
PKCS12(1SSL) OpenSSL PKCS12(1SSL)

NAME
openssl−pkcs12, pkcs12 − PKCS#12 file utility

SYNOPSIS
openssl pkcs12 [−help] [−export] [−chain] [−inkey file_or_id] [−certfile filename] [−name name]

[−caname name] [−in filename] [−out filename] [−noout] [−nomacver] [−nocerts] [−clcerts] [−cacerts]

[−nokeys] [−info] [−des | −des3 | −idea | −aes128 | −aes192 | −aes256 | −aria128 | −aria192 | −aria256 |
−camellia128 | −camellia192 | −camellia256 | −nodes] [−noiter] [−maciter | −nomaciter | −nomac]

[−twopass] [−descert] [−certpbe cipher] [−keypbe cipher] [−macalg digest] [−keyex] [−keysig]

[−password arg] [−passin arg] [−passout arg] [−rand file...] [−writerand file] [−CAfile file] [−CApath
dir] [−no−CAfile] [−no−CApath] [−CSP name]

DESCRIPTION
The pkcs12 command allows PKCS#12 files (sometimes referred to as PFX files) to be created and parsed.

PKCS#12 files are used by several programs including Netscape, MSIE and MS Outlook.

OPTIONS
There are a lot of options the meaning of some depends of whether a PKCS#12 file is being created or

parsed. By default a PKCS#12 file is parsed. A PKCS#12 file can be created by using the −export option

(see below).

PARSING OPTIONS
−help

Print out a usage message.

−in filename
This specifies filename of the PKCS#12 file to be parsed. Standard input is used by default.

−out filename
The filename to write certificates and private keys to, standard output by default. They are all written

in PEM format.

−passin arg
The PKCS#12 file (i.e. input file) password source. For more information about the format of arg see

the PASS PHRASE ARGUMENTS section in openssl (1).

−passout arg
Pass phrase source to encrypt any outputted private keys with. For more information about the format

of arg see the PASS PHRASE ARGUMENTS section in openssl (1).

−password arg
With −export, −password is equivalent to −passout. Otherwise, −password is equivalent to −passin.

−noout
This option inhibits output of the keys and certificates to the output file version of the PKCS#12 file.

−clcerts
Only output client certificates (not CA certificates).

−cacerts
Only output CA certificates (not client certificates).

−nocerts
No certificates at all will be output.

−nokeys
No private keys will be output.

−info
Output additional information about the PKCS#12 file structure, algorithms used and iteration counts.

−des
Use DES to encrypt private keys before outputting.

1.1.1f 2023-02-06 1

PKCS12(1SSL) OpenSSL PKCS12(1SSL)

−des3
Use triple DES to encrypt private keys before outputting, this is the default.

−idea
Use IDEA to encrypt private keys before outputting.

−aes128, −aes192, −aes256
Use AES to encrypt private keys before outputting.

−aria128, −aria192, −aria256
Use ARIA to encrypt private keys before outputting.

−camellia128, −camellia192, −camellia256
Use Camellia to encrypt private keys before outputting.

−nodes
Don’t encrypt the private keys at all.

−nomacver
Don’t attempt to verify the integrity MAC before reading the file.

−twopass
Prompt for separate integrity and encryption passwords: most software always assumes these are the

same so this option will render such PKCS#12 files unreadable. Cannot be used in combination with

the options −password, −passin (if importing) or −passout (if exporting).

FILE CREATION OPTIONS
−export

This option specifies that a PKCS#12 file will be created rather than parsed.

−out filename
This specifies filename to write the PKCS#12 file to. Standard output is used by default.

−in filename
The filename to read certificates and private keys from, standard input by default. They must all be in

PEM format. The order doesn’t matter but one private key and its corresponding certificate should be

present. If additional certificates are present they will also be included in the PKCS#12 file.

−inkey file_or_id
File to read private key from. If not present then a private key must be present in the input file. If no

engine is used, the argument is taken as a file; if an engine is specified, the argument is given to the

engine as a key identifier.

−name friendlyname
This specifies the ‘‘friendly name’’ for the certificate and private key. This name is typically displayed

in list boxes by software importing the file.

−certfile filename
A filename to read additional certificates from.

−caname friendlyname
This specifies the ‘‘friendly name’’ for other certificates. This option may be used multiple times to

specify names for all certificates in the order they appear. Netscape ignores friendly names on other

certificates whereas MSIE displays them.

−pass arg, −passout arg
The PKCS#12 file (i.e. output file) password source. For more information about the format of arg see

the PASS PHRASE ARGUMENTS section in openssl (1).

−passin password
Pass phrase source to decrypt any input private keys with. For more information about the format of

arg see the PASS PHRASE ARGUMENTS section in openssl (1).

1.1.1f 2023-02-06 2

PKCS12(1SSL) OpenSSL PKCS12(1SSL)

−chain
If this option is present then an attempt is made to include the entire certificate chain of the user

certificate. The standard CA store is used for this search. If the search fails it is considered a fatal error.

−descert
Encrypt the certificate using triple DES, this may render the PKCS#12 file unreadable by some ‘‘export

grade’’ software. By default the private key is encrypted using triple DES and the certificate using 40

bit RC2 unless RC2 is disabled in which case triple DES is used.

−keypbe alg, −certpbe alg
These options allow the algorithm used to encrypt the private key and certificates to be selected. Any

PKCS#5 v1.5 or PKCS#12 PBE algorithm name can be used (see NOTES section for more

information). If a cipher name (as output by the list-cipher-algorithms command is specified then it is

used with PKCS#5 v2.0. For interoperability reasons it is advisable to only use PKCS#12 algorithms.

−keyex|−keysig
Specifies that the private key is to be used for key exchange or just signing. This option is only

interpreted by MSIE and similar MS software. Normally ‘‘export grade’’ software will only allow 512

bit RSA keys to be used for encryption purposes but arbitrary length keys for signing. The −keysig
option marks the key for signing only. Signing only keys can be used for S/MIME signing,

authenticode (ActiveX control signing) and SSL client authentication, however due to a bug only

MSIE 5.0 and later support the use of signing only keys for SSL client authentication.

−macalg digest
Specify the MAC digest algorithm. If not included them SHA1 will be used.

−nomaciter, −noiter
These options affect the iteration counts on the MAC and key algorithms. Unless you wish to produce

files compatible with MSIE 4.0 you should leave these options alone.

To discourage attacks by using large dictionaries of common passwords the algorithm that derives

keys from passwords can have an iteration count applied to it: this causes a certain part of the

algorithm to be repeated and slows it down. The MAC is used to check the file integrity but since it will

normally have the same password as the keys and certificates it could also be attacked. By default

both MAC and encryption iteration counts are set to 2048, using these options the MAC and encryption

iteration counts can be set to 1, since this reduces the file security you should not use these options

unless you really have to. Most software supports both MAC and key iteration counts. MSIE 4.0

doesn’t support MAC iteration counts so it needs the −nomaciter option.

−maciter
This option is included for compatibility with previous versions, it used to be needed to use MAC

iterations counts but they are now used by default.

−nomac
Don’t attempt to provide the MAC integrity.

−rand file...
A file or files containing random data used to seed the random number generator. Multiple files can be

specified separated by an OS-dependent character. The separator is ; for MS-Windows, , for

OpenVMS, and : for all others.

[−writerand file]

Writes random data to the specified file upon exit. This can be used with a subsequent −rand flag.

−CAfile file
CA storage as a file.

−CApath dir
CA storage as a directory. This directory must be a standard certificate directory: that is a hash of each

subject name (using x509 −hash) should be linked to each certificate.

1.1.1f 2023-02-06 3

PKCS12(1SSL) OpenSSL PKCS12(1SSL)

−no−CAfile
Do not load the trusted CA certificates from the default file location.

−no−CApath
Do not load the trusted CA certificates from the default directory location.

−CSP name
Write name as a Microsoft CSP name.

NOTES
Although there are a large number of options most of them are very rarely used. For PKCS#12 file parsing

only −in and −out need to be used for PKCS#12 file creation −export and −name are also used.

If none of the −clcerts, −cacerts or −nocerts options are present then all certificates will be output in the

order they appear in the input PKCS#12 files. There is no guarantee that the first certificate present is the

one corresponding to the private key. Certain software which requires a private key and certificate and

assumes the first certificate in the file is the one corresponding to the private key: this may not always be the

case. Using the −clcerts option will solve this problem by only outputting the certificate corresponding to

the private key. If the CA certificates are required then they can be output to a separate file using the

−nokeys −cacerts options to just output CA certificates.

The −keypbe and −certpbe algorithms allow the precise encryption algorithms for private keys and

certificates to be specified. Normally the defaults are fine but occasionally software can’t handle triple DES

encrypted private keys, then the option −keypbe PBE−SHA1−RC2−40 can be used to reduce the private key

encryption to 40 bit RC2. A complete description of all algorithms is contained in the pkcs8 manual page.

Prior 1.1 release passwords containing non-ASCII characters were encoded in non-compliant manner,

which limited interoperability, in first hand with Windows. But switching to standard-compliant password

encoding poses problem accessing old data protected with broken encoding. For this reason even leg acy

encodings is attempted when reading the data. If you use PKCS#12 files in production application you are

advised to convert the data, because implemented heuristic approach is not MT-safe, its sole goal is to

facilitate the data upgrade with this utility.

EXAMPLES
Parse a PKCS#12 file and output it to a file:

openssl pkcs12 −in file.p12 −out file.pem

Output only client certificates to a file:

openssl pkcs12 −in file.p12 −clcerts −out file.pem

Don’t encrypt the private key:

openssl pkcs12 −in file.p12 −out file.pem −nodes

Print some info about a PKCS#12 file:

openssl pkcs12 −in file.p12 −info −noout

Create a PKCS#12 file:

openssl pkcs12 −export −in file.pem −out file.p12 −name "My Certificate"

Include some extra certificates:

openssl pkcs12 −export −in file.pem −out file.p12 −name "My Certificate" \

−certfile othercerts.pem

SEE ALSO
pkcs8 (1)

COPYRIGHT
Copyright 2000−2019 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the OpenSSL license (the ‘‘License’’). You may not use this file except in compliance with

the License. You can obtain a copy in the file LICENSE in the source distribution or at

1.1.1f 2023-02-06 4

PKCS12(1SSL) OpenSSL PKCS12(1SSL)

<https://www.openssl.org/source/license.html>.

1.1.1f 2023-02-06 5

