
PYTHON(1) General Commands Manual PYTHON(1)

NAME
python − an interpreted, interactive, object-oriented programming language

SYNOPSIS
python [−B] [−b] [−d] [−E] [−h] [−i] [−I]

[−m module-name] [−q] [−O] [−OO] [−s] [−S] [−u]
[−v] [−V] [−W argument] [−x] [[−X option] −?]
[−c command | script | −] [arguments]

DESCRIPTION
Python is an interpreted, interactive, object-oriented programming language that combines remarkable
power with very clear syntax. For an introduction to programming in Python, see the Python Tutorial. The
Python Library Reference documents built-in and standard types, constants, functions and modules. Fi-
nally, the Python Reference Manual describes the syntax and semantics of the core language in (perhaps
too) much detail. (These documents may be located via the INTERNET RESOURCES below; they may
be installed on your system as well.)

Python’s basic power can be extended with your own modules written in C or C++. On most systems such
modules may be dynamically loaded. Python is also adaptable as an extension language for existing appli-
cations. See the internal documentation for hints.

Documentation for installed Python modules and packages can be viewed by running the pydoc program.

COMMAND LINE OPTIONS
−B Don’t write .pyc files on import. See also PYTHONDONTWRITEBYTECODE.

−b Issue warnings about str(bytes_instance), str(bytearray_instance) and comparing bytes/bytearray
with str. (-bb: issue errors)

−c command

Specify the command to execute (see next section). This terminates the option list (following op-
tions are passed as arguments to the command).

−d Turn on parser debugging output (for wizards only, depending on compilation options).

−E Ignore environment variables like PYTHONPATH and PYTHONHOME that modify the behavior
of the interpreter.

−h , −? , −−help

Prints the usage for the interpreter executable and exits.

−i When a script is passed as first argument or the −c option is used, enter interactive mode after exe-
cuting the script or the command. It does not read the $PYTHONSTARTUP file. This can be use-
ful to inspect global variables or a stack trace when a script raises an exception.

−I Run Python in isolated mode. This also implies −E and −s. In isolated mode sys.path contains nei-
ther the script’s directory nor the user’s site-packages directory. All PYTHON* environment vari-
ables are ignored, too. Further restrictions may be imposed to prevent the user from injecting ma-
licious code.

−m module-name

Searches sys.path for the named module and runs the corresponding .py file as a script.

−O Remove assert statements and any code conditional on the value of __debug__; augment the file-
name for compiled (bytecode) files by adding .opt-1 before the .pyc extension.

−OO Do -O and also discard docstrings; change the filename for compiled (bytecode) files by adding
.opt-2 before the .pyc extension.

−q Do not print the version and copyright messages. These messages are also suppressed in non-inter-
active mode.

−s Don’t add user site directory to sys.path.

1

PYTHON(1) General Commands Manual PYTHON(1)

−S Disable the import of the module site and the site-dependent manipulations of sys.path that it en-
tails. Also disable these manipulations if site is explicitly imported later.

−u Force the binary I/O layers of stdout and stderr to be unbuffered. stdin is always buffered. The
text I/O layer will still be line-buffered.

−v Print a message each time a module is initialized, showing the place (filename or built-in module)
from which it is loaded. When given twice, print a message for each file that is checked for when
searching for a module. Also provides information on module cleanup at exit.

−V , −−version

Prints the Python version number of the executable and exits. When given twice, print more infor-
mation about the build.

−W argument

Warning control. Python sometimes prints warning message to sys.stderr. A typical warning
message has the following form: file:line: category: message. By default, each warning is printed
once for each source line where it occurs. This option controls how often warnings are printed.
Multiple −W options may be given; when a warning matches more than one option, the action for
the last matching option is performed. Invalid −W options are ignored (a warning message is
printed about invalid options when the first warning is issued). Warnings can also be controlled
from within a Python program using the warnings module.

The simplest form of argument is one of the following action strings (or a unique abbreviation):
ignore to ignore all warnings; default to explicitly request the default behavior (printing each
warning once per source line); all to print a warning each time it occurs (this may generate many
messages if a warning is triggered repeatedly for the same source line, such as inside a loop);
module to print each warning only the first time it occurs in each module; once to print each warn-
ing only the first time it occurs in the program; or error to raise an exception instead of printing a
warning message.

The full form of argument is action:message:category:module:line. Here, action is as explained
above but only applies to messages that match the remaining fields. Empty fields match all values;
trailing empty fields may be omitted. The message field matches the start of the warning message
printed; this match is case-insensitive. The category field matches the warning category. This
must be a class name; the match test whether the actual warning category of the message is a sub-
class of the specified warning category. The full class name must be given. The module field
matches the (fully-qualified) module name; this match is case-sensitive. The line field matches the
line number, where zero matches all line numbers and is thus equivalent to an omitted line number.

−X option

Set implementation specific option.

−x Skip the first line of the source. This is intended for a DOS specific hack only. Warning: the line
numbers in error messages will be off by one!

INTERPRETER INTERFACE
The interpreter interface resembles that of the UNIX shell: when called with standard input connected to a
tty device, it prompts for commands and executes them until an EOF is read; when called with a file name
argument or with a file as standard input, it reads and executes a script from that file; when called with −c

command , it executes the Python statement(s) given as command . Here command may contain multiple
statements separated by newlines. Leading whitespace is significant in Python statements! In non-interac-
tive mode, the entire input is parsed before it is executed.

If available, the script name and additional arguments thereafter are passed to the script in the Python vari-
able sys.argv, which is a list of strings (you must first import sys to be able to access it). If no script name
is given, sys.argv[0] is an empty string; if −c is used, sys.argv[0] contains the string ’-c’. Note that options
interpreted by the Python interpreter itself are not placed in sys.argv.

In interactive mode, the primary prompt is ‘>>>’; the second prompt (which appears when a command is

2

PYTHON(1) General Commands Manual PYTHON(1)

not complete) is ‘...’. The prompts can be changed by assignment to sys.ps1 or sys.ps2. The interpreter
quits when it reads an EOF at a prompt. When an unhandled exception occurs, a stack trace is printed and
control returns to the primary prompt; in non-interactive mode, the interpreter exits after printing the stack
trace. The interrupt signal raises the Ke yboardInterrupt exception; other UNIX signals are not caught (ex-
cept that SIGPIPE is sometimes ignored, in favor of the IOError exception). Error messages are written to
stderr.

FILES AND DIRECTORIES
These are subject to difference depending on local installation conventions; ${prefix} and ${exec_prefix}
are installation-dependent and should be interpreted as for GNU software; they may be the same. On De-
bian GNU/{Hurd,Linux} the default for both is /usr.

${exec_prefix}/bin/python

Recommended location of the interpreter.

${prefix}/lib/python<version>

${exec_prefix}/lib/python<version>

Recommended locations of the directories containing the standard modules.

${prefix}/include/python<version>

${exec_prefix}/include/python<version>

Recommended locations of the directories containing the include files needed for developing
Python extensions and embedding the interpreter.

ENVIRONMENT VARIABLES
PYTHONHOME

Change the location of the standard Python libraries. By default, the libraries are searched in
${prefix}/lib/python<version> and ${exec_prefix}/lib/python<version>, where ${prefix} and
${exec_prefix} are installation-dependent directories, both defaulting to /usr/local. When
$PYTHONHOME is set to a single directory, its value replaces both ${prefix} and ${exec_pre-
fix}. To specify different values for these, set $PYTHONHOME to ${prefix}:${exec_prefix}.

PYTHONPATH
Augments the default search path for module files. The format is the same as the shell’s $PATH:
one or more directory pathnames separated by colons. Non-existent directories are silently ig-
nored. The default search path is installation dependent, but generally begins with ${pre-
fix}/lib/python<version> (see PYTHONHOME above). The default search path is always ap-
pended to $PYTHONPATH. If a script argument is given, the directory containing the script is in-
serted in the path in front of $PYTHONPATH. The search path can be manipulated from within a
Python program as the variable sys.path.

PYTHONSTARTUP
If this is the name of a readable file, the Python commands in that file are executed before the first
prompt is displayed in interactive mode. The file is executed in the same name space where inter-
active commands are executed so that objects defined or imported in it can be used without qualifi-
cation in the interactive session. You can also change the prompts sys.ps1 and sys.ps2 in this file.

PYTHONOPTIMIZE
If this is set to a non-empty string it is equivalent to specifying the −O option. If set to an integer,
it is equivalent to specifying −O multiple times.

PYTHONDEBUG
If this is set to a non-empty string it is equivalent to specifying the −d option. If set to an integer, it
is equivalent to specifying −d multiple times.

PYTHONDONTWRITEBYTECODE
If this is set to a non-empty string it is equivalent to specifying the −B option (don’t try to write
.pyc files).

3

PYTHON(1) General Commands Manual PYTHON(1)

PYTHONINSPECT
If this is set to a non-empty string it is equivalent to specifying the −i option.

PYTHONIOENCODING
If this is set before running the interpreter, it overrides the encoding used for stdin/stdout/stderr, in
the syntax encodingname:errorhandler The errorhandler part is optional and has the same mean-
ing as in str.encode. For stderr, the errorhandler

part is ignored; the handler will always be ´backslashreplace´.

PYTHONNOUSERSITE
If this is set to a non-empty string it is equivalent to specifying the −s option (Don’t add the user
site directory to sys.path).

PYTHONUNBUFFERED
If this is set to a non-empty string it is equivalent to specifying the −u option.

PYTHONVERBOSE
If this is set to a non-empty string it is equivalent to specifying the −v option. If set to an integer, it
is equivalent to specifying −v multiple times.

PYTHONWARNINGS
If this is set to a comma-separated string it is equivalent to specifying the −W option for each sep-
arate value.

PYTHONHASHSEED
If this variable is set to "random", a random value is used to seed the hashes of str, bytes and date-
time objects.

If PYTHONHASHSEED is set to an integer value, it is used as a fixed seed for generating the
hash() of the types covered by the hash randomization. Its purpose is to allow repeatable hashing,
such as for selftests for the interpreter itself, or to allow a cluster of python processes to share hash
values.

The integer must be a decimal number in the range [0,4294967295]. Specifying the value 0 will
disable hash randomization.

AUTHOR
The Python Software Foundation: https://www.python.org/psf/

INTERNET RESOURCES
Main website: https://www.python.org/
Documentation: https://docs.python.org/
Developer resources: https://devguide.python.org/
Downloads: https://www.python.org/downloads/
Module repository: https://pypi.org/
Newsgroups: comp.lang.python, comp.lang.python.announce

LICENSING
Python is distributed under an Open Source license. See the file "LICENSE" in the Python source distribu-
tion for information on terms & conditions for accessing and otherwise using Python and for a DIS-
CLAIMER OF ALL WARRANTIES.

4

