},
{"type":"unix","socket":"..."}]}}'

Example

URI:
qemu−system−x86_64 −−drive file=gluster://192.0.2.1/testvol/a.img,

file.debug=9,file.logfile=/var/log/qemu−gluster.log

JSON:
qemu−system−x86_64 'json:{"driver":"qcow2",

2022-12-08 53

QEMU.1(1) QEMU.1(1)

"file":{"driver":"gluster",
"volume":"testvol","path":"a.img",
"debug":9,"logfile":"/var/log/qemu−gluster.log",
"server":[{"type":"tcp","host":"1.2.3.4","port":24007},

{"type":"unix","socket":"/var/run/glusterd.socket"}]}}'
qemu−system−x86_64 −drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,

file.debug=9,file.logfile=/var/log/qemu−gluster.log,
file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket

See also <http://www.gluster.org>.

HTTP/HTTPS/FTP/FTPS

QEMU supports read-only access to files accessed over http(s) and ftp(s).

Syntax using a single filename:

<protocol>://[<username>[:<password>]@]<host>/<path>

where:

protocol
’http’, ’https’, ’ftp’, or ’ftps’.

username
Optional username for authentication to the remote server.

password
Optional password for authentication to the remote server.

host
Address of the remote server.

path
Path on the remote server, including any query string.

The following options are also supported:

url The full URL when passing options to the driver explicitly.

readahead
The amount of data to read ahead with each range request to the remote server. This value may
optionally have the suffix ’T’, ’G’, ’M’, ’K’, ’k’ or ’b’. If it does not have a suffix, it will be
assumed to be in bytes. The value must be a multiple of 512 bytes. It defaults to 256k.

sslverify
Whether to verify the remote server’s certificate when connecting over SSL. It can have the value
’on’ or ’off’. It defaults to ’on’.

cookie
Send this cookie (it can also be a list of cookies separated by ’;’) with each outgoing request.
Only supported when using protocols such as HTTP which support cookies, otherwise ignored.

timeout
Set the timeout in seconds of the CURL connection. This timeout is the time that CURL waits for
a response from the remote server to get the size of the image to be downloaded. If not set, the
default timeout of 5 seconds is used.

Note that when passing options to qemu explicitly, driver is the value of <protocol>.

Example: boot from a remote Fedora 20 live ISO image

qemu−system−x86_64 −−drive media=cdrom,file=https://archives.fedoraproject.org/pub/archive/fedora/linux/releases/20/Live/x86_64/Fedora−Live−Desktop−x86_64−20−1.iso,readonly

qemu−system−x86_64 −−drive media=cdrom,file.driver=http,file.url=http://archives.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora−Live−Desktop−x86_64−20−1.iso,readonly

2022-12-08 54

QEMU.1(1) QEMU.1(1)

Example: boot from a remote Fedora 20 cloud image using a local overlay for writes, copy-on-read,
and a readahead of 64k

qemu−img create −f qcow2 −o backing_file='json:{"file.driver":"http",, "file.url":"http://archives.fedoraproject.org/pub/archive/fedora/linux/releases/20/Images/x86_64/Fedora−x86_64−20−20131211.1−sda.qcow2",, "file.readahead":"64k"}' /tmp/Fedora−x86_64−20−

qemu−system−x86_64 −drive file=/tmp/Fedora−x86_64−20−20131211.1−sda.qcow2,copy−on−read=on

Example: boot from an image stored on a VMware vSphere server with a self-signed certificate using
a local overlay for writes, a readahead of 64k and a timeout of 10 seconds.

qemu−img create −f qcow2 −o backing_file='json:{"file.driver":"https",, "file.url":"https://user:password@vsphere.example.com/folder/test/test−flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout"

qemu−system−x86_64 −drive file=/tmp/test.qcow2

SEE ALSO
The HTML documentation of QEMU for more precise information and Linux user mode emulator
invocation.

AUTHOR
Fabrice Bellard

2022-12-08 55

