
MREMAP(2) Linux Programmer’s Manual MREMAP(2)

NAME
mremap − remap a virtual memory address

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */

#include <sys/mman.h>

void *mremap(void *old_address, size_t old_size,

size_t new_size, int flags, ... /* void *new_address */);

DESCRIPTION
mremap() expands (or shrinks) an existing memory mapping, potentially moving it at the same time (con-

trolled by the flags argument and the available virtual address space).

old_address is the old address of the virtual memory block that you want to expand (or shrink). Note that

old_address has to be page aligned. old_size is the old size of the virtual memory block. new_size is the

requested size of the virtual memory block after the resize. An optional fifth argument, new_address, may

be provided; see the description of MREMAP_FIXED below.

If the value of old_size is zero, and old_address refers to a shareable mapping (see mmap(2)

MAP_SHARED), then mremap() will create a new mapping of the same pages. new_size will be the size

of the new mapping and the location of the new mapping may be specified with new_address; see the de-

scription of MREMAP_FIXED below. If a new mapping is requested via this method, then the

MREMAP_MAYMOVE flag must also be specified.

In Linux the memory is divided into pages. A user process has (one or) several linear virtual memory seg-

ments. Each virtual memory segment has one or more mappings to real memory pages (in the page table).

Each virtual memory segment has its own protection (access rights), which may cause a segmentation vio-

lation if the memory is accessed incorrectly (e.g., writing to a read-only segment). Accessing virtual mem-

ory outside of the segments will also cause a segmentation violation.

mremap() uses the Linux page table scheme. mremap() changes the mapping between virtual addresses

and memory pages. This can be used to implement a very efficient realloc(3).

The flags bit-mask argument may be 0, or include the following flag:

MREMAP_MAYMOVE

By default, if there is not sufficient space to expand a mapping at its current location, then

mremap() fails. If this flag is specified, then the kernel is permitted to relocate the mapping to a

new virtual address, if necessary. If the mapping is relocated, then absolute pointers into the old

mapping location become invalid (offsets relative to the starting address of the mapping should be

employed).

MREMAP_FIXED (since Linux 2.3.31)

This flag serves a similar purpose to the MAP_FIXED flag of mmap(2). If this flag is specified,

then mremap() accepts a fifth argument, void *new_address, which specifies a page-aligned ad-

dress to which the mapping must be moved. Any previous mapping at the address range specified

by new_address and new_size is unmapped. If MREMAP_FIXED is specified, then

MREMAP_MAYMOVE must also be specified.

If the memory segment specified by old_address and old_size is locked (using mlock(2) or similar), then

this lock is maintained when the segment is resized and/or relocated. As a consequence, the amount of

memory locked by the process may change.

RETURN VALUE
On success mremap() returns a pointer to the new virtual memory area. On error, the value

MAP_FAILED (that is, (void *) −1) is returned, and errno is set appropriately.

ERRORS
EAGAIN

The caller tried to expand a memory segment that is locked, but this was not possible without ex-

ceeding the RLIMIT_MEMLOCK resource limit.

Linux 2019-03-06 1



MREMAP(2) Linux Programmer’s Manual MREMAP(2)

EFAULT

"Segmentation fault." Some address in the range old_address to old_address+old_size is an invalid

virtual memory address for this process. You can also get EFAULT ev en if there exist mappings

that cover the whole address space requested, but those mappings are of different types.

EINVAL

An invalid argument was given. Possible causes are:

* old_address was not page aligned;

* a value other than MREMAP_MAYMOVE or MREMAP_FIXED was specified in flags;

* new_size was zero;

* new_size or new_address was inv alid;

* the new address range specified by new_address and new_size overlapped the old address

range specified by old_address and old_size;

* MREMAP_FIXED was specified without also specifying MREMAP_MAYMOVE;

* old_size was zero and old_address does not refer to a shareable mapping (but see BUGS);

* old_size was zero and the MREMAP_MAYMOVE flag was not specified.

ENOMEM

The memory area cannot be expanded at the current virtual address, and the MREMAP_MAY-

MOVE flag is not set in flags. Or, there is not enough (virtual) memory available.

CONFORMING TO
This call is Linux-specific, and should not be used in programs intended to be portable.

NOTES
Prior to version 2.4, glibc did not expose the definition of MREMAP_FIXED, and the prototype for

mremap() did not allow for the new_address argument.

If mremap() is used to move or expand an area locked with mlock(2) or equivalent, the mremap() call will

make a best effort to populate the new area but will not fail with ENOMEM if the area cannot be popu-

lated.

BUGS
Before Linux 4.14, if old_size was zero and the mapping referred to by old_address was a private mapping

(mmap(2) MAP_PRIVATE), mremap() created a new private mapping unrelated to the original mapping.

This behavior was unintended and probably unexpected in user-space applications (since the intention of

mremap() is to create a new mapping based on the original mapping). Since Linux 4.14, mremap() fails

with the error EINVAL in this scenario.

SEE ALSO
brk(2), getpagesize(2), getrlimit(2), mlock(2), mmap(2), sbrk(2), malloc(3), realloc(3)

Your favorite text book on operating systems for more information on paged memory (e.g., Modern Operat-

ing Systems by Andrew S. Tanenbaum, Inside Linux by Randolf Bentson, The Design of the UNIX Operat-

ing System by Maurice J. Bach)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-03-06 2


