
POLL(2) Linux Programmer’s Manual POLL(2)

NAME
poll, ppoll − wait for some event on a file descriptor

SYNOPSIS
#include <poll.h>

int poll(struct pollfd * fds, nfds_t nfds, int timeout);

#define _GNU_SOURCE /* See feature_test_macros(7) */

#include <signal.h>

#include <poll.h>

int ppoll(struct pollfd * fds, nfds_t nfds,

const struct timespec *tmo_p, const sigset_t *sigmask);

DESCRIPTION
poll() performs a similar task to select(2): it waits for one of a set of file descriptors to become ready to per-

form I/O.

The set of file descriptors to be monitored is specified in the fds argument, which is an array of structures

of the following form:

struct pollfd {

int fd; /* file descriptor */

short events; /* requested events */

short revents; /* returned events */

};

The caller should specify the number of items in the fds array in nfds.

The field fd contains a file descriptor for an open file. If this field is negative, then the corresponding

events field is ignored and the re vents field returns zero. (This provides an easy way of ignoring a file de-

scriptor for a single poll() call: simply negate the fd field. Note, however, that this technique can’t be used

to ignore file descriptor 0.)

The field events is an input parameter, a bit mask specifying the events the application is interested in for

the file descriptor fd . This field may be specified as zero, in which case the only events that can be re-

turned in re vents are POLLHUP, POLLERR, and POLLNVAL (see below).

The field re vents is an output parameter, filled by the kernel with the events that actually occurred. The bits

returned in re vents can include any of those specified in events, or one of the values POLLERR, POLL-

HUP, or POLLNVAL. (These three bits are meaningless in the events field, and will be set in the re vents

field whenever the corresponding condition is true.)

If none of the events requested (and no error) has occurred for any of the file descriptors, then poll() blocks

until one of the events occurs.

The timeout argument specifies the number of milliseconds that poll() should block waiting for a file de-

scriptor to become ready. The call will block until either:

* a file descriptor becomes ready;

* the call is interrupted by a signal handler; or

* the timeout expires.

Note that the timeout interval will be rounded up to the system clock granularity, and kernel scheduling de-

lays mean that the blocking interval may overrun by a small amount. Specifying a negative value in time-

out means an infinite timeout. Specifying a timeout of zero causes poll() to return immediately, even if no

file descriptors are ready.

The bits that may be set/returned in events and re vents are defined in <poll.h>:

Linux 2019-08-02 1



POLL(2) Linux Programmer’s Manual POLL(2)

POLLIN

There is data to read.

POLLPRI

There is some exceptional condition on the file descriptor. Possibilities include:

* There is out-of-band data on a TCP socket (see tcp(7)).

* A pseudoterminal master in packet mode has seen a state change on the slave (see

ioctl_tty(2)).

* A cgroup.events file has been modified (see cgroups(7)).

POLLOUT

Writing is now possible, though a write larger that the available space in a socket or pipe will still

block (unless O_NONBLOCK is set).

POLLRDHUP (since Linux 2.6.17)

Stream socket peer closed connection, or shut down writing half of connection. The

_GNU_SOURCE feature test macro must be defined (before including any header files) in order

to obtain this definition.

POLLERR

Error condition (only returned in re vents; ignored in events). This bit is also set for a file descrip-

tor referring to the write end of a pipe when the read end has been closed.

POLLHUP

Hang up (only returned in re vents; ignored in events). Note that when reading from a channel

such as a pipe or a stream socket, this event merely indicates that the peer closed its end of the

channel. Subsequent reads from the channel will return 0 (end of file) only after all outstanding

data in the channel has been consumed.

POLLNVAL

Invalid request: fd not open (only returned in re vents; ignored in events).

When compiling with _XOPEN_SOURCE defined, one also has the following, which convey no further

information beyond the bits listed above:

POLLRDNORM

Equivalent to POLLIN.

POLLRDBAND

Priority band data can be read (generally unused on Linux).

POLLWRNORM

Equivalent to POLLOUT.

POLLWRBAND

Priority data may be written.

Linux also knows about, but does not use POLLMSG.

ppoll()

The relationship between poll() and ppoll() is analogous to the relationship between select(2) and pse-

lect(2): like pselect(2), ppoll() allows an application to safely wait until either a file descriptor becomes

ready or until a signal is caught.

Other than the difference in the precision of the timeout argument, the following ppoll() call:

ready = ppoll(&fds, nfds, tmo_p, &sigmask);

is nearly equivalent to atomically executing the following calls:

sigset_t origmask;

int timeout;

Linux 2019-08-02 2



POLL(2) Linux Programmer’s Manual POLL(2)

timeout = (tmo_p == NULL) ? −1 :

(tmo_p−>tv_sec * 1000 + tmo_p−>tv_nsec / 1000000);

pthread_sigmask(SIG_SETMASK, &sigmask, &origmask);

ready = poll(&fds, nfds, timeout);

pthread_sigmask(SIG_SETMASK, &origmask, NULL);

The above code segment is described as nearly equivalent because whereas a negative timeout value for

poll() is interpreted as an infinite timeout, a negative value expressed in *tmo_p results in an error from

ppoll().

See the description of pselect(2) for an explanation of why ppoll() is necessary.

If the sigmask argument is specified as NULL, then no signal mask manipulation is performed (and thus

ppoll() differs from poll() only in the precision of the timeout argument).

The tmo_p argument specifies an upper limit on the amount of time that ppoll() will block. This argument

is a pointer to a structure of the following form:

struct timespec {

long tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

};

If tmo_p is specified as NULL, then ppoll() can block indefinitely.

RETURN VALUE
On success, a positive number is returned; this is the number of structures which have nonzero re vents

fields (in other words, those descriptors with events or errors reported). A value of 0 indicates that the call

timed out and no file descriptors were ready. On error, −1 is returned, and errno is set appropriately.

ERRORS
EFAULT

The array given as argument was not contained in the calling program’s address space.

EINTR

A signal occurred before any requested event; see signal(7).

EINVAL

The nfds value exceeds the RLIMIT_NOFILE value.

EINVAL

(ppoll()) The timeout value expressed in *ip is invalid (negative).

ENOMEM

There was no space to allocate file descriptor tables.

VERSIONS
The poll() system call was introduced in Linux 2.1.23. On older kernels that lack this system call, the glibc

(and the old Linux libc) poll() wrapper function provides emulation using select(2).

The ppoll() system call was added to Linux in kernel 2.6.16. The ppoll() library call was added in glibc

2.4.

CONFORMING TO
poll() conforms to POSIX.1-2001 and POSIX.1-2008. ppoll() is Linux-specific.

NOTES
The operation of poll() and ppoll() is not affected by the O_NONBLOCK flag.

On some other UNIX systems, poll() can fail with the error EAGAIN if the system fails to allocate kernel-

internal resources, rather than ENOMEM as Linux does. POSIX permits this behavior. Portable programs

may wish to check for EAGAIN and loop, just as with EINTR.

Some implementations define the nonstandard constant INFTIM with the value −1 for use as a timeout for

poll(). This constant is not provided in glibc.

Linux 2019-08-02 3



POLL(2) Linux Programmer’s Manual POLL(2)

For a discussion of what may happen if a file descriptor being monitored by poll() is closed in another

thread, see select(2).

C library/kernel differences

The Linux ppoll() system call modifies its tmo_p argument. However, the glibc wrapper function hides this

behavior by using a local variable for the timeout argument that is passed to the system call. Thus, the

glibc ppoll() function does not modify its tmo_p argument.

The raw ppoll() system call has a fifth argument, size_t sigsetsize, which specifies the size in bytes of the

sigmask argument. The glibc ppoll() wrapper function specifies this argument as a fixed value (equal to

sizeof(kernel_sigset_t)). See sigprocmask(2) for a discussion on the differences between the kernel and

the libc notion of the sigset.

BUGS
See the discussion of spurious readiness notifications under the BUGS section of select(2).

SEE ALSO
restart_syscall(2), select(2), select_tut(2), epoll(7), time(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-08-02 4


