
MKFS.BTRFS(8) Btrfs Manual MKFS.BTRFS(8)

NAME
mkfs.btrfs − create a btrfs filesystem

SYNOPSIS
mkfs.btrfs [options] <device> [<device>...]

DESCRIPTION
mkfs.btrfs is used to create the btrfs filesystem on a single or multiple devices. <device> is typically a

block device but can be a file−backed image as well. Multiple devices are grouped by UUID of the

filesystem.

Before mounting such filesystem, the kernel module must know all the devices either via preceding

execution of btrfs device scan or using the device mount option. See section MULTIPLE DEVICES for

more details.

OPTIONS
−b|−−byte−count <size>

Specify the size of the filesystem. If this option is not used, then mkfs.btrfs uses the entire device

space for the filesystem.

−−csum <type>, −−checksum <type>

Specify the checksum algorithm. Default is crc32c. Valid values are crc32c, xxhash, sha256 or blake2.

To mount such filesystem kernel must support the checksums as well. See CHECKSUM

ALGORITHMS in btrfs(5).

−d|−−data <profile>

Specify the profile for the data block groups. Valid values are raid0, raid1, raid5, raid6, raid10 or

single or dup (case does not matter).

See DUP PROFILES ON A SINGLE DEVICE for more details.

−m|−−metadata <profile>

Specify the profile for the metadata block groups. Valid values are raid0, raid1, raid5, raid6, raid10,

single or dup (case does not matter).

A single device filesystem will default to DUP, unless an SSD is detected, in which case it will default

to single. The detection is based on the value of /sys/block/DEV/queue/rotational, where DEV is the

short name of the device.

Note that the rotational status can be arbitrarily set by the underlying block device driver and may not

reflect the true status (network block device, memory−backed SCSI devices etc). Use the options

−−data/−−metadata to avoid confusion.

See DUP PROFILES ON A SINGLE DEVICE for more details.

−M|−−mixed
Normally the data and metadata block groups are isolated. The mixed mode will remove the isolation

and store both types in the same block group type. This helps to utilize the free space regardless of the

purpose and is suitable for small devices. The separate allocation of block groups leads to a situation

where the space is reserved for the other block group type, is not available for allocation and can lead

to ENOSPC state.

The recommended size for the mixed mode is for filesystems less than 1GiB. The soft

recommendation is to use it for filesystems smaller than 5GiB. The mixed mode may lead to degraded

performance on larger filesystems, but is otherwise usable, even on multiple devices.

The nodesize and sectorsize must be equal, and the block group types must match.

Note
versions up to 4.2.x forced the mixed mode for devices smaller than 1GiB. This has been removed in 4.3+ as

Btrfs v5.4.1 01/09/2020 1

MKFS.BTRFS(8) Btrfs Manual MKFS.BTRFS(8)

it caused some usability issues.

−l|−−leafsize <size>

Alias for −−nodesize. Deprecated.

−n|−−nodesize <size>

Specify the nodesize, the tree block size in which btrfs stores metadata. The default value is 16KiB

(16384) or the page size, whichever is bigger. Must be a multiple of the sectorsize and a power of 2,

but not larger than 64KiB (65536). Leafsize always equals nodesize and the options are aliases.

Smaller node size increases fragmentation but leads to taller b−trees which in turn leads to lower

locking contention. Higher node sizes give better packing and less fragmentation at the cost of more

expensive memory operations while updating the metadata blocks.

Note
versions up to 3.11 set the nodesize to 4k.

−s|−−sectorsize <size>

Specify the sectorsize, the minimum data block allocation unit.

The default value is the page size and is autodetected. If the sectorsize differs from the page size, the

created filesystem may not be mountable by the kernel. Therefore it is not recommended to use this

option unless you are going to mount it on a system with the appropriate page size.

−L|−−label <string>

Specify a label for the filesystem. The string should be less than 256 bytes and must not contain

newline characters.

−K|−−nodiscard
Do not perform whole device TRIM operation on devices that are capable of that. This does not affect

discard/trim operation when the filesystem is mounted. Please see the mount option discard for that in

btrfs(5).

−r|−−rootdir <rootdir>

Populate the toplevel subvolume with files from rootdir. This does not require root permissions to

write the new files or to mount the filesystem.

Note
This option may enlarge the image or file to ensure it’s big enough to contain the files from rootdir. Since

version 4.14.1 the filesystem size is not minimized. Please see option −−shrink if you need that

functionality.

−−shrink
Shrink the filesystem to its minimal size, only works with −−rootdir option.

If the destination is a regular file, this option will also truncate the file to the minimal size. Otherwise it

will reduce the filesystem available space. Extra space will not be usable unless the filesystem is

mounted and resized using btrfs filesystem resize.

Note
prior to version 4.14.1, the shrinking was done automatically.

−O|−−features <feature1>[,<feature2>...]
A list of filesystem features turned on at mkfs time. Not all features are supported by old kernels. To

disable a feature, prefix it with ˆ.

See section FILESYSTEM FEATURES for more details. To see all available features that mkfs.btrfs

supports run:

mkfs.btrfs −O list−all

Btrfs v5.4.1 01/09/2020 2

MKFS.BTRFS(8) Btrfs Manual MKFS.BTRFS(8)

−f|−−force
Forcibly overwrite the block devices when an existing filesystem is detected. By default, mkfs.btrfs

will utilize libblkid to check for any known filesystem on the devices. Alternatively you can use the

wipefs utility to clear the devices.

−q|−−quiet
Print only error or warning messages. Options −−features or −−help are unaffected.

−U|−−uuid <UUID>

Create the filesystem with the given UUID. The UUID must not exist on any filesystem currently

present.

−V|−−version
Print the mkfs.btrfs version and exit.

−−help
Print help.

−A|−−alloc−start <offset>

deprecated, will be removed (An option to help debugging chunk allocator.) Specify the (physical)

offset from the start of the device at which allocations start. The default value is zero.

SIZE UNITS
The default unit is byte. All size parameters accept suffixes in the 1024 base. The recognized suffixes are: k,

m, g, t, p, e, both uppercase and lowercase.

MULTIPLE DEVICES
Before mounting a multiple device filesystem, the kernel module must know the association of the block

devices that are attached to the filesystem UUID.

There is typically no action needed from the user. On a system that utilizes a udev−like daemon, any new

block device is automatically registered. The rules call btrfs device scan.

The same command can be used to trigger the device scanning if the btrfs kernel module is reloaded

(naturally all previous information about the device registration is lost).

Another possibility is to use the mount options device to specify the list of devices to scan at the time of

mount.

mount −o device=/dev/sdb,device=/dev/sdc /dev/sda /mnt

Note
that this means only scanning, if the devices do not exist in the system, mount will fail anyway. This can happen

on systems without initramfs/initrd and root partition created with RAID1/10/5/6 profiles. The mount action can

happen before all block devices are discovered. The waiting is usually done on the initramfs/initrd systems.

As of kernel 4.14, RAID5/6 is still considered experimental and shouldn’t be employed for production use.

FILESYSTEM FEATURES
Features that can be enabled during creation time. See also btrfs(5) section FILESYSTEM FEATURES.

mixed−bg
(kernel support since 2.6.37)

mixed data and metadata block groups, also set by option −−mixed

extref
(default since btrfs−progs 3.12, kernel support since 3.7)

increased hardlink limit per file in a directory to 65536, older kernels supported a varying number of

Btrfs v5.4.1 01/09/2020 3

MKFS.BTRFS(8) Btrfs Manual MKFS.BTRFS(8)

hardlinks depending on the sum of all file name sizes that can be stored into one metadata block

raid56
(kernel support since 3.9)

extended format for RAID5/6, also enabled if raid5 or raid6 block groups are selected

skinny−metadata
(default since btrfs−progs 3.18, kernel support since 3.10)

reduced−size metadata for extent references, saves a few percent of metadata

no−holes
(kernel support since 3.14)

improved representation of file extents where holes are not explicitly stored as an extent, saves a few

percent of metadata if sparse files are used

BLOCK GROUPS, CHUNKS, RAID
The highlevel org anizational units of a filesystem are block groups of three types: data, metadata and

system.

DATA
store data blocks and nothing else

METADAT A
store internal metadata in b−trees, can store file data if they fit into the inline limit

SYSTEM
store structures that describe the mapping between the physical devices and the linear logical space

representing the filesystem

Other terms commonly used:

block group, chunk
a logical range of space of a given profile, stores data, metadata or both; sometimes the terms are used

interchangeably

A typical size of metadata block group is 256MiB (filesystem smaller than 50GiB) and 1GiB (larger

than 50GiB), for data it’s 1GiB. The system block group size is a few meg abytes.

RAID
a block group profile type that utilizes RAID−like features on multiple devices: striping, mirroring,

parity

profile
when used in connection with block groups refers to the allocation strategy and constraints, see the

section PROFILES for more details

PROFILES
There are the following block group types available:

Btrfs v5.4.1 01/09/2020 4

MKFS.BTRFS(8) Btrfs Manual MKFS.BTRFS(8)

RedundancyProfile

Copies Parity Striping

Space
utilization

Min/max
devices

single 1 100% 1/any

DUP 2 / 1 device 50% 1/any ˆ(see note

1)

RAID0 1 to N 100% 2/any

RAID1 2 50% 2/any

RAID1C3 3 33% 3/any

RAID1C4 4 25% 4/any

RAID10 2 1 to N 50% 4/any

RAID5 1 1 2 to N−1 (N−1)/N 2/any ˆ(see note

2)

RAID6 1 2 3 to N−2 (N−2)/N 3/any ˆ(see note

3)

Warning
It’s not recommended to create filesystems with RAID0/1/10/5/6 profiles on partitions from the same device.

Neither redundancy nor performance will be improved.

Note 1: DUP may exist on more than 1 device if it starts on a single device and another one is added. Since version

4.5.1, mkfs.btrfs will let you create DUP on multiple devices without restrictions.

Note 2: It’s not recommended to use 2 devices with RAID5. In that case, parity stripe will contain the same data as the

data stripe, making RAID5 degraded to RAID1 with more overhead.

Note 3: It’s also not recommended to use 3 devices with RAID6, unless you want to get effectively 3 copies in a

RAID1−like manner (but not exactly that).

Note 4: Since kernel 5.5 it’s possible to use RAID1C3 as replacement for RAID6, higher space cost but reliable.

PROFILE LAYOUT
For the following examples, assume devices numbered by 1, 2, 3 and 4, data or metadata blocks A, B, C, D,

with possible stripes eg. A1, A2 that would be logically A, etc. For parity profiles PA and QA are parity and

syndrom, associated with the given stripe. The simple layouts single or DUP are left out. Actual physical

block placement on devices depends on current state of the free/allocated space and may appear random.

All devices are assumed to be present at the time of the blocks would have been written.

RAID1

Btrfs v5.4.1 01/09/2020 5

MKFS.BTRFS(8) Btrfs Manual MKFS.BTRFS(8)

device 1 device 2 device 3 device 4

A D

B C

C

D A B

RAID1C3

device 1 device 2 device 3 device 4

A A D

B B

C A C

D D C B

RAID0

device 1 device 2 device 3 device 4

A2 C3 A3 C2

B1 A1 D2 B3

C1 D3 B4 D1

D4 B2 C4 A4

RAID5

device 1 device 2 device 3 device 4

A2 C3 A3 C2

B1 A1 D2 B3

C1 D3 PB D1

PD B2 PC PA

RAID6

Btrfs v5.4.1 01/09/2020 6

MKFS.BTRFS(8) Btrfs Manual MKFS.BTRFS(8)

device 1 device 2 device 3 device 4

A2 QC QA C2

B1 A1 D2 QB

C1 QD PB D1

PD B2 PC PA

DUP PROFILES ON A SINGLE DEVICE
The mkfs utility will let the user create a filesystem with profiles that write the logical blocks to 2 physical

locations. Whether there are really 2 physical copies highly depends on the underlying device type.

For example, a SSD drive can remap the blocks internally to a single copy—thus deduplicating them. This

negates the purpose of increased redundancy and just wastes filesystem space without providing the

expected level of redundancy.

The duplicated data/metadata may still be useful to statistically improve the chances on a device that might

perform some internal optimizations. The actual details are not usually disclosed by vendors. For example

we could expect that not all blocks get deduplicated. This will provide a non−zero probability of recovery

compared to a zero chance if the single profile is used. The user should make the tradeoff decision. The

deduplication in SSDs is thought to be widely available so the reason behind the mkfs default is to not give

a false sense of redundancy.

As another example, the widely used USB flash or SD cards use a translation layer between the logical and

physical view of the device. The data lifetime may be affected by frequent plugging. The memory cells

could get damaged, hopefully not destroying both copies of particular data in case of DUP.

The wear levelling techniques can also lead to reduced redundancy, even if the device does not do any

deduplication. The controllers may put data written in a short timespan into the same physical storage unit

(cell, block etc). In case this unit dies, both copies are lost. BTRFS does not add any artificial delay

between metadata writes.

The traditional rotational hard drives usually fail at the sector level.

In any case, a device that starts to misbehave and repairs from the DUP copy should be replaced! DUP is
not backup.

KNOWN ISSUES
SMALL FILESYSTEMS AND LARGE NODESIZE

The combination of small filesystem size and large nodesize is not recommended in general and can lead to

various ENOSPC−related issues during mount time or runtime.

Since mixed block group creation is optional, we allow small filesystem instances with differing values for

sectorsize and nodesize to be created and could end up in the following situation:

mkfs.btrfs −f −n 65536 /dev/loop0

btrfs−progs v3.19−rc2−405−g976307c

See http://btrfs.wiki.kernel.org for more information.

Performing full device TRIM (512.00MiB) ...

Label: (null)

Btrfs v5.4.1 01/09/2020 7

MKFS.BTRFS(8) Btrfs Manual MKFS.BTRFS(8)

UUID: 49fab72e−0c8b−466b−a3ca−d1bfe56475f0

Node size: 65536

Sector size: 4096

Filesystem size: 512.00MiB

Block group profiles:

Data: single 8.00MiB

Metadata: DUP 40.00MiB

System: DUP 12.00MiB

SSD detected: no

Incompat features: extref, skinny−metadata

Number of devices: 1

Devices:

ID SIZE PATH

1 512.00MiB /dev/loop0

mount /dev/loop0 /mnt/

mount: mount /dev/loop0 on /mnt failed: No space left on device

The ENOSPC occurs during the creation of the UUID tree. This is caused by large metadata blocks and

space reservation strategy that allocates more than can fit into the filesystem.

AV AILABILITY
mkfs.btrfs is part of btrfs−progs. Please refer to the btrfs wiki http://btrfs.wiki.kernel.org for further

details.

SEE ALSO
btrfs(5), btrfs(8), wipefs(8)

Btrfs v5.4.1 01/09/2020 8

