
PAM.CONF(5) Linux-PAM Manual PAM.CONF(5)

NAME
pam.conf, pam.d − PAM configuration files

DESCRIPTION
When a PAM aw are privilege granting application is started, it activates its attachment to the PAM−API.

This activation performs a number of tasks, the most important being the reading of the configuration

file(s): /etc/pam.conf. Alternatively, this may be the contents of the /etc/pam.d/ directory. The presence of

this directory will cause Linux−PAM to ignore /etc/pam.conf.

These files list the PAMs that will do the authentication tasks required by this service, and the appropriate

behavior of the PAM−API in the event that individual PAMs fail.

The syntax of the /etc/pam.conf configuration file is as follows. The file is made up of a list of rules, each

rule is typically placed on a single line, but may be extended with an escaped end of line: ‘\<LF>'.

Comments are preceded with ‘#' marks and extend to the next end of line.

The format of each rule is a space separated collection of tokens, the first three being case−insensitive:

service type control module−path module−arguments

The syntax of files contained in the /etc/pam.d/ directory, are identical except for the absence of any service

field. In this case, the service is the name of the file in the /etc/pam.d/ directory. This filename must be in

lower case.

An important feature of PAM, is that a number of rules may be stacked to combine the services of a number

of PAMs for a given authentication task.

The service is typically the familiar name of the corresponding application: login and su are good

examples. The service−name, other, is reserved for giving default rules. Only lines that mention the current

service (or in the absence of such, the other entries) will be associated with the given service−application.

The type is the management group that the rule corresponds to. It is used to specify which of the

management groups the subsequent module is to be associated with. Valid entries are:

account

this module type performs non−authentication based account management. It is typically used to

restrict/permit access to a service based on the time of day, currently available system resources

(maximum number of users) or perhaps the location of the applicant user −− 'root' login only on the

console.

auth

this module type provides two aspects of authenticating the user. Firstly, it establishes that the user is

who they claim to be, by instructing the application to prompt the user for a password or other means

of identification. Secondly, the module can grant group membership or other privileges through its

credential granting properties.

password

this module type is required for updating the authentication token associated with the user. Typically,

there is one module for each 'challenge/response' based authentication (auth) type.

session

this module type is associated with doing things that need to be done for the user before/after they can

be given service. Such things include the logging of information concerning the opening/closing of

some data exchange with a user, mounting directories, etc.

If the type value from the list above is prepended with a − character the PAM library will not log to the

system log if it is not possible to load the module because it is missing in the system. This can be useful

especially for modules which are not always installed on the system and are not required for correct

authentication and authorization of the login session.

The third field, control, indicates the behavior of the PAM−API should the module fail to succeed in its

authentication task. There are two types of syntax for this control field: the simple one has a single simple

keyword; the more complicated one involves a square−bracketed selection of value=action pairs.

Linux-PAM Manual 05/18/2017 1



PAM.CONF(5) Linux-PAM Manual PAM.CONF(5)

For the simple (historical) syntax valid control values are:

required

failure of such a PAM will ultimately lead to the PAM−API returning failure but only after the

remaining stacked modules (for this service and type) hav e been invoked.

requisite

like required, howev er, in the case that such a module returns a failure, control is directly returned to

the application or to the superior PAM stack. The return value is that associated with the first required

or requisite module to fail. Note, this flag can be used to protect against the possibility of a user getting

the opportunity to enter a password over an unsafe medium. It is conceivable that such behavior might

inform an attacker of valid accounts on a system. This possibility should be weighed against the not

insignificant concerns of exposing a sensitive password in a hostile environment.

sufficient

if such a module succeeds and no prior required module has failed the PAM framework returns

success to the application or to the superior PAM stack immediately without calling any further

modules in the stack. A failure of a sufficient module is ignored and processing of the PAM module

stack continues unaffected.

optional

the success or failure of this module is only important if it is the only module in the stack associated

with this service+type.

include

include all lines of given type from the configuration file specified as an argument to this control.

substack

include all lines of given type from the configuration file specified as an argument to this control. This

differs from include in that evaluation of the done and die actions in a substack does not cause

skipping the rest of the complete module stack, but only of the substack. Jumps in a substack also can

not make evaluation jump out of it, and the whole substack is counted as one module when the jump is

done in a parent stack. The reset action will reset the state of a module stack to the state it was in as of

beginning of the substack evaluation.

For the more complicated syntax valid control values have the following form:

[value1=action1 value2=action2 ...]

Where valueN corresponds to the return code from the function invoked in the module for which the line is

defined. It is selected from one of these: success, open_err, symbol_err, service_err, system_err, buf_err,

perm_denied, auth_err, cred_insufficient, authinfo_unavail, user_unknown, maxtries, new_authtok_reqd,

acct_expired, session_err, cred_unavail, cred_expired, cred_err, no_module_data, conv_err, authtok_err,

authtok_recover_err, authtok_lock_busy, authtok_disable_aging, try_again, ignore, abort, authtok_expired,

module_unknown, bad_item, conv_again, incomplete, and default.

The last of these, default, implies 'all valueN's not mentioned explicitly. Note, the full list of PAM errors is

available in /usr/include/security/_pam_types.h. The actionN can take one of the following forms:

ignore

when used with a stack of modules, the module's return status will not contribute to the return code the

application obtains.

bad

this action indicates that the return code should be thought of as indicative of the module failing. If this

module is the first in the stack to fail, its status value will be used for that of the whole stack.

die

equivalent to bad with the side effect of terminating the module stack and PAM immediately returning

to the application.

Linux-PAM Manual 05/18/2017 2



PAM.CONF(5) Linux-PAM Manual PAM.CONF(5)

ok

this tells PAM that the administrator thinks this return code should contribute directly to the return

code of the full stack of modules. In other words, if the former state of the stack would lead to a return

of PAM_SUCCESS, the module's return code will override this value. Note, if the former state of the

stack holds some value that is indicative of a modules failure, this 'ok' value will not be used to

override that value.

done

equivalent to ok with the side effect of terminating the module stack and PAM immediately returning

to the application.

N (an unsigned integer)

equivalent to ok with the side effect of jumping over the next N modules in the stack. Note that N

equal to 0 is not allowed (and it would be identical to ok in such case).

reset

clear all memory of the state of the module stack and start again with the next stacked module.

Each of the four keywords: required; requisite; sufficient; and optional, have an equivalent expression in

terms of the [...] syntax. They are as follows:

required

[success=ok new_authtok_reqd=ok ignore=ignore default=bad]

requisite

[success=ok new_authtok_reqd=ok ignore=ignore default=die]

sufficient

[success=done new_authtok_reqd=done default=ignore]

optional

[success=ok new_authtok_reqd=ok default=ignore]

module−path is either the full filename of the PAM to be used by the application (it begins with a '/'), or a

relative pathname from the default module location: /lib/security/ or /lib64/security/, depending on the

architecture.

module−arguments are a space separated list of tokens that can be used to modify the specific behavior of

the given PAM. Such arguments will be documented for each individual module. Note, if you wish to

include spaces in an argument, you should surround that argument with square brackets.

squid auth required pam_mysql.so user=passwd_query passwd=mada \

db=eminence [query=select user_name from internet_service \

where user_name='%u' and password=PASSWORD('%p') and \

service='web_proxy']

When using this convention, you can include ‘[' characters inside the string, and if you wish to include a ‘]'

character inside the string that will survive the argument parsing, you should use ‘\]'. In other words:

[..[..\]..] −−> ..[..]..

Any line in (one of) the configuration file(s), that is not formatted correctly, will generally tend (erring on

the side of caution) to make the authentication process fail. A corresponding error is written to the system

log files with a call to syslog(3).

More flexible than the single configuration file is it to configure libpam via the contents of the /etc/pam.d/

directory. In this case the directory is filled with files each of which has a filename equal to a service−name

(in lower−case): it is the personal configuration file for the named service.

The syntax of each file in /etc/pam.d/ is similar to that of the /etc/pam.conf file and is made up of lines of

the following form:

Linux-PAM Manual 05/18/2017 3



PAM.CONF(5) Linux-PAM Manual PAM.CONF(5)

type control module−path module−arguments

The only difference being that the service−name is not present. The service−name is of course the name of

the given configuration file. For example, /etc/pam.d/login contains the configuration for the login service.

SEE ALSO
pam(3), PAM(8), pam_start(3)

Linux-PAM Manual 05/18/2017 4


