
OBJDUMP(1) GNU Development Tools OBJDUMP(1)

NAME
objdump − display information from object files

SYNOPSIS
objdump [−a|−−archive−headers]

[−b bfdname|−−target=bfdname]
[−C|−−demangle[=style]]
[−d|−−disassemble[=symbol]]
[−D|−−disassemble−all]
[−z|−−disassemble−zeroes]
[−EB|−EL|−−endian={big | little }]
[−f|−−file−headers]
[−F|−−file−offsets]
[−−file−start−context]
[−g|−−debugging]
[−e|−−debugging−tags]
[−h|−−section−headers|−−headers]
[−i|−−info]
[−j section|−−section=section]
[−l|−−line−numbers]
[−S|−−source]
[−−source−comment[=text]]
[−m machine|−−architecture=machine]
[−M options|−−disassembler−options=options]
[−p|−−private−headers]
[−P options|−−private=options]
[−r|−−reloc]
[−R|−−dynamic−reloc]
[−s|−−full−contents]
[−W[lLiaprmfFsoRtUuTgAckK]|
−−dwarf[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,=frames−interp,=str,=loc,=Ranges,=pubtypes,=trace_info,=trace_abbre
[−−ctf=section]
[−G|−−stabs]
[−t|−−syms]
[−T|−−dynamic−syms]
[−x|−−all−headers]
[−w|−−wide]
[−−start−address=address]
[−−stop−address=address]
[−−prefix−addresses]
[−−[no−]show−raw−insn]
[−−adjust−vma=offset]
[−−dwarf−depth=n]
[−−dwarf−start=n]
[−−ctf−parent=section]
[−−no−recurse−limit|−−recurse−limit]
[−−special−syms]
[−−prefix=prefix]
[−−prefix−strip=level]
[−−insn−width=width]
[−−visualize−jumps[=color|=extended−color|=off]
[−V|−−version]
[−H|−−help]
objfile...

binutils-2.34 2022-08-30 1

OBJDUMP(1) GNU Development Tools OBJDUMP(1)

DESCRIPTION
objdump displays information about one or more object files. The options control what particular
information to display. This information is mostly useful to programmers who are working on the
compilation tools, as opposed to programmers who just want their program to compile and work.

objfile... are the object files to be examined. When you specify archives, objdump shows information on
each of the member object files.

OPTIONS
The long and short forms of options, shown here as alternatives, are equivalent. At least one option from
the list −a,−d,−D,−e,−f,−g,−G,−h,−H,−p,−P,−r,−R,−s,−S,−t,−T,−V,−x must be given.

−a
−−archive−header

If any of the objfile files are archives, display the archive header information (in a format similar to ls
−l). Besides the information you could list with ar tv, objdump −a shows the object file format of
each archive member.

−−adjust−vma=offset

When dumping information, first add offset to all the section addresses. This is useful if the section
addresses do not correspond to the symbol table, which can happen when putting sections at particular
addresses when using a format which can not represent section addresses, such as a.out.

−b bfdname

−−target=bfdname

Specify that the object-code format for the object files is bfdname. This option may not be necessary;
objdump can automatically recognize many formats.

For example,

objdump −b oasys −m vax −h fu.o

displays summary information from the section headers (−h) of fu.o, which is explicitly identified
(−m) as a VAX object file in the format produced by Oasys compilers. You can list the formats
available with the −i option.

−C
−−demangle[=style]

Decode (demangle) low-level symbol names into user-level names. Besides removing any initial
underscore prepended by the system, this makes C++ function names readable. Different compilers
have different mangling styles. The optional demangling style argument can be used to choose an
appropriate demangling style for your compiler.

−−recurse−limit
−−no−recurse−limit
−−recursion−limit
−−no−recursion−limit

Enables or disables a limit on the amount of recursion performed whilst demangling strings. Since the
name mangling formats allow for an inifinite level of recursion it is possible to create strings whose
decoding will exhaust the amount of stack space available on the host machine, triggering a memory
fault. The limit tries to prevent this from happening by restricting recursion to 2048 levels of nesting.

The default is for this limit to be enabled, but disabling it may be necessary in order to demangle truly
complicated names. Note however that if the recursion limit is disabled then stack exhaustion is
possible and any bug reports about such an event will be rejected.

−g
−−debugging

Display debugging information. This attempts to parse STABS debugging format information stored in
the file and print it out using a C like syntax. If no STABS debuging was found this option falls back
on the −W option to print any DWARF information in the file.

binutils-2.34 2022-08-30 2

OBJDUMP(1) GNU Development Tools OBJDUMP(1)

−e
−−debugging−tags

Like −g, but the information is generated in a format compatible with ctags tool.

−d
−−disassemble
−−disassemble=symbol

Display the assembler mnemonics for the machine instructions from the input file. This option only
disassembles those sections which are expected to contain instructions. If the optional symbol

argument is given, then display the assembler mnemonics starting at symbol. If symbol is a function
name then disassembly will stop at the end of the function, otherwise it will stop when the next
symbol is encountered. If there are no matches for symbol then nothing will be displayed.

Note if the −−dwarf=follow−links option has also been enabled then any symbol tables in linked
debug info files will be read in and used when disassembling.

−D
−−disassemble−all

Like −d, but disassemble the contents of all sections, not just those expected to contain instructions.

This option also has a subtle effect on the disassembly of instructions in code sections. When option
−d is in effect objdump will assume that any symbols present in a code section occur on the boundary
between instructions and it will refuse to disassemble across such a boundary. When option −D is in
effect however this assumption is supressed. This means that it is possible for the output of −d and −D
to differ if, for example, data is stored in code sections.

If the target is an ARM architecture this switch also has the effect of forcing the disassembler to
decode pieces of data found in code sections as if they were instructions.

Note if the −−dwarf=follow−links option has also been enabled then any symbol tables in linked
debug info files will be read in and used when disassembling.

−−prefix−addresses
When disassembling, print the complete address on each line. This is the older disassembly format.

−EB
−EL
−−endian={big|little}

Specify the endianness of the object files. This only affects disassembly. This can be useful when
disassembling a file format which does not describe endianness information, such as S−records.

−f
−−file−headers

Display summary information from the overall header of each of the objfile files.

−F
−−file−offsets

When disassembling sections, whenever a symbol is displayed, also display the file offset of the region
of data that is about to be dumped. If zeroes are being skipped, then when disassembly resumes, tell
the user how many zeroes were skipped and the file offset of the location from where the disassembly
resumes. When dumping sections, display the file offset of the location from where the dump starts.

−−file−start−context
Specify that when displaying interlisted source code/disassembly (assumes −S) from a file that has not
yet been displayed, extend the context to the start of the file.

−h
−−section−headers
−−headers

Display summary information from the section headers of the object file.

File segments may be relocated to nonstandard addresses, for example by using the −Ttext, −Tdata,

binutils-2.34 2022-08-30 3

OBJDUMP(1) GNU Development Tools OBJDUMP(1)

or −Tbss options to ld. Howev er, some object file formats, such as a.out, do not store the starting
address of the file segments. In those situations, although ld relocates the sections correctly, using
objdump −h to list the file section headers cannot show the correct addresses. Instead, it shows the
usual addresses, which are implicit for the target.

Note, in some cases it is possible for a section to have both the READONLY and the NOREAD

attributes set. In such cases the NOREAD attribute takes precedence, but objdump will report both
since the exact setting of the flag bits might be important.

−H
−−help

Print a summary of the options to objdump and exit.

−i
−−info

Display a list showing all architectures and object formats available for specification with −b or −m.

−j name

−−section=name

Display information only for section name.

−l
−−line−numbers

Label the display (using debugging information) with the filename and source line numbers
corresponding to the object code or relocs shown. Only useful with −d, −D, or −r.

−m machine

−−architecture=machine

Specify the architecture to use when disassembling object files. This can be useful when
disassembling object files which do not describe architecture information, such as S−records. You can
list the available architectures with the −i option.

If the target is an ARM architecture then this switch has an additional effect. It restricts the
disassembly to only those instructions supported by the architecture specified by machine. If it is
necessary to use this switch because the input file does not contain any architecture information, but it
is also desired to disassemble all the instructions use −marm.

−M options

−−disassembler−options=options

Pass target specific information to the disassembler. Only supported on some targets. If it is necessary
to specify more than one disassembler option then multiple −M options can be used or can be placed
together into a comma separated list.

For ARC, dsp controls the printing of DSP instructions, spfp selects the printing of FPX single
precision FP instructions, dpfp selects the printing of FPX double precision FP instructions,
quarkse_em selects the printing of special QuarkSE-EM instructions, fpuda selects the printing of
double precision assist instructions, fpus selects the printing of FPU single precision FP instructions,
while fpud selects the printing of FPU double precision FP instructions. Additionally, one can choose
to have all the immediates printed in hexadecimal using hex. By default, the short immediates are
printed using the decimal representation, while the long immediate values are printed as hexadecimal.

cpu=... allows to enforce a particular ISA when disassembling instructions, overriding the −m value or
whatever is in the ELF file. This might be useful to select ARC EM or HS ISA, because architecture is
same for those and disassembler relies on private ELF header data to decide if code is for EM or HS.

This option might be specified multiple times − only the latest value will be used. Valid values are
same as for the assembler −mcpu=... option.

If the target is an ARM architecture then this switch can be used to select which register name set is
used during disassembler. Specifying −M reg-names-std (the default) will select the register names
as used in ARM’s instruction set documentation, but with register 13 called ’sp’, register 14 called ’lr’
and register 15 called ’pc’. Specifying −M reg-names-apcs will select the name set used by the ARM

binutils-2.34 2022-08-30 4

OBJDUMP(1) GNU Development Tools OBJDUMP(1)

Procedure Call Standard, whilst specifying −M reg-names-raw will just use r followed by the register
number.

There are also two variants on the APCS register naming scheme enabled by −M reg-names-atpcs and
−M reg-names-special-atpcs which use the ARM/Thumb Procedure Call Standard naming
conventions. (Either with the normal register names or the special register names).

This option can also be used for ARM architectures to force the disassembler to interpret all
instructions as Thumb instructions by using the switch −−disassembler−options=force−thumb. This
can be useful when attempting to disassemble thumb code produced by other compilers.

For AArch64 targets this switch can be used to set whether instructions are disassembled as the most
general instruction using the −M no-aliases option or whether instruction notes should be generated as
comments in the disasssembly using −M notes.

For the x86, some of the options duplicate functions of the −m switch, but allow finer grained control.
Multiple selections from the following may be specified as a comma separated string.

x86−64

i386

i8086

Select disassembly for the given architecture.

intel

att

Select between intel syntax mode and AT&T syntax mode.

amd64

intel64

Select between AMD64 ISA and Intel64 ISA.

intel−mnemonic

att−mnemonic

Select between intel mnemonic mode and AT&T mnemonic mode. Note: intel−mnemonic
implies intel and att−mnemonic implies att.

addr64

addr32

addr16

data32

data16

Specify the default address size and operand size. These five options will be overridden if
x86−64, i386 or i8086 appear later in the option string.

suffix

When in AT&T mode, instructs the disassembler to print a mnemonic suffix even when the suffix
could be inferred by the operands.

For PowerPC, the −M argument raw selects disasssembly of hardware insns rather than aliases. For
example, you will see rlwinm rather than clrlwi, and addi rather than li. All of the −m
arguments for gas that select a CPU are supported. These are: 403, 405, 440, 464, 476, 601, 603, 604,
620, 7400, 7410, 7450, 7455, 750cl, 821, 850, 860, a2, booke, booke32, cell, com, e200z4, e300,
e500, e500mc, e500mc64, e500x2, e5500, e6500, efs, power4, power5, power6, power7, power8,
power9, ppc, ppc32, ppc64, ppc64bridge, ppcps, pwr, pwr2, pwr4, pwr5, pwr5x, pwr6, pwr7,
pwr8, pwr9, pwrx, titan, and vle. 32 and 64 modify the default or a prior CPU selection, disabling
and enabling 64−bit insns respectively. In addition, altivec, any, htm, vsx, and spe add capabilities to
a previous or later CPU selection. any will disassemble any opcode known to binutils, but in cases
where an opcode has two different meanings or different arguments, you may not see the disassembly
you expect. If you disassemble without giving a CPU selection, a default will be chosen from
information gleaned by BFD from the object files headers, but the result again may not be as you
expect.

binutils-2.34 2022-08-30 5

OBJDUMP(1) GNU Development Tools OBJDUMP(1)

For MIPS, this option controls the printing of instruction mnemonic names and register names in
disassembled instructions. Multiple selections from the following may be specified as a comma
separated string, and invalid options are ignored:

no−aliases

Print the ’raw’ instruction mnemonic instead of some pseudo instruction mnemonic. I.e., print
’daddu’ or ’or’ instead of ’move’, ’sll’ instead of ’nop’, etc.

msa

Disassemble MSA instructions.

virt

Disassemble the virtualization ASE instructions.

xpa

Disassemble the eXtended Physical Address (XPA) ASE instructions.

gpr−names=ABI

Print GPR (general-purpose register) names as appropriate for the specified ABI. By default, GPR

names are selected according to the ABI of the binary being disassembled.

fpr−names=ABI

Print FPR (floating-point register) names as appropriate for the specified ABI. By default, FPR

numbers are printed rather than names.

cp0−names=ARCH

Print CP0 (system control coprocessor; coprocessor 0) register names as appropriate for the CPU

or architecture specified by ARCH. By default, CP0 register names are selected according to the
architecture and CPU of the binary being disassembled.

hwr−names=ARCH

Print HWR (hardware register, used by the rdhwr instruction) names as appropriate for the CPU

or architecture specified by ARCH. By default, HWR names are selected according to the
architecture and CPU of the binary being disassembled.

reg−names=ABI

Print GPR and FPR names as appropriate for the selected ABI.

reg−names=ARCH

Print CPU-specific register names (CP0 register and HWR names) as appropriate for the selected
CPU or architecture.

For any of the options listed above, ABI or ARCH may be specified as numeric to have numbers printed
rather than names, for the selected types of registers. You can list the available values of ABI and
ARCH using the −−help option.

For VAX, you can specify function entry addresses with −M entry:0xf00ba. You can use this multiple
times to properly disassemble VAX binary files that don’t contain symbol tables (like ROM dumps). In
these cases, the function entry mask would otherwise be decoded as VAX instructions, which would
probably lead the rest of the function being wrongly disassembled.

−p
−−private−headers

Print information that is specific to the object file format. The exact information printed depends upon
the object file format. For some object file formats, no additional information is printed.

−P options

−−private=options

Print information that is specific to the object file format. The argument options is a comma separated
list that depends on the format (the lists of options is displayed with the help).

For XCOFF, the available options are:

binutils-2.34 2022-08-30 6

OBJDUMP(1) GNU Development Tools OBJDUMP(1)

header

aout

sections

syms

relocs

lineno,

loader

except

typchk

traceback

toc

ldinfo

Not all object formats support this option. In particular the ELF format does not use it.

−r
−−reloc

Print the relocation entries of the file. If used with −d or −D, the relocations are printed interspersed
with the disassembly.

−R
−−dynamic−reloc

Print the dynamic relocation entries of the file. This is only meaningful for dynamic objects, such as
certain types of shared libraries. As for −r, if used with −d or −D, the relocations are printed
interspersed with the disassembly.

−s
−−full−contents

Display the full contents of any sections requested. By default all non-empty sections are displayed.

−S
−−source

Display source code intermixed with disassembly, if possible. Implies −d.

−−source−comment[=txt]
Like the −S option, but all source code lines are displayed with a prefix of txt. Typically txt will be a
comment string which can be used to distinguish the assembler code from the source code. If txt is not
provided then a default string of ‘‘# ’’ (hash followed by a space), will be used.

−−prefix=prefix

Specify prefix to add to the absolute paths when used with −S.

−−prefix−strip=level

Indicate how many initial directory names to strip off the hardwired absolute paths. It has no effect
without −−prefix=prefix.

−−show−raw−insn
When disassembling instructions, print the instruction in hex as well as in symbolic form. This is the
default except when −−prefix−addresses is used.

−−no−show−raw−insn
When disassembling instructions, do not print the instruction bytes. This is the default when
−−prefix−addresses is used.

−−insn−width=width

Display width bytes on a single line when disassembling instructions.

−−visualize−jumps[=color|=extended−color|=off]
Visualize jumps that stay inside a function by drawing ASCII art between the start and target addresses.
The optional =color argument adds color to the output using simple terminal colors. Alternatively the
=extended−color argument will add color using 8bit colors, but these might not work on all terminals.

binutils-2.34 2022-08-30 7

OBJDUMP(1) GNU Development Tools OBJDUMP(1)

If it is necessary to disable the visualize-jumps option after it has previously been enabled then use
visualize−jumps=off.

−W[lLiaprmfFsoRtUuTgAckK]
−−dwarf[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,=frames−interp,=str,=loc,=Ranges,=pubtypes,=trace_inf

Displays the contents of the DWARF debug sections in the file, if any are present. Compressed debug
sections are automatically decompressed (temporarily) before they are displayed. If one or more of
the optional letters or words follows the switch then only those type(s) of data will be dumped. The
letters and words refer to the following information:

a

=abbrev

Displays the contents of the .debug_abbrev section.

A

=addr

Displays the contents of the .debug_addr section.

c

=cu_index

Displays the contents of the .debug_cu_index and/or .debug_tu_index sections.

f

=frames

Display the raw contents of a .debug_frame section.

F

=frame−interp

Display the interpreted contents of a .debug_frame section.

g

=gdb_index

Displays the contents of the .gdb_index and/or .debug_names sections.

i

=info

Displays the contents of the .debug_info section. Note: the output from this option can also be
restricted by the use of the −−dwarf−depth and −−dwarf−start options.

k

=links

Displays the contents of the .gnu_debuglink and/or .gnu_debugaltlink sections. Also displays
any links to separate dwarf object files (dwo), if they are specified by the
DW_AT_GNU_dwo_name or DW_AT_dwo_name attributes in the .debug_info section.

K

=follow−links

Display the contents of any selected debug sections that are found in linked, separate debug info
file(s). This can result in multiple versions of the same debug section being displayed if it exists
in more than one file.

In addition, when displaying DWARF attributes, if a form is found that references the separate
debug info file, then the referenced contents will also be displayed.

l

=rawline

Displays the contents of the .debug_line section in a raw format.

L

=decodedline

Displays the interpreted contents of the .debug_line section.

binutils-2.34 2022-08-30 8

OBJDUMP(1) GNU Development Tools OBJDUMP(1)

m

=macro

Displays the contents of the .debug_macro and/or .debug_macinfo sections.

o

=loc

Displays the contents of the .debug_loc and/or .debug_loclists sections.

p

=pubnames

Displays the contents of the .debug_pubnames and/or .debug_gnu_pubnames sections.

r

=aranges

Displays the contents of the .debug_aranges section.

R

=Ranges

Displays the contents of the .debug_ranges and/or .debug_rnglists sections.

s

=str

Displays the contents of the .debug_str, .debug_line_str and/or .debug_str_offsets sections.

t

=pubtype

Displays the contents of the .debug_pubtypes and/or .debug_gnu_pubtypes sections.

T

=trace_aranges

Displays the contents of the .trace_aranges section.

u

=trace_abbrev

Displays the contents of the .trace_abbrev section.

U

=trace_info

Displays the contents of the .trace_info section.

Note: displaying the contents of .debug_static_funcs, .debug_static_vars and debug_weaknames
sections is not currently supported.

−−dwarf−depth=n

Limit the dump of the .debug_info section to n children. This is only useful with
−−debug−dump=info. The default is to print all DIEs; the special value 0 for n will also have this
effect.

With a non-zero value for n, DIEs at or deeper than n levels will not be printed. The range for n is
zero-based.

−−dwarf−start=n

Print only DIEs beginning with the DIE numbered n. This is only useful with −−debug−dump=info.

If specified, this option will suppress printing of any header information and all DIEs before the DIE

numbered n. Only siblings and children of the specified DIE will be printed.

This can be used in conjunction with −−dwarf−depth.

−−dwarf−check
Enable additional checks for consistency of Dwarf information.

binutils-2.34 2022-08-30 9

OBJDUMP(1) GNU Development Tools OBJDUMP(1)

−−ctf=section

Display the contents of the specified CTF section. CTF sections themselves contain many subsections,
all of which are displayed in order.

−−ctf−parent=section

Specify the name of another section from which the CTF dictionary can inherit types. (If none is
specified, we assume the CTF dictionary inherits types from the default-named member of the archive
contained within this section.)

−G
−−stabs

Display the full contents of any sections requested. Display the contents of the .stab and .stab.index
and .stab.excl sections from an ELF file. This is only useful on systems (such as Solaris 2.0) in which
.stab debugging symbol-table entries are carried in an ELF section. In most other file formats,
debugging symbol-table entries are interleaved with linkage symbols, and are visible in the −−syms
output.

−−start−address=address

Start displaying data at the specified address. This affects the output of the −d, −r and −s options.

−−stop−address=address

Stop displaying data at the specified address. This affects the output of the −d, −r and −s options.

−t
−−syms

Print the symbol table entries of the file. This is similar to the information provided by the nm
program, although the display format is different. The format of the output depends upon the format
of the file being dumped, but there are two main types. One looks like this:

[4](sec 3)(fl 0x00)(ty 0)(scl 3) (nx 1) 0x00000000 .bss

[6](sec 1)(fl 0x00)(ty 0)(scl 2) (nx 0) 0x00000000 fred

where the number inside the square brackets is the number of the entry in the symbol table, the sec

number is the section number, the fl value are the symbol’s flag bits, the ty number is the symbol’s
type, the scl number is the symbol’s storage class and the nx value is the number of auxilary entries
associated with the symbol. The last two fields are the symbol’s value and its name.

The other common output format, usually seen with ELF based files, looks like this:

00000000 l d .bss 00000000 .bss

00000000 g .text 00000000 fred

Here the first number is the symbol’s value (sometimes refered to as its address). The next field is
actually a set of characters and spaces indicating the flag bits that are set on the symbol. These
characters are described below. Next is the section with which the symbol is associated or *ABS* if
the section is absolute (ie not connected with any section), or *UND* if the section is referenced in the
file being dumped, but not defined there.

After the section name comes another field, a number, which for common symbols is the alignment
and for other symbol is the size. Finally the symbol’s name is displayed.

The flag characters are divided into 7 groups as follows:

l

g

u

! The symbol is a local (l), global (g), unique global (u), neither global nor local (a space) or both
global and local (!). A symbol can be neither local or global for a variety of reasons, e.g.,
because it is used for debugging, but it is probably an indication of a bug if it is ever both local
and global. Unique global symbols are a GNU extension to the standard set of ELF symbol
bindings. For such a symbol the dynamic linker will make sure that in the entire process there is
just one symbol with this name and type in use.

binutils-2.34 2022-08-30 10

OBJDUMP(1) GNU Development Tools OBJDUMP(1)

w The symbol is weak (w) or strong (a space).

C The symbol denotes a constructor (C) or an ordinary symbol (a space).

W The symbol is a warning (W) or a normal symbol (a space). A warning symbol’s name is a
message to be displayed if the symbol following the warning symbol is ever referenced.

I

i The symbol is an indirect reference to another symbol (I), a function to be evaluated during reloc
processing (i) or a normal symbol (a space).

d

D The symbol is a debugging symbol (d) or a dynamic symbol (D) or a normal symbol (a space).

F

f

O The symbol is the name of a function (F) or a file (f) or an object (O) or just a normal symbol (a
space).

−T
−−dynamic−syms

Print the dynamic symbol table entries of the file. This is only meaningful for dynamic objects, such
as certain types of shared libraries. This is similar to the information provided by the nm program
when given the −D (−−dynamic) option.

The output format is similar to that produced by the −−syms option, except that an extra field is
inserted before the symbol’s name, giving the version information associated with the symbol. If the
version is the default version to be used when resolving unversioned references to the symbol then it’s
displayed as is, otherwise it’s put into parentheses.

−−special−syms
When displaying symbols include those which the target considers to be special in some way and
which would not normally be of interest to the user.

−V
−−version

Print the version number of objdump and exit.

−x
−−all−headers

Display all available header information, including the symbol table and relocation entries. Using −x
is equivalent to specifying all of −a −f −h −p −r −t.

−w
−−wide

Format some lines for output devices that have more than 80 columns. Also do not truncate symbol
names when they are displayed.

−z
−−disassemble−zeroes

Normally the disassembly output will skip blocks of zeroes. This option directs the disassembler to
disassemble those blocks, just like any other data.

@file

Read command-line options from file. The options read are inserted in place of the original @file

option. If file does not exist, or cannot be read, then the option will be treated literally, and not
removed.

Options in file are separated by whitespace. A whitespace character may be included in an option by
surrounding the entire option in either single or double quotes. Any character (including a backslash)
may be included by prefixing the character to be included with a backslash. The file may itself contain
additional @file options; any such options will be processed recursively.

binutils-2.34 2022-08-30 11

OBJDUMP(1) GNU Development Tools OBJDUMP(1)

SEE ALSO
nm (1), readelf (1), and the Info entries for binutils.

COPYRIGHT
Copyright (c) 1991−2020 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with
no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is
included in the section entitled ‘‘GNU Free Documentation License’’.

binutils-2.34 2022-08-30 12

