
PIDFD_OPEN(2) Linux Programmer’s Manual PIDFD_OPEN(2)

NAME
pidfd_open − obtain a file descriptor that refers to a process

SYNOPSIS
#include <sys/types.h>

int pidfd_open(pid_t pid , unsigned int flags);

DESCRIPTION
The pidfd_open() system call creates a file descriptor that refers to the process whose PID is specified in

pid . The file descriptor is returned as the function result; the close-on-exec flag is set on the file descriptor.

The flags argument is reserved for future use; currently, this argument must be specified as 0.

RETURN VALUE
On success, pidfd_open() returns a nonnegative file descriptor. On error, −1 is returned and errno is set to

indicate the cause of the error.

ERRORS
EINVAL

flags is not 0.

EINVAL

pid is not valid.

EMFILE

The per-process limit on the number of open file descriptors has been reached (see the description

of RLIMIT_NOFILE in getrlimit(2)).

ENFILE

The system-wide limit on the total number of open files has been reached.

ENODEV

The anonymous inode filesystem is not available in this kernel.

ENOMEM

Insufficient kernel memory was available.

ESRCH

The process specified by pid does not exist.

VERSIONS
pidfd_open() first appeared in Linux 5.3.

CONFORMING TO
pidfd_open() is Linux specific.

NOTES
Currently, there is no glibc wrapper for this system call; call it using syscall(2).

The following code sequence can be used to obtain a file descriptor for the child of fork(2):

pid = fork();

if (pid > 0) { /* If parent */

pidfd = pidfd_open(pid, 0);

...

}

Even if the child has already terminated by the time of the pidfd_open() call, its PID will not have been re-

cycled and the returned file descriptor will refer to the resulting zombie process. Note, however, that this is

guaranteed only if the following conditions hold true:

* the disposition of SIGCHLD has not been explicitly set to SIG_IGN (see sigaction(2));

* the SA_NOCLDWAIT flag was not specified while establishing a handler for SIGCHLD or while set-

ting the disposition of that signal to SIG_DFL (see sigaction(2)); and

Linux 2019-11-19 1



PIDFD_OPEN(2) Linux Programmer’s Manual PIDFD_OPEN(2)

* the zombie process was not reaped elsewhere in the program (e.g., either by an asynchronously exe-

cuted signal handler or by wait(2) or similar in another thread).

If any of these conditions does not hold, then the child process (along with a PID file descriptor that refers

to it) should instead be created using clone(2) with the CLONE_PIDFD flag.

Use cases for PID file descriptors

A PID file descriptor returned by pidfd_open() (of by clone(2) with the CLONE_PID flag) can be used for

the following purposes:

* The pidfd_send_signal(2) system call can be used to send a signal to the process referred to by a PID

file descriptor.

* A PID file descriptor can be monitored using poll(2), select(2), and epoll(7). When the process that it

refers to terminates, these interfaces indicate the file descriptor as readable. Note, however, that in the

current implementation, nothing can be read from the file descriptor (read(2) on the file descriptor fails

with the error EINVAL).

* If the PID file descriptor refers to a child of the calling process, then it can be waited on using

waitid(2).

The pidfd_open() system call is the preferred way of obtaining a PID file descriptor for an already existing

process. The alternative is to obtain a file descriptor by opening a /proc/[pid] directory. Howev er, the lat-

ter technique is possible only if the proc(5) filesystem is mounted; furthermore, the file descriptor obtained

in this way is not pollable and can’t be waited on with waitid(2).

EXAMPLE
The program below opens a PID file descriptor for the process whose PID is specified as its command-line

argument. It then uses poll(2) to monitor the file descriptor for process exit, as indicated by an EPOLLIN

ev ent.

Program source

#define _GNU_SOURCE

#include <sys/types.h>

#include <sys/syscall.h>

#include <unistd.h>

#include <poll.h>

#include <stdlib.h>

#include <stdio.h>

#ifndef __NR_pidfd_open

#define __NR_pidfd_open 434 /* System call # on most architectures */

#endif

static int

pidfd_open(pid_t pid, unsigned int flags)

{

return syscall(__NR_pidfd_open, pid, flags);

}

int

main(int argc, char *argv[])

{

struct pollfd pollfd;

int pidfd, ready;

if (argc != 2) {

fprintf(stderr, "Usage: %s <pid>\n", argv[0]);

Linux 2019-11-19 2



PIDFD_OPEN(2) Linux Programmer’s Manual PIDFD_OPEN(2)

exit(EXIT_SUCCESS);

}

pidfd = pidfd_open(atoi(argv[1]), 0);

if (pidfd == −1) {

perror("pidfd_open");

exit(EXIT_FAILURE);

}

pollfd.fd = pidfd;

pollfd.events = POLLIN;

ready = poll(&pollfd, 1, −1);

if (ready == −1) {

perror("poll");

exit(EXIT_FAILURE);

}

printf("Events (0x%x): POLLIN is %sset\n", pollfd.revents,

(pollfd.revents & POLLIN) ? "" : "not ");

exit(EXIT_SUCCESS);

}

SEE ALSO
clone(2), kill(2), pidfd_send_signal(2), poll(2), select(2), waitid(2), epoll(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-11-19 3


