
QEMU-BLOCK-DRIVERS.7(7) QEMU-BLOCK-DRIVERS.7(7)

NAME
qemu−block−drivers − QEMU block drivers reference

SYNOPSIS
QEMU block driver reference manual

DESCRIPTION
Disk image file formats

QEMU supports many image file formats that can be used with VMs as well as with any of the tools (like

qemu−img). This includes the preferred formats raw and qcow2 as well as formats that are supported for

compatibility with older QEMU versions or other hypervisors.

Depending on the image format, different options can be passed to qemu−img create and qemu−img
convert using the −o option. This section describes each format and the options that are supported for it.

raw

Raw disk image format. This format has the advantage of being simple and easily exportable to all

other emulators. If your file system supports holes (for example in ext2 or ext3 on Linux or NTFS on

Windows), then only the written sectors will reserve space. Use qemu−img info to know the real

size used by the image or ls −ls on Unix/Linux.

Supported options:

preallocation
Preallocation mode (allowed values: off, falloc, full). falloc mode preallocates space

for image by calling posix_fallocate(). full mode preallocates space for image by writing data

to underlying storage. This data may or may not be zero, depending on the storage location.

qcow2

QEMU image format, the most versatile format. Use it to have smaller images (useful if your

filesystem does not supports holes, for example on Windows), zlib based compression and support of

multiple VM snapshots.

Supported options:

compat
Determines the qcow2 version to use. compat=0.10 uses the traditional image format that can

be read by any QEMU since 0.10. compat=1.1 enables image format extensions that only

QEMU 1.1 and newer understand (this is the default). Amongst others, this includes zero clusters,

which allow efficient copy-on-read for sparse images.

backing_file
File name of a base image (see create subcommand)

backing_fmt
Image format of the base image

encryption
This option is deprecated and equivalent to encrypt.format=aes

encrypt.format
If this is set to luks, it requests that the qcow2 payload (not qcow2 header) be encrypted using

the LUKS format. The passphrase to use to unlock the LUKS key slot is given by the

encrypt.key−secret parameter. LUKS encryption parameters can be tuned with the other

encrypt.* parameters.

If this is set to aes, the image is encrypted with 128−bit AES-CBC. The encryption key is giv en

by the encrypt.key−secret parameter. This encryption format is considered to be flawed

by modern cryptography standards, suffering from a number of design problems:

−<The AES-CBC cipher is used with predictable initialization vectors based>

on the sector number. This makes it vulnerable to chosen plaintext attacks which can reveal

the existence of encrypted data.

2022-12-08 1

QEMU-BLOCK-DRIVERS.7(7) QEMU-BLOCK-DRIVERS.7(7)

−<The user passphrase is directly used as the encryption key. A poorly>

chosen or short passphrase will compromise the security of the encryption.

−<In the event of the passphrase being compromised there is no way to>

change the passphrase to protect data in any qcow images. The files must be cloned, using a

different encryption passphrase in the new file. The original file must then be securely erased

using a program like shred, though even this is ineffective with many modern storage

technologies.

The use of this is no longer supported in system emulators. Support only remains in the command

line utilities, for the purposes of data liberation and interoperability with old versions of QEMU.

The luks format should be used instead.

encrypt.key−secret
Provides the ID of a secret object that contains the passphrase (encrypt.format=luks)

or encryption key (encrypt.format=aes).

encrypt.cipher−alg
Name of the cipher algorithm and key length. Currently defaults to aes−256. Only used when

encrypt.format=luks.

encrypt.cipher−mode
Name of the encryption mode to use. Currently defaults to xts. Only used when

encrypt.format=luks.

encrypt.ivgen−alg
Name of the initialization vector generator algorithm. Currently defaults to plain64. Only used

when encrypt.format=luks.

encrypt.ivgen−hash−alg
Name of the hash algorithm to use with the initialization vector generator (if required). Defaults

to sha256. Only used when encrypt.format=luks.

encrypt.hash−alg
Name of the hash algorithm to use for PBKDF algorithm Defaults to sha256. Only used when

encrypt.format=luks.

encrypt.iter−time
Amount of time, in milliseconds, to use for PBKDF algorithm per key slot. Defaults to 2000.

Only used when encrypt.format=luks.

cluster_size
Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster sizes can improve

the image file size whereas larger cluster sizes generally provide better performance.

preallocation
Preallocation mode (allowed values: off, metadata, falloc, full). An image with

preallocated metadata is initially larger but can improve performance when the image needs to

grow. falloc and full preallocations are like the same options of raw format, but sets up

metadata also.

lazy_refcounts
If this option is set to on, reference count updates are postponed with the goal of avoiding

metadata I/O and improving performance. This is particularly interesting with

cache=writethrough which doesn’t batch metadata updates. The tradeoff is that after a host

crash, the reference count tables must be rebuilt, i.e. on the next open an (automatic) qemu−img
check −r all is required, which may take some time.

This option can only be enabled if compat=1.1 is specified.

nocow
If this option is set to on, it will turn off COW of the file. It’s only valid on btrfs, no effect on

other file systems.

2022-12-08 2

QEMU-BLOCK-DRIVERS.7(7) QEMU-BLOCK-DRIVERS.7(7)

Btrfs has low performance when hosting a VM image file, even more when the guest on the VM

also using btrfs as file system. Turning off COW is a way to mitigate this bad performance.

Generally there are two ways to turn off COW on btrfs: a) Disable it by mounting with nodatacow,

then all newly created files will be NOCOW. b) For an empty file, add the NOCOW file attribute.

That’s what this option does.

Note: this option is only valid to new or empty files. If there is an existing file which is COW and

has data blocks already, it couldn’t be changed to NOCOW by setting nocow=on. One can issue

lsattr filename to check if the NOCOW flag is set or not (Capital ’C’ is NOCOW flag).

qed

Old QEMU image format with support for backing files and compact image files (when your filesystem

or transport medium does not support holes).

When converting QED images to qcow2, you might want to consider using the

lazy_refcounts=on option to get a more QED-like behaviour.

Supported options:

backing_file
File name of a base image (see create subcommand).

backing_fmt
Image file format of backing file (optional). Useful if the format cannot be autodetected because

it has no header, like some vhd/vpc files.

cluster_size
Changes the cluster size (must be power−of−2 between 4K and 64K). Smaller cluster sizes can

improve the image file size whereas larger cluster sizes generally provide better performance.

table_size
Changes the number of clusters per L1/L2 table (must be power−of−2 between 1 and 16). There

is normally no need to change this value but this option can be used for performance

benchmarking.

qcow

Old QEMU image format with support for backing files, compact image files, encryption and

compression.

Supported options:

backing_file
File name of a base image (see create subcommand)

encryption
This option is deprecated and equivalent to encrypt.format=aes

encrypt.format
If this is set to aes, the image is encrypted with 128−bit AES-CBC. The encryption key is giv en

by the encrypt.key−secret parameter. This encryption format is considered to be flawed

by modern cryptography standards, suffering from a number of design problems enumerated

previously against the qcow2 image format.

The use of this is no longer supported in system emulators. Support only remains in the command

line utilities, for the purposes of data liberation and interoperability with old versions of QEMU.

Users requiring native encryption should use the qcow2 format instead with

encrypt.format=luks.

encrypt.key−secret
Provides the ID of a secret object that contains the encryption key

(encrypt.format=aes).

2022-12-08 3

QEMU-BLOCK-DRIVERS.7(7) QEMU-BLOCK-DRIVERS.7(7)

luks

LUKS v1 encryption format, compatible with Linux dm−crypt/cryptsetup

Supported options:

key−secret
Provides the ID of a secret object that contains the passphrase.

cipher−alg
Name of the cipher algorithm and key length. Currently defaults to aes−256.

cipher−mode
Name of the encryption mode to use. Currently defaults to xts.

ivgen−alg
Name of the initialization vector generator algorithm. Currently defaults to plain64.

ivgen−hash−alg
Name of the hash algorithm to use with the initialization vector generator (if required). Defaults

to sha256.

hash−alg
Name of the hash algorithm to use for PBKDF algorithm Defaults to sha256.

iter−time
Amount of time, in milliseconds, to use for PBKDF algorithm per key slot. Defaults to 2000.

vdi VirtualBox 1.1 compatible image format. Supported options:

static
If this option is set to on, the image is created with metadata preallocation.

vmdk

VMware 3 and 4 compatible image format.

Supported options:

backing_file
File name of a base image (see create subcommand).

compat6
Create a VMDK version 6 image (instead of version 4)

hwversion
Specify vmdk virtual hardware version. Compat6 flag cannot be enabled if hwversion is

specified.

subformat
Specifies which VMDK subformat to use. Valid options are monolithicSparse (default),

monolithicFlat, twoGbMaxExtentSparse, twoGbMaxExtentFlat and

streamOptimized.

vpc VirtualPC compatible image format (VHD). Supported options:

subformat
Specifies which VHD subformat to use. Valid options are dynamic (default) and fixed.

VHDX

Hyper-V compatible image format (VHDX). Supported options:

subformat
Specifies which VHDX subformat to use. Valid options are dynamic (default) and fixed.

block_state_zero
Force use of payload blocks of type ’ZERO’. Can be set to on (default) or off. When set to

off, new blocks will be created as PAYLOAD_BLOCK_NOT_PRESENT, which means parsers

are free to return arbitrary data for those blocks. Do not set to off when using qemu−img

2022-12-08 4

QEMU-BLOCK-DRIVERS.7(7) QEMU-BLOCK-DRIVERS.7(7)

convert with subformat=dynamic.

block_size
Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.

log_size
Log size; min 1 MB.

Read-only formats

More disk image file formats are supported in a read-only mode.

bochs

Bochs images of growing type.

cloop

Linux Compressed Loop image, useful only to reuse directly compressed CD-ROM images present for

example in the Knoppix CD-ROMs.

dmg

Apple disk image.

parallels

Parallels disk image format.

Using host drives

In addition to disk image files, QEMU can directly access host devices. We describe here the usage for

QEMU version >= 0.8.3.

Linux

On Linux, you can directly use the host device filename instead of a disk image filename provided you have

enough privileges to access it. For example, use /dev/cdrom to access to the CDROM.

CD You can specify a CDROM device even if no CDROM is loaded. QEMU has specific code to detect

CDROM insertion or removal. CDROM ejection by the guest OS is supported. Currently only data CDs

are supported.

Floppy
You can specify a floppy device even if no floppy is loaded. Floppy removal is currently not detected

accurately (if you change floppy without doing floppy access while the floppy is not loaded, the guest

OS will think that the same floppy is loaded). Use of the host’s floppy device is deprecated, and

support for it will be removed in a future release.

Hard disks
Hard disks can be used. Normally you must specify the whole disk (/dev/hdb instead of /dev/hdb1) so

that the guest OS can see it as a partitioned disk. WARNING: unless you know what you do, it is better

to only make READ-ONLY accesses to the hard disk otherwise you may corrupt your host data (use

the −snapshot command line option or modify the device permissions accordingly).

Windows

CD The preferred syntax is the drive letter (e.g. d:). The alternate syntax \\.\d: is supported. /dev/cdrom is

supported as an alias to the first CDROM drive.

Currently there is no specific code to handle removable media, so it is better to use the change or

eject monitor commands to change or eject media.

Hard disks
Hard disks can be used with the syntax: \\.\PhysicalDriveN where N is the drive number (0 is the first

hard disk).

WARNING: unless you know what you do, it is better to only make READ-ONLY accesses to the hard

disk otherwise you may corrupt your host data (use the −snapshot command line so that the

modifications are written in a temporary file).

2022-12-08 5

QEMU-BLOCK-DRIVERS.7(7) QEMU-BLOCK-DRIVERS.7(7)

Mac OS X

/dev/cdrom is an alias to the first CDROM.

Currently there is no specific code to handle removable media, so it is better to use the change or eject
monitor commands to change or eject media.

Virtual FA T disk images

QEMU can automatically create a virtual FAT disk image from a directory tree. In order to use it, just type:

qemu−system−x86_64 linux.img −hdb fat:/my_directory

Then you access access to all the files in the /my_directory directory without having to copy them in a disk

image or to export them via SAMBA or NFS. The default access is read-only.

Floppies can be emulated with the :floppy: option:

qemu−system−x86_64 linux.img −fda fat:floppy:/my_directory

A read/write support is available for testing (beta stage) with the :rw: option:

qemu−system−x86_64 linux.img −fda fat:floppy:rw:/my_directory

What you should never do:

*<use non-ASCII filenames ;>

*<use ‘‘−snapshot’’ together with ‘‘:rw:’’ ;>

*<expect it to work when loadvm’ing ;>

*<write to the FAT directory on the host system while accessing it with the guest system.>

NBD access

QEMU can access directly to block device exported using the Network Block Device protocol.

qemu−system−x86_64 linux.img −hdb nbd://my_nbd_server.mydomain.org:1024/

If the NBD server is located on the same host, you can use an unix socket instead of an inet socket:

qemu−system−x86_64 linux.img −hdb nbd+unix://?socket=/tmp/my_socket

In this case, the block device must be exported using qemu-nbd:

qemu−nbd −−socket=/tmp/my_socket my_disk.qcow2

The use of qemu-nbd allows sharing of a disk between several guests:

qemu−nbd −−socket=/tmp/my_socket −−share=2 my_disk.qcow2

and then you can use it with two guests:

qemu−system−x86_64 linux1.img −hdb nbd+unix://?socket=/tmp/my_socket
qemu−system−x86_64 linux2.img −hdb nbd+unix://?socket=/tmp/my_socket

If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU’s own embedded NBD

server), you must specify an export name in the URI:

qemu−system−x86_64 −cdrom nbd://localhost/debian−500−ppc−netinst
qemu−system−x86_64 −cdrom nbd://localhost/openSUSE−11.1−ppc−netinst

The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is also available. Here are

some example of the older syntax:

qemu−system−x86_64 linux.img −hdb nbd:my_nbd_server.mydomain.org:1024
qemu−system−x86_64 linux2.img −hdb nbd:unix:/tmp/my_socket
qemu−system−x86_64 −cdrom nbd:localhost:10809:exportname=debian−500−ppc−netinst

Sheepdog disk images

Sheepdog is a distributed storage system for QEMU. It provides highly available block level storage

volumes that can be attached to QEMU-based virtual machines.

2022-12-08 6

QEMU-BLOCK-DRIVERS.7(7) QEMU-BLOCK-DRIVERS.7(7)

You can create a Sheepdog disk image with the command:

qemu−img create sheepdog:///<image> <size>

where image is the Sheepdog image name and size is its size.

To import the existing filename to Sheepdog, you can use a convert command.

qemu−img convert <filename> sheepdog:///<image>

You can boot from the Sheepdog disk image with the command:

qemu−system−x86_64 sheepdog:///<image>

You can also create a snapshot of the Sheepdog image like qcow2.

qemu−img snapshot −c <tag> sheepdog:///<image>

where tag is a tag name of the newly created snapshot.

To boot from the Sheepdog snapshot, specify the tag name of the snapshot.

qemu−system−x86_64 sheepdog:///<image>#<tag>

You can create a cloned image from the existing snapshot.

qemu−img create −b sheepdog:///<base>#<tag> sheepdog:///<image>

where base is an image name of the source snapshot and tag is its tag name.

You can use an unix socket instead of an inet socket:

qemu−system−x86_64 sheepdog+unix:///<image>?socket=<path>

If the Sheepdog daemon doesn’t run on the local host, you need to specify one of the Sheepdog servers to

connect to.

qemu−img create sheepdog://<hostname>:<port>/<image> <size>
qemu−system−x86_64 sheepdog://<hostname>:<port>/<image>

iSCSI LUNs

iSCSI is a popular protocol used to access SCSI devices across a computer network.

There are two different ways iSCSI devices can be used by QEMU.

The first method is to mount the iSCSI LUN on the host, and make it appear as any other ordinary SCSI

device on the host and then to access this device as a /dev/sd device from QEMU. How to do this differs

between host OSes.

The second method involves using the iSCSI initiator that is built into QEMU. This provides a mechanism

that works the same way regardless of which host OS you are running QEMU on. This section will describe

this second method of using iSCSI together with QEMU.

In QEMU, iSCSI devices are described using special iSCSI URLs

URL syntax:
iscsi://[<username>[%<password>]@]<host>[:<port>]/<target−iqn−name>/<lun>

Username and password are optional and only used if your target is set up using CHAP authentication for

access control. Alternatively the username and password can also be set via environment variables to have

these not show up in the process list

export LIBISCSI_CHAP_USERNAME=<username>
export LIBISCSI_CHAP_PASSWORD=<password>
iscsi://<host>/<target−iqn−name>/<lun>

Various session related parameters can be set via special options, either in a configuration file provided via

’−readconfig’ or directly on the command line.

If the initiator-name is not specified qemu will use a default name of

’iqn.2008−11.org.linux−kvm[:<uuid>’] where <uuid> is the UUID of the virtual machine. If the UUID is not

2022-12-08 7

QEMU-BLOCK-DRIVERS.7(7) QEMU-BLOCK-DRIVERS.7(7)

specified qemu will use ’iqn.2008−11.org.linux−kvm[:<name>’] where <name> is the name of the virtual

machine.

Setting a specific initiator name to use when logging in to the target
−iscsi initiator−name=iqn.qemu.test:my−initiator

Controlling which type of header digest to negotiate with the target
−iscsi header−digest=CRC32C|CRC32C−NONE|NONE−CRC32C|NONE

These can also be set via a configuration file

[iscsi]
user = "CHAP username"
password = "CHAP password"
initiator−name = "iqn.qemu.test:my−initiator"
header digest is one of CRC32C|CRC32C−NONE|NONE−CRC32C|NONE
header−digest = "CRC32C"

Setting the target name allows different options for different targets

[iscsi "iqn.target.name"]
user = "CHAP username"
password = "CHAP password"
initiator−name = "iqn.qemu.test:my−initiator"
header digest is one of CRC32C|CRC32C−NONE|NONE−CRC32C|NONE
header−digest = "CRC32C"

Howto use a configuration file to set iSCSI configuration options:

cat >iscsi.conf <<EOF
[iscsi]
user = "me"
password = "my password"
initiator−name = "iqn.qemu.test:my−initiator"
header−digest = "CRC32C"

EOF

qemu−system−x86_64 −drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
−readconfig iscsi.conf

How to set up a simple iSCSI target on loopback and access it via QEMU:

This example shows how to set up an iSCSI target with one CDROM and one DISK
using the Linux STGT software target. This target is available on Red Hat based
systems as the package 'scsi−target−utils'.

tgtd −−iscsi portal=127.0.0.1:3260
tgtadm −−lld iscsi −−op new −−mode target −−tid 1 −T iqn.qemu.test
tgtadm −−lld iscsi −−mode logicalunit −−op new −−tid 1 −−lun 1 \

−b /IMAGES/disk.img −−device−type=disk
tgtadm −−lld iscsi −−mode logicalunit −−op new −−tid 1 −−lun 2 \

−b /IMAGES/cd.iso −−device−type=cd
tgtadm −−lld iscsi −−op bind −−mode target −−tid 1 −I ALL

qemu−system−x86_64 −iscsi initiator−name=iqn.qemu.test:my−initiator \
−boot d −drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
−cdrom iscsi://127.0.0.1/iqn.qemu.test/2

2022-12-08 8

QEMU-BLOCK-DRIVERS.7(7) QEMU-BLOCK-DRIVERS.7(7)

GlusterFS disk images

GlusterFS is a user space distributed file system.

You can boot from the GlusterFS disk image with the command:

URI:
qemu−system−x86_64 −drive file=gluster[+<type>]://[<host>[:<port>]]/<volume>/<path>

[?socket=...][,file.debug=9][,file.logfile=...]

JSON:
qemu−system−x86_64 'json:{"driver":"qcow2",

"file":{"driver":"gluster",
"volume":"testvol","path":"a.img","debug":9,"logfile":"...",
"server":[{"type":"tcp","host":"...","port":"..."},

{"type":"unix","socket":"..."}]}}'

gluster is the protocol.

type specifies the transport type used to connect to gluster management daemon (glusterd). Valid transport

types are tcp and unix. In the URI form, if a transport type isn’t specified, then tcp type is assumed.

host specifies the server where the volume file specification for the given volume resides. This can be either

a hostname or an ipv4 address. If transport type is unix, then host field should not be specified. Instead

socket field needs to be populated with the path to unix domain socket.

port is the port number on which glusterd is listening. This is optional and if not specified, it defaults to

port 24007. If the transport type is unix, then port should not be specified.

volume is the name of the gluster volume which contains the disk image.

path is the path to the actual disk image that resides on gluster volume.

debug is the logging level of the gluster protocol driver. Debug levels are 0−9, with 9 being the most

verbose, and 0 representing no debugging output. The default level is 4. The current logging levels defined

in the gluster source are 0 − None, 1 − Emergency, 2 − Alert, 3 − Critical, 4 − Error, 5 − Warning, 6 −

Notice, 7 − Info, 8 − Debug, 9 − Trace

logfile is a commandline option to mention log file path which helps in logging to the specified file and also

help in persisting the gfapi logs. The default is stderr.

You can create a GlusterFS disk image with the command:

qemu−img create gluster://<host>/<volume>/<path> <size>

Examples

qemu−system−x86_64 −drive file=gluster://1.2.3.4/testvol/a.img
qemu−system−x86_64 −drive file=gluster+tcp://1.2.3.4/testvol/a.img
qemu−system−x86_64 −drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
qemu−system−x86_64 −drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
qemu−system−x86_64 −drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
qemu−system−x86_64 −drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
qemu−system−x86_64 −drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
qemu−system−x86_64 −drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
qemu−system−x86_64 −drive file=gluster://1.2.3.4/testvol/a.img,file.debug=9,file.logfile=/var/log/qemu−gluster.log
qemu−system−x86_64 'json:{"driver":"qcow2",

"file":{"driver":"gluster",
"volume":"testvol","path":"a.img",
"debug":9,"logfile":"/var/log/qemu−gluster.log",
"server":[{"type":"tcp","host":"1.2.3.4","port":24007},

{"type":"unix","socket":"/var/run/glusterd.socket"}]}}'
qemu−system−x86_64 −drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,

2022-12-08 9

QEMU-BLOCK-DRIVERS.7(7) QEMU-BLOCK-DRIVERS.7(7)

file.debug=9,file.logfile=/var/log/qemu−gluster.log,
file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket

Secure Shell (ssh) disk images

You can access disk images located on a remote ssh server by using the ssh protocol:

qemu−system−x86_64 −drive file=ssh://[<user>@]<server>[:<port>]/<path>[?host_key_check=<host_key_check>]

Alternative syntax using properties:

qemu−system−x86_64 −drive file.driver=ssh[,file.user=<user>],file.host=<server>[,file.port=<port>],file.path=<path>[,file.host_key_check=<host_key_check>]

ssh is the protocol.

user is the remote user. If not specified, then the local username is tried.

server specifies the remote ssh server. Any ssh server can be used, but it must implement the sftp-server

protocol. Most Unix/Linux systems should work without requiring any extra configuration.

port is the port number on which sshd is listening. By default the standard ssh port (22) is used.

path is the path to the disk image.

The optional host_key_check parameter controls how the remote host’s key is checked. The default is yes
which means to use the local .ssh/known_hosts file. Setting this to no turns off known-hosts checking. Or

you can check that the host key matches a specific fingerprint:

host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8 (sha1:
can also be used as a prefix, but note that OpenSSH tools only use MD5 to print fingerprints).

Currently authentication must be done using ssh-agent. Other authentication methods may be supported in

future.

Note: Many ssh servers do not support an fsync−style operation. The ssh driver cannot guarantee that

disk flush requests are obeyed, and this causes a risk of disk corruption if the remote server or network goes

down during writes. The driver will print a warning when fsync is not supported:

warning: ssh server ssh.example.com:22 does not support fsync

With sufficiently new versions of libssh and OpenSSH, fsync is supported.

NVMe disk images

NVM Express (NVMe) storage controllers can be accessed directly by a userspace driver in QEMU. This

bypasses the host kernel file system and block layers while retaining QEMU block layer functionalities,

such as block jobs, I/O throttling, image formats, etc. Disk I/O performance is typically higher than with

−drive file=/dev/sda using either thread pool or linux-aio.

The controller will be exclusively used by the QEMU process once started. To be able to share storage

between multiple VMs and other applications on the host, please use the file based protocols.

Before starting QEMU, bind the host NVMe controller to the host vfio-pci driver. For example:

modprobe vfio−pci
lspci −n −s 0000:06:0d.0
06:0d.0 0401: 1102:0002 (rev 08)
echo 0000:06:0d.0 > /sys/bus/pci/devices/0000:06:0d.0/driver/unbind
echo 1102 0002 > /sys/bus/pci/drivers/vfio−pci/new_id

qemu−system−x86_64 −drive file=nvme://<host>:<bus>:<slot>.<func>/<namespace>

Alternative syntax using properties:

qemu−system−x86_64 −drive file.driver=nvme,file.device=<host>:<bus>:<slot>.<func>,file.namespace=<namespace>

host:bus:slot.func is the NVMe controller’s PCI device address on the host.

namespace is the NVMe namespace number, starting from 1.

2022-12-08 10

QEMU-BLOCK-DRIVERS.7(7) QEMU-BLOCK-DRIVERS.7(7)

Disk image file locking

By default, QEMU tries to protect image files from unexpected concurrent access, as long as it’s supported

by the block protocol driver and host operating system. If multiple QEMU processes (including QEMU

emulators and utilities) try to open the same image with conflicting accessing modes, all but the first one

will get an error.

This feature is currently supported by the file protocol on Linux with the Open File Descriptor (OFD)

locking API, and can be configured to fall back to POSIX locking if the POSIX host doesn’t support Linux

OFD locking.

To explicitly enable image locking, specify ‘‘locking=on’’ in the file protocol driver options. If OFD locking

is not possible, a warning will be printed and the POSIX locking API will be used. In this case there is a risk

that the lock will get silently lost when doing hot plugging and block jobs, due to the shortcomings of the

POSIX locking API.

QEMU transparently handles lock handover during shared storage migration. For shared virtual disk images

between multiple VMs, the ‘‘share-rw’’ device option should be used.

By default, the guest has exclusive write access to its disk image. If the guest can safely share the disk

image with other writers the −device ...,share−rw=on parameter can be used. This is only safe if

the guest is running software, such as a cluster file system, that coordinates disk accesses to avoid

corruption.

Note that share−rw=on only declares the guest’s ability to share the disk. Some QEMU features, such as

image file formats, require exclusive write access to the disk image and this is unaffected by the

share−rw=on option.

Alternatively, locking can be fully disabled by ‘‘locking=off’’ block device option. In the command line,

the option is usually in the form of ‘‘file.locking=off’’ as the protocol driver is normally placed as a ‘‘file’’

child under a format driver. For example:

−blockdev
driver=qcow2,file.filename=/path/to/image,file.locking=off,file.driver=file

To check if image locking is active, check the output of the ‘‘lslocks’’ command on host and see if there are

locks held by the QEMU process on the image file. More than one byte could be locked by the QEMU

instance, each byte of which reflects a particular permission that is acquired or protected by the running

block driver.

SEE ALSO
The HTML documentation of QEMU for more precise information and Linux user mode emulator

invocation.

AUTHOR
Fabrice Bellard and the QEMU Project developers

2022-12-08 11

