
POOLSET(5) PMDK Programmer’s Manual POOLSET(5)

NAME
poolset − persistent memory pool configuration file format

SYNOPSIS
mypool.set

DESCRIPTION
Depending on the configuration of the system, the available non−volatile memory space may be divided in-

to multiple memory devices. In such case, the maximum size of the transactional object store could be lim-

ited by the capacity of a single memory device. Therefore, libpmemobj(7), libpmemblk(7) and libpmem-

log(7) allow building object stores spanning multiple memory devices by creation of persistent memory

pools consisting of multiple files, where each part of such a pool set may be stored on a different

pmem−aware filesystem.

To improve reliability and eliminate single point of failure, libpmemobj(7) also allows all the data written

to a persistent memory pool to be copied to local or remote pool replicas, thereby providing backup for the

persistent memory pool by producing a mirrored pool set. In practice, the pool replicas may be considered

as binary copies of the “master” pool set. Data replication is not supported in libpmemblk(7) and libp-

memlog(7).

The set file for each type of pool is a plain text file. Lines in the file are formatted as follows:

• The first line of the file must be the literal string “PMEMPOOLSET”

• The pool parts are specified, one per line, in the format:

size pathname

• Replica sections, if any, start with the literal string “REPLICA”. See REPLICAS, below, for further de-

tails.

• Pool set options, if any, start with literal string OPTION. See POOL SET OPTIONS below for details.

• Lines starting with “#” are considered comments and are ignored.

The size must be compliant with the format specified in IEC 80000−13, IEEE 1541 or the Metric Inter-

change Format. These standards accept SI units with obligatory B − kB, MB, GB, ... (multiplier by 1000)

suffixes, and IEC units with optional “iB” − KiB, MiB, GiB, ..., K, M, G, ... − (multiplier by 1024) suffixes.

pathname must be an absolute pathname.

The pathname of a part can point to a Device DAX. Device DAX is the device−centric analogue of

Filesystem DAX. It allows memory ranges to be allocated and mapped without need of an intervening file

system.

Pools created on Device DAX have additional options and restrictions:

• The size may be set to “AUTO”, in which case the size of the device will be automatically resolved at

pool creation time.

• To concatenate more than one Device DAX device into a single pool set, the configured internal align-

ment of the devices must be 4KiB, unless the SINGLEHDR or NOHDRS option is used in the pool set

file. See POOL SET OPTIONS below for details.

Please see ndctl−create−namespace(1) for more information on Device DAX, including how to configure

desired alignment.

The minimum file size of each part of the pool set is defined as follows:

• For block pools, as PMEMBLK_MIN_PART in <libpmemblk.h>

• For object pools, as PMEMOBJ_MIN_PART in <libpmemobj.h>

• For log pools, as PMEMLOG_MIN_PART in <libpmemlog.h>

The net pool size of the pool set is equal to:

PMDK - poolset API version 1.0 2020-01-31 1



POOLSET(5) PMDK Programmer’s Manual POOLSET(5)

net_pool_size = sum_over_all_parts(page_aligned_part_size − 4KiB) + 4KiB

where

page_aligned_part_size = part_size & ˜(page_size − 1)

Note that page size is OS specific. For more information please see sysconf(3).

The minimum net pool size of a pool set is defined as follows:

• For block pools, as PMEMBLK_MIN_POOL in <libpmemblk.h>

• For object pools, as PMEMOBJ_MIN_POOL in <libpmemobj.h>

• For log pools, as PMEMLOG_MIN_POOL in <libpmemlog.h>

Here is an example “mypool.set” file:

PMEMPOOLSET

OPTION NOHDRS

100G /mountpoint0/myfile.part0

200G /mountpoint1/myfile.part1

400G /mountpoint2/myfile.part2

The files in the set may be created by running one of the following commands. To create a block pool:

$ pmempool create blk <bsize> mypool.set

To create a log pool:

$ pmempool create log mypool.set

REPLICAS
Sections defining replica sets are optional. There may be multiple replica sections.

Local replica sections begin with a line containing only the literal string “REPLICA”, followed by one or

more pool part lines as described above.

Remote replica sections consist of the REPLICA keyword, followed on the same line by the address of a re-

mote host and a relative path to a remote pool set file:

REPLICA [<user>@]<hostname> [<relative−path>/]<remote−pool−set−file>

• hostname must be in the format recognized by the ssh(1) remote login client

• pathname is relative to the root config directory on the target node − see librpmem(7)

There are no other lines in the remote replica section − the REPLICA line defines a remote replica entirely.

Here is an example “myobjpool.set” file with replicas:

PMEMPOOLSET

100G /mountpoint0/myfile.part0

200G /mountpoint1/myfile.part1

400G /mountpoint2/myfile.part2

# local replica

REPLICA

500G /mountpoint3/mymirror.part0

200G /mountpoint4/mymirror.part1

# remote replica

REPLICA user@example.com remote−objpool.set

The files in the object pool set may be created by running the following command:

$ pmempool create −−layout="mylayout" obj myobjpool.set

Remote replica cannot have replicas, i.e. a remote pool set file cannot define any replicas.

PMDK - poolset API version 1.0 2020-01-31 2



POOLSET(5) PMDK Programmer’s Manual POOLSET(5)

POOL SET OPTIONS
Pool set options can appear anywhere after the line with PMEMPOOLSET string. Pool set file can contain

several pool set options. The following options are supported:

• SINGLEHDR

• NOHDRS

If the SINGLEHDR option is used, only the first part in each replica contains the pool part internal metada-

ta. In that case the effective size of a replica is the sum of sizes of all its part files decreased once by 4096

bytes.

The NOHDRS option can appear only in the remote pool set file, when librpmem does not serve as a

means of replication for libpmemobj pool. In that case none of the pool parts contains internal metadata.

The effective size of such a replica is the sum of sizes of all its part files.

Options SINGLEHDR and NOHDRS are mutually exclusive. If both are specified in a pool set file, creating

or opening the pool will fail with an error.

When using the SINGLEHDR or NOHDRS option, one can concatenate more than one Device DAX de-

vices with any internal alignments in one replica.

The SINGLEHDR option concerns only replicas that are local to the pool set file. That is if one wants to

create a pool set with the SINGLEHDR option and with remote replicas, one has to add this option to the lo-

cal pool set file as well as to every single remote pool set file.

Using the SINGLEHDR and NOHDRS options has important implications for data integrity checking and

recoverability in case of a pool set damage. See pmempool_sync() API for more information about pool

set recovery.

DIRECTORIES
Providing a directory as a part’s pathname allows the pool to dynamically create files and consequently re-

moves the user−imposed limit on the size of the pool.

The size argument of a part in a directory poolset becomes the size of the address space reservation required

for the pool. In other words, the size argument is the maximum theoretical size of the mapping. This value

can be freely increased between instances of the application, but decreasing it below the real required space

will result in an error when attempting to open the pool.

The directory must NOT contain user created files with extension .pmem, otherwise the behavior is unde-

fined. If a file created by the library within the directory is in any way altered (resized, renamed) the behav-

ior is undefined.

A directory poolset must exclusively use directories to specify paths − combining files and directories will

result in an error. A single replica can consist of one or more directories. If there are multiple directories,

the address space reservation is equal to the sum of the sizes.

The order in which the files are created is unspecified, but the library will try to maintain equal usage of the

directories.

By default pools grow in 128 megabyte increments.

Only poolsets with the SINGLEHDR option can safely use directories.

NOTES
Creation of all the parts of the pool set and the associated replica sets can be done with the pmemobj_cre-

ate(3), pmemblk_create(3) or pmemlog_create(3) function, or by using the pmempool(1) utility.

Restoring data from a local or remote replica can be done by using the pmempool−sync(1) command or

the pmempool_sync() API from the libpmempool(7) library.

Modifications of a pool set file configuration can be done by using the pmempool−transform(1) command

or the pmempool_transform() API from the libpmempool(7) library.

When creating a pool set consisting of multiple files, or when creating a replicated pool set, the path argu-

ment passed to pmemobj_create(3), pmemblk_create(3) or pmemlog_create(3) must point to the special

PMDK - poolset API version 1.0 2020-01-31 3



POOLSET(5) PMDK Programmer’s Manual POOLSET(5)

set file that defines the pool layout and the location of all the parts of the pool set.

When opening a pool set consisting of multiple files, or when opening a replicated pool set, the path argu-

ment passed to pmemobj_open(3), pmemblk_open(3) or pmemlog_open(3) must point to the same set

file that was used for pool set creation.

SEE ALSO
ndctl−create−namespace(1), pmemblk_create(3), pmemlog_create(3), pmemobj_create(3), sysconf(3),

libpmemblk(7), libpmemlog(7), libpmemobj(7) and <https://pmem.io>

PMDK - poolset API version 1.0 2020-01-31 4


