
MQ_NOTIFY(3) Linux Programmer’s Manual MQ_NOTIFY(3)

NAME
mq_notify − register for notification when a message is available

SYNOPSIS
#include <mqueue.h>

int mq_notify(mqd_t mqdes, const struct sigevent *sevp);

Link with −lrt.

DESCRIPTION
mq_notify() allows the calling process to register or unregister for delivery of an asynchronous notification

when a new message arrives on the empty message queue referred to by the message queue descriptor

mqdes.

The sevp argument is a pointer to a sigevent structure. For the definition and general details of this struc-

ture, see sigevent(7).

If sevp is a non-null pointer, then mq_notify() registers the calling process to receive message notification.

The sigev_notify field of the sigevent structure to which sevp points specifies how notification is to be per-

formed. This field has one of the following values:

SIGEV_NONE

A "null" notification: the calling process is registered as the target for notification, but when a mes-

sage arrives, no notification is sent.

SIGEV_SIGNAL

Notify the process by sending the signal specified in sigev_signo. See sigevent(7) for general de-

tails. The si_code field of the siginfo_t structure will be set to SI_MESGQ. In addition, si_pid

will be set to the PID of the process that sent the message, and si_uid will be set to the real user ID

of the sending process.

SIGEV_THREAD

Upon message delivery, inv oke sigev_notify_function as if it were the start function of a new

thread. See sigevent(7) for details.

Only one process can be registered to receive notification from a message queue.

If sevp is NULL, and the calling process is currently registered to receive notifications for this message

queue, then the registration is removed; another process can then register to receive a message notification

for this queue.

Message notification occurs only when a new message arrives and the queue was previously empty. If the

queue was not empty at the time mq_notify() was called, then a notification will occur only after the queue

is emptied and a new message arrives.

If another process or thread is waiting to read a message from an empty queue using mq_receive(3), then

any message notification registration is ignored: the message is delivered to the process or thread calling

mq_receive(3), and the message notification registration remains in effect.

Notification occurs once: after a notification is delivered, the notification registration is removed, and an-

other process can register for message notification. If the notified process wishes to receive the next notifi-

cation, it can use mq_notify() to request a further notification. This should be done before emptying all un-

read messages from the queue. (Placing the queue in nonblocking mode is useful for emptying the queue

of messages without blocking once it is empty.)

RETURN VALUE
On success mq_notify() returns 0; on error, −1 is returned, with errno set to indicate the error.

ERRORS
EBADF

The message queue descriptor specified in mqdes is invalid.

Linux 2019-03-06 1

MQ_NOTIFY(3) Linux Programmer’s Manual MQ_NOTIFY(3)

EBUSY

Another process has already registered to receive notification for this message queue.

EINVAL

sevp−>sigev_notify is not one of the permitted values; or sevp−>sigev_notify is SIGEV_SIG-

NAL and sevp−>sigev_signo is not a valid signal number.

ENOMEM

Insufficient memory.

POSIX.1-2008 says that an implementation may generate an EINVAL error if sevp is NULL, and the caller

is not currently registered to receive notifications for the queue mqdes.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value

Thread safety MT-Safemq_notify()

CONFORMING TO
POSIX.1-2001.

NOTES
C library/kernel differences

In the glibc implementation, the mq_notify() library function is implemented on top of the system call of

the same name. When sevp is NULL, or specifies a notification mechanism other than SIGEV_THREAD,

the library function directly invokes the system call. For SIGEV_THREAD, much of the implementation

resides within the library, rather than the kernel. (This is necessarily so, since the thread involved in han-

dling the notification is one that must be managed by the C library POSIX threads implementation.) The

implementation involves the use of a raw netlink(7) socket and creates a new thread for each notification

that is delivered to the process.

EXAMPLE
The following program registers a notification request for the message queue named in its command-line

argument. Notification is performed by creating a thread. The thread executes a function which reads one

message from the queue and then terminates the process.

Program source

#include <pthread.h>

#include <mqueue.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define handle_error(msg) \

do { perror(msg); exit(EXIT_FAILURE); } while (0)

static void /* Thread start function */

tfunc(union sigval sv)

{

struct mq_attr attr;

ssize_t nr;

void *buf;

mqd_t mqdes = *((mqd_t *) sv.sival_ptr);

/* Determine max. msg size; allocate buffer to receive msg */

if (mq_getattr(mqdes, &attr) == −1)

handle_error("mq_getattr");

Linux 2019-03-06 2

MQ_NOTIFY(3) Linux Programmer’s Manual MQ_NOTIFY(3)

buf = malloc(attr.mq_msgsize);

if (buf == NULL)

handle_error("malloc");

nr = mq_receive(mqdes, buf, attr.mq_msgsize, NULL);

if (nr == −1)

handle_error("mq_receive");

printf("Read %zd bytes from MQ\n", nr);

free(buf);

exit(EXIT_SUCCESS); /* Terminate the process */

}

int

main(int argc, char *argv[])

{

mqd_t mqdes;

struct sigevent sev;

if (argc != 2) {

fprintf(stderr, "Usage: %s <mq−name>\n", argv[0]);

exit(EXIT_FAILURE);

}

mqdes = mq_open(argv[1], O_RDONLY);

if (mqdes == (mqd_t) −1)

handle_error("mq_open");

sev.sigev_notify = SIGEV_THREAD;

sev.sigev_notify_function = tfunc;

sev.sigev_notify_attributes = NULL;

sev.sigev_value.sival_ptr = &mqdes; /* Arg. to thread func. */

if (mq_notify(mqdes, &sev) == −1)

handle_error("mq_notify");

pause(); /* Process will be terminated by thread function */

}

SEE ALSO
mq_close(3), mq_getattr(3), mq_open(3), mq_receive(3), mq_send(3), mq_unlink(3), mq_overview(7),

sigevent(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-03-06 3

