
MOUNT_NAMESPACES(7) Linux Programmer’s Manual MOUNT_NAMESPACES(7)

NAME
mount_namespaces − overview of Linux mount namespaces

DESCRIPTION
For an overview of namespaces, see namespaces(7).

Mount namespaces provide isolation of the list of mount points seen by the processes in each namespace

instance. Thus, the processes in each of the mount namespace instances will see distinct single-directory

hierarchies.

The views provided by the /proc/[pid]/mounts, /proc/[pid]/mountinfo, and /proc/[pid]/mountstats files (all

described in proc(5)) correspond to the mount namespace in which the process with the PID [pid] resides.

(All of the processes that reside in the same mount namespace will see the same view in these files.)

A new mount namespace is created using either clone(2) or unshare(2) with the CLONE_NEWNS flag.

When a new mount namespace is created, its mount point list is initialized as follows:

* If the namespace is created using clone(2), the mount point list of the child’s namespace is a copy of the

mount point list in the parent’s namespace.

* If the namespace is created using unshare(2), the mount point list of the new namespace is a copy of

the mount point list in the caller’s previous mount namespace.

Subsequent modifications to the mount point list (mount(2) and umount(2)) in either mount namespace

will not (by default) affect the mount point list seen in the other namespace (but see the following discus-

sion of shared subtrees).

Restrictions on mount namespaces
Note the following points with respect to mount namespaces:

* Each mount namespace has an owner user namespace. As explained above, when a new mount name-

space is created, its mount point list is initialized as a copy of the mount point list of another mount

namespace. If the new namespace and the namespace from which the mount point list was copied are

owned by different user namespaces, then the new mount namespace is considered less privileged .

* When creating a less privileged mount namespace, shared mounts are reduced to slave mounts. (Shared

and slave mounts are discussed below.) This ensures that mappings performed in less privileged mount

namespaces will not propagate to more privileged mount namespaces.

* Mounts that come as a single unit from more privileged mount are locked together and may not be sepa-

rated in a less privileged mount namespace. (The unshare(2) CLONE_NEWNS operation brings

across all of the mounts from the original mount namespace as a single unit, and recursive mounts that

propagate between mount namespaces propagate as a single unit.)

* The mount(2) flags MS_RDONLY, MS_NOSUID, MS_NOEXEC, and the "atime" flags (MS_NOA-
TIME, MS_NODIRATIME, MS_RELATIME) settings become locked when propagated from a

more privileged to a less privileged mount namespace, and may not be changed in the less privileged

mount namespace.

* A file or directory that is a mount point in one namespace that is not a mount point in another name-

space, may be renamed, unlinked, or removed (rmdir(2)) in the mount namespace in which it is not a

mount point (subject to the usual permission checks). Consequently, the mount point is removed in the

mount namespace where it was a mount point.

Previously (before Linux 3.18), attempting to unlink, rename, or remove a file or directory that was a

mount point in another mount namespace would result in the error EBUSY. That behavior had techni-

cal problems of enforcement (e.g., for NFS) and permitted denial-of-service attacks against more privi-

leged users. (i.e., preventing individual files from being updated by bind mounting on top of them).

SHARED SUBTREES
After the implementation of mount namespaces was completed, experience showed that the isolation that

they provided was, in some cases, too great. For example, in order to make a newly loaded optical disk

available in all mount namespaces, a mount operation was required in each namespace. For this use case,

Linux 2019-08-02 1

MOUNT_NAMESPACES(7) Linux Programmer’s Manual MOUNT_NAMESPACES(7)

and others, the shared subtree feature was introduced in Linux 2.6.15. This feature allows for automatic,

controlled propagation of mount and unmount events between namespaces (or, more precisely, between the

members of a peer group that are propagating events to one another).

Each mount point is marked (via mount(2)) as having one of the following propagation types:

MS_SHARED
This mount point shares events with members of a peer group. Mount and unmount events imme-

diately under this mount point will propagate to the other mount points that are members of the

peer group. Propagation here means that the same mount or unmount will automatically occur

under all of the other mount points in the peer group. Conversely, mount and unmount events that

take place under peer mount points will propagate to this mount point.

MS_PRIVATE
This mount point is private; it does not have a peer group. Mount and unmount events do not

propagate into or out of this mount point.

MS_SLAVE
Mount and unmount events propagate into this mount point from a (master) shared peer group.

Mount and unmount events under this mount point do not propagate to any peer.

Note that a mount point can be the slave of another peer group while at the same time sharing

mount and unmount events with a peer group of which it is a member. (More precisely, one peer

group can be the slave of another peer group.)

MS_UNBINDABLE
This is like a private mount, and in addition this mount can’t be bind mounted. Attempts to bind

mount this mount (mount(2) with the MS_BIND flag) will fail.

When a recursive bind mount (mount(2) with the MS_BIND and MS_REC flags) is performed

on a directory subtree, any bind mounts within the subtree are automatically pruned (i.e., not repli-

cated) when replicating that subtree to produce the target subtree.

For a discussion of the propagation type assigned to a new mount, see NOTES.

The propagation type is a per-mount-point setting; some mount points may be marked as shared (with each

shared mount point being a member of a distinct peer group), while others are private (or slaved or unbind-

able).

Note that a mount’s propagation type determines whether mounts and unmounts of mount points immedi-

ately under the mount point are propagated. Thus, the propagation type does not affect propagation of

ev ents for grandchildren and further removed descendant mount points. What happens if the mount point

itself is unmounted is determined by the propagation type that is in effect for the parent of the mount point.

Members are added to a peer group when a mount point is marked as shared and either:

* the mount point is replicated during the creation of a new mount namespace; or

* a new bind mount is created from the mount point.

In both of these cases, the new mount point joins the peer group of which the existing mount point is a

member.

A new peer group is also created when a child mount point is created under an existing mount point that is

marked as shared. In this case, the new child mount point is also marked as shared and the resulting peer

group consists of all the mount points that are replicated under the peers of parent mount.

A mount ceases to be a member of a peer group when either the mount is explicitly unmounted, or when

the mount is implicitly unmounted because a mount namespace is removed (because it has no more mem-

ber processes).

The propagation type of the mount points in a mount namespace can be discovered via the "optional fields"

exposed in /proc/[pid]/mountinfo. (See proc(5) for details of this file.) The following tags can appear in

the optional fields for a record in that file:

Linux 2019-08-02 2

MOUNT_NAMESPACES(7) Linux Programmer’s Manual MOUNT_NAMESPACES(7)

shared:X

This mount point is shared in peer group X . Each peer group has a unique ID that is automatically

generated by the kernel, and all mount points in the same peer group will show the same ID.

(These IDs are assigned starting from the value 1, and may be recycled when a peer group ceases

to have any members.)

master:X

This mount is a slave to shared peer group X .

propagate_from:X (since Linux 2.6.26)

This mount is a slave and receives propagation from shared peer group X . This tag will always

appear in conjunction with a master:X tag. Here, X is the closest dominant peer group under the

process’s root directory. If X is the immediate master of the mount, or if there is no dominant peer

group under the same root, then only the master:X field is present and not the propagate_from:X

field. For further details, see below.

unbindable

This is an unbindable mount.

If none of the above tags is present, then this is a private mount.

MS_SHARED and MS_PRIVATE example
Suppose that on a terminal in the initial mount namespace, we mark one mount point as shared and another

as private, and then view the mounts in /proc/self/mountinfo:

sh1# mount −−make−shared /mntS
sh1# mount −−make−private /mntP
sh1# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ − .*//'
77 61 8:17 / /mntS rw,relatime shared:1
83 61 8:15 / /mntP rw,relatime

From the /proc/self/mountinfo output, we see that /mntS is a shared mount in peer group 1, and that /mntP

has no optional tags, indicating that it is a private mount. The first two fields in each record in this file are

the unique ID for this mount, and the mount ID of the parent mount. We can further inspect this file to see

that the parent mount point of /mntS and /mntP is the root directory, / , which is mounted as private:

sh1# cat /proc/self/mountinfo | awk '$1 == 61' | sed 's/ − .*//'
61 0 8:2 / / rw,relatime

On a second terminal, we create a new mount namespace where we run a second shell and inspect the

mounts:

$ PS1='sh2# ' sudo unshare −m −−propagation unchanged sh
sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ − .*//'
222 145 8:17 / /mntS rw,relatime shared:1
225 145 8:15 / /mntP rw,relatime

The new mount namespace received a copy of the initial mount namespace’s mount points. These new

mount points maintain the same propagation types, but have unique mount IDs. (The −−propagation un-

changed option prevents unshare(1) from marking all mounts as private when creating a new mount name-

space, which it does by default.)

In the second terminal, we then create submounts under each of /mntS and /mntP and inspect the set-up:

sh2# mkdir /mntS/a
sh2# mount /dev/sdb6 /mntS/a
sh2# mkdir /mntP/b
sh2# mount /dev/sdb7 /mntP/b
sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ − .*//'
222 145 8:17 / /mntS rw,relatime shared:1
225 145 8:15 / /mntP rw,relatime
178 222 8:22 / /mntS/a rw,relatime shared:2

Linux 2019-08-02 3

MOUNT_NAMESPACES(7) Linux Programmer’s Manual MOUNT_NAMESPACES(7)

230 225 8:23 / /mntP/b rw,relatime

From the above, it can be seen that /mntS/a was created as shared (inheriting this setting from its parent

mount) and /mntP/b was created as a private mount.

Returning to the first terminal and inspecting the set-up, we see that the new mount created under the

shared mount point /mntS propagated to its peer mount (in the initial mount namespace), but the new mount

created under the private mount point /mntP did not propagate:

sh1# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ − .*//'
77 61 8:17 / /mntS rw,relatime shared:1
83 61 8:15 / /mntP rw,relatime
179 77 8:22 / /mntS/a rw,relatime shared:2

MS_SLAVE example
Making a mount point a slave allows it to receive propagated mount and unmount events from a master

shared peer group, while preventing it from propagating events to that master. This is useful if we want to

(say) receive a mount event when an optical disk is mounted in the master shared peer group (in another

mount namespace), but want to prevent mount and unmount events under the slave mount from having side

effects in other namespaces.

We can demonstrate the effect of slaving by first marking two mount points as shared in the initial mount

namespace:

sh1# mount −−make−shared /mntX
sh1# mount −−make−shared /mntY
sh1# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ − .*//'
132 83 8:23 / /mntX rw,relatime shared:1
133 83 8:22 / /mntY rw,relatime shared:2

On a second terminal, we create a new mount namespace and inspect the mount points:

sh2# unshare −m −−propagation unchanged sh
sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ − .*//'
168 167 8:23 / /mntX rw,relatime shared:1
169 167 8:22 / /mntY rw,relatime shared:2

In the new mount namespace, we then mark one of the mount points as a slave:

sh2# mount −−make−slave /mntY
sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ − .*//'
168 167 8:23 / /mntX rw,relatime shared:1
169 167 8:22 / /mntY rw,relatime master:2

From the above output, we see that /mntY is now a slave mount that is receiving propagation events from

the shared peer group with the ID 2.

Continuing in the new namespace, we create submounts under each of /mntX and /mntY :

sh2# mkdir /mntX/a
sh2# mount /dev/sda3 /mntX/a
sh2# mkdir /mntY/b
sh2# mount /dev/sda5 /mntY/b

When we inspect the state of the mount points in the new mount namespace, we see that /mntX/a was cre-

ated as a new shared mount (inheriting the "shared" setting from its parent mount) and /mntY/b was created

as a private mount:

sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ − .*//'
168 167 8:23 / /mntX rw,relatime shared:1
169 167 8:22 / /mntY rw,relatime master:2
173 168 8:3 / /mntX/a rw,relatime shared:3
175 169 8:5 / /mntY/b rw,relatime

Linux 2019-08-02 4

MOUNT_NAMESPACES(7) Linux Programmer’s Manual MOUNT_NAMESPACES(7)

Returning to the first terminal (in the initial mount namespace), we see that the mount /mntX/a propagated

to the peer (the shared /mntX), but the mount /mntY/b was not propagated:

sh1# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ − .*//'
132 83 8:23 / /mntX rw,relatime shared:1
133 83 8:22 / /mntY rw,relatime shared:2
174 132 8:3 / /mntX/a rw,relatime shared:3

Now we create a new mount point under /mntY in the first shell:

sh1# mkdir /mntY/c
sh1# mount /dev/sda1 /mntY/c
sh1# cat /proc/self/mountinfo | grep ’/mnt’ | sed ’s/ − .*//’
132 83 8:23 / /mntX rw,relatime shared:1
133 83 8:22 / /mntY rw,relatime shared:2
174 132 8:3 / /mntX/a rw,relatime shared:3
178 133 8:1 / /mntY/c rw,relatime shared:4

When we examine the mount points in the second mount namespace, we see that in this case the new mount

has been propagated to the slave mount point, and that the new mount is itself a slave mount (to peer group

4):

sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ − .*//'
168 167 8:23 / /mntX rw,relatime shared:1
169 167 8:22 / /mntY rw,relatime master:2
173 168 8:3 / /mntX/a rw,relatime shared:3
175 169 8:5 / /mntY/b rw,relatime
179 169 8:1 / /mntY/c rw,relatime master:4

MS_UNBINDABLE example
One of the primary purposes of unbindable mounts is to avoid the "mount point explosion" problem when

repeatedly performing bind mounts of a higher-level subtree at a lower-level mount point. The problem is

illustrated by the following shell session.

Suppose we have a system with the following mount points:

mount | awk '{print $1, $2, $3}'
/dev/sda1 on /
/dev/sdb6 on /mntX
/dev/sdb7 on /mntY

Suppose furthermore that we wish to recursively bind mount the root directory under several users’ home

directories. We do this for the first user, and inspect the mount points:

mount −−rbind / /home/cecilia/
mount | awk '{print $1, $2, $3}'
/dev/sda1 on /
/dev/sdb6 on /mntX
/dev/sdb7 on /mntY
/dev/sda1 on /home/cecilia
/dev/sdb6 on /home/cecilia/mntX
/dev/sdb7 on /home/cecilia/mntY

When we repeat this operation for the second user, we start to see the explosion problem:

mount −−rbind / /home/henry
mount | awk '{print $1, $2, $3}'
/dev/sda1 on /
/dev/sdb6 on /mntX
/dev/sdb7 on /mntY
/dev/sda1 on /home/cecilia
/dev/sdb6 on /home/cecilia/mntX

Linux 2019-08-02 5

MOUNT_NAMESPACES(7) Linux Programmer’s Manual MOUNT_NAMESPACES(7)

/dev/sdb7 on /home/cecilia/mntY
/dev/sda1 on /home/henry
/dev/sdb6 on /home/henry/mntX
/dev/sdb7 on /home/henry/mntY
/dev/sda1 on /home/henry/home/cecilia
/dev/sdb6 on /home/henry/home/cecilia/mntX
/dev/sdb7 on /home/henry/home/cecilia/mntY

Under /home/henry, we hav e not only recursively added the /mntX and /mntY mounts, but also the recur-

sive mounts of those directories under /home/cecilia that were created in the previous step. Upon repeating

the step for a third user, it becomes obvious that the explosion is exponential in nature:

mount −−rbind / /home/otto
mount | awk '{print $1, $2, $3}'
/dev/sda1 on /
/dev/sdb6 on /mntX
/dev/sdb7 on /mntY
/dev/sda1 on /home/cecilia
/dev/sdb6 on /home/cecilia/mntX
/dev/sdb7 on /home/cecilia/mntY
/dev/sda1 on /home/henry
/dev/sdb6 on /home/henry/mntX
/dev/sdb7 on /home/henry/mntY
/dev/sda1 on /home/henry/home/cecilia
/dev/sdb6 on /home/henry/home/cecilia/mntX
/dev/sdb7 on /home/henry/home/cecilia/mntY
/dev/sda1 on /home/otto
/dev/sdb6 on /home/otto/mntX
/dev/sdb7 on /home/otto/mntY
/dev/sda1 on /home/otto/home/cecilia
/dev/sdb6 on /home/otto/home/cecilia/mntX
/dev/sdb7 on /home/otto/home/cecilia/mntY
/dev/sda1 on /home/otto/home/henry
/dev/sdb6 on /home/otto/home/henry/mntX
/dev/sdb7 on /home/otto/home/henry/mntY
/dev/sda1 on /home/otto/home/henry/home/cecilia
/dev/sdb6 on /home/otto/home/henry/home/cecilia/mntX
/dev/sdb7 on /home/otto/home/henry/home/cecilia/mntY

The mount explosion problem in the above scenario can be avoided by making each of the new mounts un-

bindable. The effect of doing this is that recursive mounts of the root directory will not replicate the un-

bindable mounts. We make such a mount for the first user:

mount −−rbind −−make−unbindable / /home/cecilia

Before going further, we show that unbindable mounts are indeed unbindable:

mkdir /mntZ
mount −−bind /home/cecilia /mntZ
mount: wrong fs type, bad option, bad superblock on /home/cecilia,

missing codepage or helper program, or other error

In some cases useful info is found in syslog − try
dmesg | tail or so.

Now we create unbindable recursive bind mounts for the other two users:

mount −−rbind −−make−unbindable / /home/henry
mount −−rbind −−make−unbindable / /home/otto

Linux 2019-08-02 6

MOUNT_NAMESPACES(7) Linux Programmer’s Manual MOUNT_NAMESPACES(7)

Upon examining the list of mount points, we see there has been no explosion of mount points, because the

unbindable mounts were not replicated under each user’s directory:

mount | awk '{print $1, $2, $3}'
/dev/sda1 on /
/dev/sdb6 on /mntX
/dev/sdb7 on /mntY
/dev/sda1 on /home/cecilia
/dev/sdb6 on /home/cecilia/mntX
/dev/sdb7 on /home/cecilia/mntY
/dev/sda1 on /home/henry
/dev/sdb6 on /home/henry/mntX
/dev/sdb7 on /home/henry/mntY
/dev/sda1 on /home/otto
/dev/sdb6 on /home/otto/mntX
/dev/sdb7 on /home/otto/mntY

Propagation type transitions
The following table shows the effect that applying a new propagation type (i.e., mount −−make−xxxx) has

on the existing propagation type of a mount point. The rows correspond to existing propagation types, and

the columns are the new propagation settings. For reasons of space, "private" is abbreviated as "priv" and

"unbindable" as "unbind".

make-shared make-slave make-priv make-unbind
shared shared slave/priv [1] priv unbind

slave slave+shared slave [2] priv unbind

slave+shared slave+shared slave priv unbind

private shared priv [2] priv unbind

unbindable shared unbind [2] priv unbind

Note the following details to the table:

[1] If a shared mount is the only mount in its peer group, making it a slave automatically makes it private.

[2] Slaving a nonshared mount has no effect on the mount.

Bind (MS_BIND) semantics
Suppose that the following command is performed:

mount −−bind A/a B/b

Here, A is the source mount point, B is the destination mount point, a is a subdirectory path under the

mount point A, and b is a subdirectory path under the mount point B. The propagation type of the resulting

mount, B/b, depends on the propagation types of the mount points A and B, and is summarized in the fol-

lowing table.

source(A)
shared private slave unbind

dest(B) shared | shared shared slave+shared invalid

nonshared | shared private slave inv alid

Note that a recursive bind of a subtree follows the same semantics as for a bind operation on each mount in

the subtree. (Unbindable mounts are automatically pruned at the target mount point.)

For further details, see Documentation/filesystems/sharedsubtree.txt in the kernel source tree.

Move (MS_MOVE) semantics
Suppose that the following command is performed:

mount −−move A B/b

Here, A is the source mount point, B is the destination mount point, and b is a subdirectory path under the

Linux 2019-08-02 7

MOUNT_NAMESPACES(7) Linux Programmer’s Manual MOUNT_NAMESPACES(7)

mount point B. The propagation type of the resulting mount, B/b, depends on the propagation types of the

mount points A and B, and is summarized in the following table.

source(A)
shared private slave unbind

dest(B) shared | shared shared slave+shared invalid

nonshared | shared private slave unbindable

Note: moving a mount that resides under a shared mount is invalid.

For further details, see Documentation/filesystems/sharedsubtree.txt in the kernel source tree.

Mount semantics
Suppose that we use the following command to create a mount point:

mount device B/b

Here, B is the destination mount point, and b is a subdirectory path under the mount point B. The propaga-

tion type of the resulting mount, B/b, follows the same rules as for a bind mount, where the propagation

type of the source mount is considered always to be private.

Unmount semantics
Suppose that we use the following command to tear down a mount point:

unmount A

Here, A is a mount point on B/b, where B is the parent mount and b is a subdirectory path under the mount

point B. If B is shared, then all most-recently-mounted mounts at b on mounts that receive propagation

from mount B and do not have submounts under them are unmounted.

The /proc/[pid]/mountinfo propagate_from tag
The propagate_from:X tag is shown in the optional fields of a /proc/[pid]/mountinfo record in cases where

a process can’t see a slave’s immediate master (i.e., the pathname of the master is not reachable from the

filesystem root directory) and so cannot determine the chain of propagation between the mounts it can see.

In the following example, we first create a two-link master-slave chain between the mounts /mnt, /tmp/etc,

and /mnt/tmp/etc. Then the chroot(1) command is used to make the /tmp/etc mount point unreachable

from the root directory, creating a situation where the master of /mnt/tmp/etc is not reachable from the

(new) root directory of the process.

First, we bind mount the root directory onto /mnt and then bind mount /proc at /mnt/proc so that after the

later chroot(1) the proc(5) filesystem remains visible at the correct location in the chroot-ed environment.

mkdir −p /mnt/proc
mount −−bind / /mnt
mount −−bind /proc /mnt/proc

Next, we ensure that the /mnt mount is a shared mount in a new peer group (with no peers):

mount −−make−private /mnt # Isolate from any previous peer group
mount −−make−shared /mnt
cat /proc/self/mountinfo | grep '/mnt' | sed 's/ − .*//'
239 61 8:2 / /mnt ... shared:102
248 239 0:4 / /mnt/proc ... shared:5

Next, we bind mount /mnt/etc onto /tmp/etc:

mkdir −p /tmp/etc
mount −−bind /mnt/etc /tmp/etc
cat /proc/self/mountinfo | egrep '/mnt|/tmp/' | sed 's/ − .*//'
239 61 8:2 / /mnt ... shared:102
248 239 0:4 / /mnt/proc ... shared:5
267 40 8:2 /etc /tmp/etc ... shared:102

Initially, these two mount points are in the same peer group, but we then make the /tmp/etc a slave of

Linux 2019-08-02 8

MOUNT_NAMESPACES(7) Linux Programmer’s Manual MOUNT_NAMESPACES(7)

/mnt/etc, and then make /tmp/etc shared as well, so that it can propagate events to the next slave in the

chain:

mount −−make−slave /tmp/etc
mount −−make−shared /tmp/etc
cat /proc/self/mountinfo | egrep '/mnt|/tmp/' | sed 's/ − .*//'
239 61 8:2 / /mnt ... shared:102
248 239 0:4 / /mnt/proc ... shared:5
267 40 8:2 /etc /tmp/etc ... shared:105 master:102

Then we bind mount /tmp/etc onto /mnt/tmp/etc. Again, the two mount points are initially in the same peer

group, but we then make /mnt/tmp/etc a slave of /tmp/etc:

mkdir −p /mnt/tmp/etc
mount −−bind /tmp/etc /mnt/tmp/etc
mount −−make−slave /mnt/tmp/etc
cat /proc/self/mountinfo | egrep '/mnt|/tmp/' | sed 's/ − .*//'
239 61 8:2 / /mnt ... shared:102
248 239 0:4 / /mnt/proc ... shared:5
267 40 8:2 /etc /tmp/etc ... shared:105 master:102
273 239 8:2 /etc /mnt/tmp/etc ... master:105

From the above, we see that /mnt is the master of the slave /tmp/etc, which in turn is the master of the slave

/mnt/tmp/etc.

We then chroot(1) to the /mnt directory, which renders the mount with ID 267 unreachable from the (new)

root directory:

chroot /mnt

When we examine the state of the mounts inside the chroot-ed environment, we see the following:

cat /proc/self/mountinfo | sed 's/ − .*//'
239 61 8:2 / / ... shared:102
248 239 0:4 / /proc ... shared:5
273 239 8:2 /etc /tmp/etc ... master:105 propagate_from:102

Above, we see that the mount with ID 273 is a slave whose master is the peer group 105. The mount point

for that master is unreachable, and so a propagate_from tag is displayed, indicating that the closest domi-

nant peer group (i.e., the nearest reachable mount in the slave chain) is the peer group with the ID 102 (cor-

responding to the /mnt mount point before the chroot(1) was performed.

VERSIONS
Mount namespaces first appeared in Linux 2.4.19.

CONFORMING TO
Namespaces are a Linux-specific feature.

NOTES
The propagation type assigned to a new mount point depends on the propagation type of the parent mount.

If the mount point has a parent (i.e., it is a non-root mount point) and the propagation type of the parent is

MS_SHARED, then the propagation type of the new mount is also MS_SHARED. Otherwise, the propa-

gation type of the new mount is MS_PRIVATE.

Notwithstanding the fact that the default propagation type for new mount points is in many cases MS_PRI-
VA TE, MS_SHARED is typically more useful. For this reason, systemd(1) automatically remounts all

mount points as MS_SHARED on system startup. Thus, on most modern systems, the default propagation

type is in practice MS_SHARED.

Since, when one uses unshare(1) to create a mount namespace, the goal is commonly to provide full isola-

tion of the mount points in the new namespace, unshare(1) (since util-linux version 2.27) in turn reverses

the step performed by systemd(1), by making all mount points private in the new namespace. That is, un-
share(1) performs the equivalent of the following in the new mount namespace:

Linux 2019-08-02 9

MOUNT_NAMESPACES(7) Linux Programmer’s Manual MOUNT_NAMESPACES(7)

mount −−make−rprivate /

To prevent this, one can use the −−propagation unchanged option to unshare(1).

An application that creates a new mount namespace directly using clone(2) or unshare(2) may desire to

prevent propagation of mount events to other mount namespaces (as is done by unshare(1)). This can be

done by changing the propagation type of mount points in the new namespace to either MS_SLAVE or

MS_PRIVATE. using a call such as the following:

mount(NULL, "/", MS_SLAVE | MS_REC, NULL);

For a discussion of propagation types when moving mounts (MS_MOVE) and creating bind mounts

(MS_BIND), see Documentation/filesystems/sharedsubtree.txt.

EXAMPLE
See pivot_root(2).

SEE ALSO
unshare(1), clone(2), mount(2), pivot_root(2), setns(2), umount(2), unshare(2), proc(5), name-
spaces(7), user_namespaces(7), findmnt(8), pivot_root(8)

Documentation/filesystems/sharedsubtree.txt in the kernel source tree.

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-08-02 10

