
POSIX_MEMALIGN(3) Linux Programmer’s Manual POSIX_MEMALIGN(3)

NAME
posix_memalign, aligned_alloc, memalign, valloc, pvalloc − allocate aligned memory

SYNOPSIS
#include <stdlib.h>

int posix_memalign(void **memptr, size_t alignment, size_t size);

void *aligned_alloc(size_t alignment, size_t size);

void *valloc(size_t size);

#include <malloc.h>

void *memalign(size_t alignment, size_t size);

void *pvalloc(size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

posix_memalign(): _POSIX_C_SOURCE >= 200112L

aligned_alloc(): _ISOC11_SOURCE

valloc():
Since glibc 2.12:

(_XOPEN_SOURCE >= 500) && !(_POSIX_C_SOURCE >= 200112L)
|| /* Glibc since 2.19: */ _DEFAULT_SOURCE
|| /* Glibc versions <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

Before glibc 2.12:
_BSD_SOURCE || _XOPEN_SOURCE >= 500
(The (nonstandard) header file <malloc.h> also exposes the declaration of valloc(); no feature
test macros are required.)

DESCRIPTION
The function posix_memalign() allocates size bytes and places the address of the allocated memory in
*memptr. The address of the allocated memory will be a multiple of alignment, which must be a power of
two and a multiple of sizeof(void *). If size is 0, then the value placed in *memptr is either NULL, or a
unique pointer value that can later be successfully passed to free(3).

The obsolete function memalign() allocates size bytes and returns a pointer to the allocated memory. The
memory address will be a multiple of alignment, which must be a power of two.

The function aligned_alloc() is the same as memalign(), except for the added restriction that size should be
a multiple of alignment.

The obsolete function valloc() allocates size bytes and returns a pointer to the allocated memory. The
memory address will be a multiple of the page size. It is equivalent to memalign(sysconf(_SC_PAGE-

SIZE),size).

The obsolete function pvalloc() is similar to valloc(), but rounds the size of the allocation up to the next
multiple of the system page size.

For all of these functions, the memory is not zeroed.

RETURN VALUE
aligned_alloc(), memalign(), valloc(), and pvalloc() return a pointer to the allocated memory on success.
On error, NULL is returned, and errno is set to indicate the cause of the error.

posix_memalign() returns zero on success, or one of the error values listed in the next section on failure.
The value of errno is not set. On Linux (and other systems), posix_memalign() does not modify memptr

on failure. A requirement standardizing this behavior was added in POSIX.1-2016.

ERRORS
EINVAL

The alignment argument was not a power of two, or was not a multiple of sizeof(void *).

GNU 2019-05-09 1

POSIX_MEMALIGN(3) Linux Programmer’s Manual POSIX_MEMALIGN(3)

ENOMEM

There was insufficient memory to fulfill the allocation request.

VERSIONS
The functions memalign(), valloc(), and pvalloc() have been available in all Linux libc libraries.

The function aligned_alloc() was added to glibc in version 2.16.

The function posix_memalign() is available since glibc 2.1.91.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value

Thread safety MT-Safealigned_alloc(),
memalign(),
posix_memalign()

Thread safety MT-Unsafe initvalloc(),
pvalloc()

CONFORMING TO
The function valloc() appeared in 3.0BSD. It is documented as being obsolete in 4.3BSD, and as legacy in
SUSv2. It does not appear in POSIX.1.

The function pvalloc() is a GNU extension.

The function memalign() appears in SunOS 4.1.3 but not in 4.4BSD.

The function posix_memalign() comes from POSIX.1d and is specified in POSIX.1-2001 and
POSIX.1-2008.

The function aligned_alloc() is specified in the C11 standard.

Headers

Everybody agrees that posix_memalign() is declared in <stdlib.h>.

On some systems memalign() is declared in <stdlib.h> instead of <malloc.h>.

According to SUSv2, valloc() is declared in <stdlib.h>. Libc4,5 and glibc declare it in <malloc.h>, and
also in <stdlib.h> if suitable feature test macros are defined (see above).

NOTES
On many systems there are alignment restrictions, for example, on buffers used for direct block device I/O.
POSIX specifies the pathconf(path,_PC_REC_XFER_ALIGN) call that tells what alignment is needed.
Now one can use posix_memalign() to satisfy this requirement.

posix_memalign() verifies that alignment matches the requirements detailed above. memalign() may not
check that the alignment argument is correct.

POSIX requires that memory obtained from posix_memalign() can be freed using free(3). Some systems
provide no way to reclaim memory allocated with memalign() or valloc() (because one can pass to free(3)
only a pointer obtained from malloc(3), while, for example, memalign() would call malloc(3) and then
align the obtained value). The glibc implementation allows memory obtained from any of these functions
to be reclaimed with free(3).

The glibc malloc(3) always returns 8-byte aligned memory addresses, so these functions are needed only if
you require larger alignment values.

SEE ALSO
brk(2), getpagesize(2), free(3), malloc(3)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at

GNU 2019-05-09 2

POSIX_MEMALIGN(3) Linux Programmer’s Manual POSIX_MEMALIGN(3)

https://www.kernel.org/doc/man−pages/.

GNU 2019-05-09 3

