
MKFIFO(3) Linux Programmer’s Manual MKFIFO(3)

NAME
mkfifo, mkfifoat − make a FIFO special file (a named pipe)

SYNOPSIS
#include <sys/types.h>

#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);

#include <fcntl.h> /* Definition of AT_* constants */

#include <sys/stat.h>

int mkfifoat(int dirfd , const char *pathname, mode_t mode);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mkfifoat():

Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L

Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
mkfifo() makes a FIFO special file with name pathname. mode specifies the FIFO’s permissions. It is

modified by the process’s umask in the usual way: the permissions of the created file are (mode &

˜umask).

A FIFO special file is similar to a pipe, except that it is created in a different way. Instead of being an

anonymous communications channel, a FIFO special file is entered into the filesystem by calling mkfifo().

Once you have created a FIFO special file in this way, any process can open it for reading or writing, in the

same way as an ordinary file. However, it has to be open at both ends simultaneously before you can pro-

ceed to do any input or output operations on it. Opening a FIFO for reading normally blocks until some

other process opens the same FIFO for writing, and vice versa. See fifo(7) for nonblocking handling of

FIFO special files.

mkfifoat()

The mkfifoat() function operates in exactly the same way as mkfifo(), except for the differences described

here.

If the pathname given in pathname is relative, then it is interpreted relative to the directory referred to by

the file descriptor dirfd (rather than relative to the current working directory of the calling process, as is

done by mkfifo() for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is interpreted relative to

the current working directory of the calling process (like mkfifo()).

If pathname is absolute, then dirfd is ignored.

RETURN VALUE
On success mkfifo() and mkfifoat() return 0. In the case of an error, −1 is returned (in which case, errno is

set appropriately).

ERRORS
EACCES

One of the directories in pathname did not allow search (execute) permission.

EDQUOT

The user’s quota of disk blocks or inodes on the filesystem has been exhausted.

EEXIST

pathname already exists. This includes the case where pathname is a symbolic link, dangling or

not.

GNU 2017-09-15 1



MKFIFO(3) Linux Programmer’s Manual MKFIFO(3)

ENAMETOOLONG

Either the total length of pathname is greater than PATH_MAX, or an individual filename compo-

nent has a length greater than NAME_MAX. In the GNU system, there is no imposed limit on

overall filename length, but some filesystems may place limits on the length of a component.

ENOENT

A directory component in pathname does not exist or is a dangling symbolic link.

ENOSPC

The directory or filesystem has no room for the new file.

ENOTDIR

A component used as a directory in pathname is not, in fact, a directory.

EROFS

pathname refers to a read-only filesystem.

The following additional errors can occur for mkfifoat():

EBADF

dirfd is not a valid file descriptor.

ENOTDIR

pathname is a relative path and dirfd is a file descriptor referring to a file other than a directory.

VERSIONS
mkfifoat() was added to glibc in version 2.4. It is implemented using mknodat(2), available on Linux

since kernel 2.6.16.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value

Thread safety MT-Safemkfifo(), mkfifoat()

CONFORMING TO
mkfifo(): POSIX.1-2001, POSIX.1-2008.

mkfifoat(): POSIX.1-2008.

SEE ALSO
mkfifo(1), close(2), open(2), read(2), stat(2), umask(2), write(2), fifo(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

GNU 2017-09-15 2


