
MEMFD_CREATE(2) Linux Programmer’s Manual MEMFD_CREATE(2)

NAME
memfd_create − create an anonymous file

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */

#include <sys/mman.h>

int memfd_create(const char *name, unsigned int flags);

DESCRIPTION
memfd_create() creates an anonymous file and returns a file descriptor that refers to it. The file behaves

like a regular file, and so can be modified, truncated, memory-mapped, and so on. However, unlike a regu-

lar file, it lives in RAM and has a volatile backing storage. Once all references to the file are dropped, it is

automatically released. Anonymous memory is used for all backing pages of the file. Therefore, files cre-

ated by memfd_create() have the same semantics as other anonymous memory allocations such as those

allocated using mmap(2) with the MAP_ANONYMOUS flag.

The initial size of the file is set to 0. Following the call, the file size should be set using ftruncate(2). (Al-

ternatively, the file may be populated by calls to write(2) or similar.)

The name supplied in name is used as a filename and will be displayed as the target of the corresponding

symbolic link in the directory /proc/self/fd/ . The displayed name is always prefixed with memfd: and

serves only for debugging purposes. Names do not affect the behavior of the file descriptor, and as such

multiple files can have the same name without any side effects.

The following values may be bitwise ORed in flags to change the behavior of memfd_create():

MFD_CLOEXEC

Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See the description of the

O_CLOEXEC flag in open(2) for reasons why this may be useful.

MFD_ALLOW_SEALING

Allow sealing operations on this file. See the discussion of the F_ADD_SEALS and

F_GET_SEALS operations in fcntl(2), and also NOTES, below. The initial set of seals is empty.

If this flag is not set, the initial set of seals will be F_SEAL_SEAL, meaning that no other seals

can be set on the file.

MFD_HUGETLB (since Linux 4.14)

The anonymous file will be created in the hugetlbfs filesystem using huge pages. See the Linux

kernel source file Documentation/admin-guide/mm/hugetlbpage.rst for more information about

hugetlbfs. Specifying both MFD_HUGETLB and MFD_ALLOW_SEALING in flags is sup-

ported since Linux 4.16.

MFD_HUGE_2MB, MFD_HUGE_1GB, ...

Used in conjunction with MFD_HUGETLB to select alternative hugetlb page sizes (respectively,

2 MB, 1 GB, ...) on systems that support multiple hugetlb page sizes. Definitions for known huge

page sizes are included in the header file <linux/memfd.h>.

For details on encoding huge page sizes not included in the header file, see the discussion of the

similarly named constants in mmap(2).

Unused bits in flags must be 0.

As its return value, memfd_create() returns a new file descriptor that can be used to refer to the file. This

file descriptor is opened for both reading and writing (O_RDWR) and O_LARGEFILE is set for the file

descriptor.

With respect to fork(2) and execve(2), the usual semantics apply for the file descriptor created by

memfd_create(). A copy of the file descriptor is inherited by the child produced by fork(2) and refers to

the same file. The file descriptor is preserved across execve(2), unless the close-on-exec flag has been set.

Linux 2020-02-09 1



MEMFD_CREATE(2) Linux Programmer’s Manual MEMFD_CREATE(2)

RETURN VALUE
On success, memfd_create() returns a new file descriptor. On error, −1 is returned and errno is set to indi-

cate the error.

ERRORS
EFAULT

The address in name points to invalid memory.

EINVAL

flags included unknown bits.

EINVAL

name was too long. (The limit is 249 bytes, excluding the terminating null byte.)

EINVAL

Both MFD_HUGETLB and MFD_ALLOW_SEALING were specified in flags.

EMFILE

The per-process limit on the number of open file descriptors has been reached.

ENFILE

The system-wide limit on the total number of open files has been reached.

ENOMEM

There was insufficient memory to create a new anonymous file.

VERSIONS
The memfd_create() system call first appeared in Linux 3.17; glibc support was added in version 2.27.

CONFORMING TO
The memfd_create() system call is Linux-specific.

NOTES
The memfd_create() system call provides a simple alternative to manually mounting a tmpfs(5) filesystem

and creating and opening a file in that filesystem. The primary purpose of memfd_create() is to create files

and associated file descriptors that are used with the file-sealing APIs provided by fcntl(2).

The memfd_create() system call also has uses without file sealing (which is why file-sealing is disabled,

unless explicitly requested with the MFD_ALLOW_SEALING flag). In particular, it can be used as an al-

ternative to creating files in tmp or as an alternative to using the open(2) O_TMPFILE in cases where

there is no intention to actually link the resulting file into the filesystem.

File sealing

In the absence of file sealing, processes that communicate via shared memory must either trust each other,

or take measures to deal with the possibility that an untrusted peer may manipulate the shared memory re-

gion in problematic ways. For example, an untrusted peer might modify the contents of the shared memory

at any time, or shrink the shared memory region. The former possibility leaves the local process vulnerable

to time-of-check-to-time-of-use race conditions (typically dealt with by copying data from the shared mem-

ory region before checking and using it). The latter possibility leaves the local process vulnerable to SIG-

BUS signals when an attempt is made to access a now-nonexistent location in the shared memory region.

(Dealing with this possibility necessitates the use of a handler for the SIGBUS signal.)

Dealing with untrusted peers imposes extra complexity on code that employs shared memory. Memory

sealing enables that extra complexity to be eliminated, by allowing a process to operate secure in the

knowledge that its peer can’t modify the shared memory in an undesired fashion.

An example of the usage of the sealing mechanism is as follows:

1. The first process creates a tmpfs(5) file using memfd_create(). The call yields a file descriptor used in

subsequent steps.

2. The first process sizes the file created in the previous step using ftruncate(2), maps it using mmap(2),

and populates the shared memory with the desired data.

Linux 2020-02-09 2



MEMFD_CREATE(2) Linux Programmer’s Manual MEMFD_CREATE(2)

3. The first process uses the fcntl(2) F_ADD_SEALS operation to place one or more seals on the file, in

order to restrict further modifications on the file. (If placing the seal F_SEAL_WRITE, then it will be

necessary to first unmap the shared writable mapping created in the previous step. Otherwise, behavior

similar to F_SEAL_WRITE can be achieved by using F_SEAL_FUTURE_WRITE, which will pre-

vent future writes via mmap(2) and write(2) from succeeding while keeping existing shared writable

mappings).

4. A second process obtains a file descriptor for the tmpfs(5) file and maps it. Among the possible ways

in which this could happen are the following:

* The process that called memfd_create() could transfer the resulting file descriptor to the second

process via a UNIX domain socket (see unix(7) and cmsg(3)). The second process then maps the

file using mmap(2).

* The second process is created via fork(2) and thus automatically inherits the file descriptor and

mapping. (Note that in this case and the next, there is a natural trust relationship between the two

processes, since they are running under the same user ID. Therefore, file sealing would not nor-

mally be necessary.)

* The second process opens the file /proc/<pid>/fd/<fd>, where <pid> is the PID of the first process

(the one that called memfd_create()), and <fd> is the number of the file descriptor returned by the

call to memfd_create() in that process. The second process then maps the file using mmap(2).

5. The second process uses the fcntl(2) F_GET_SEALS operation to retrieve the bit mask of seals that

has been applied to the file. This bit mask can be inspected in order to determine what kinds of restric-

tions have been placed on file modifications. If desired, the second process can apply further seals to

impose additional restrictions (so long as the F_SEAL_SEAL seal has not yet been applied).

EXAMPLE
Below are shown two example programs that demonstrate the use of memfd_create() and the file sealing

API.

The first program, t_memfd_create.c, creates a tmpfs(5) file using memfd_create(), sets a size for the file,

maps it into memory, and optionally places some seals on the file. The program accepts up to three com-

mand-line arguments, of which the first two are required. The first argument is the name to associate with

the file, the second argument is the size to be set for the file, and the optional third argument is a string of

characters that specify seals to be set on file.

The second program, t_get_seals.c, can be used to open an existing file that was created via memfd_cre-

ate() and inspect the set of seals that have been applied to that file.

The following shell session demonstrates the use of these programs. First we create a tmpfs(5) file and set

some seals on it:

$ ./t_memfd_create my_memfd_file 4096 sw &

[1] 11775
PID: 11775; fd: 3; /proc/11775/fd/3

At this point, the t_memfd_create program continues to run in the background. From another program, we

can obtain a file descriptor for the file created by memfd_create() by opening the /proc/[pid]/fd file that

corresponds to the file descriptor opened by memfd_create(). Using that pathname, we inspect the content

of the /proc/[pid]/fd symbolic link, and use our t_get_seals program to view the seals that have been placed

on the file:

$ readlink /proc/11775/fd/3

/memfd:my_memfd_file (deleted)
$ ./t_get_seals /proc/11775/fd/3

Existing seals: WRITE SHRINK

Program source: t_memfd_create.c

#define _GNU_SOURCE

Linux 2020-02-09 3



MEMFD_CREATE(2) Linux Programmer’s Manual MEMFD_CREATE(2)

#include <sys/mman.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <stdio.h>

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \
} while (0)

int
main(int argc, char *argv[])
{

int fd;
unsigned int seals;
char *addr;
char *name, *seals_arg;
ssize_t len;

if (argc < 3) {
fprintf(stderr, "%s name size [seals]\n", argv[0]);
fprintf(stderr, "\t'seals' can contain any of the "

"following characters:\n");
fprintf(stderr, "\t\tg − F_SEAL_GROW\n");
fprintf(stderr, "\t\ts − F_SEAL_SHRINK\n");
fprintf(stderr, "\t\tw − F_SEAL_WRITE\n");
fprintf(stderr, "\t\tW − F_SEAL_FUTURE_WRITE\n");
fprintf(stderr, "\t\tS − F_SEAL_SEAL\n");
exit(EXIT_FAILURE);

}

name = argv[1];
len = atoi(argv[2]);
seals_arg = argv[3];

/* Create an anonymous file in tmpfs; allow seals to be
placed on the file */

fd = memfd_create(name, MFD_ALLOW_SEALING);
if (fd == −1)

errExit("memfd_create");

/* Size the file as specified on the command line */

if (ftruncate(fd, len) == −1)
errExit("truncate");

printf("PID: %ld; fd: %d; /proc/%ld/fd/%d\n",
(long) getpid(), fd, (long) getpid(), fd);

/* Code to map the file and populate the mapping with data
omitted */

/* If a 'seals' command−line argument was supplied, set some

Linux 2020-02-09 4



MEMFD_CREATE(2) Linux Programmer’s Manual MEMFD_CREATE(2)

seals on the file */

if (seals_arg != NULL) {
seals = 0;

if (strchr(seals_arg, 'g') != NULL)
seals |= F_SEAL_GROW;

if (strchr(seals_arg, 's') != NULL)
seals |= F_SEAL_SHRINK;

if (strchr(seals_arg, 'w') != NULL)
seals |= F_SEAL_WRITE;

if (strchr(seals_arg, 'W') != NULL)
seals |= F_SEAL_FUTURE_WRITE;

if (strchr(seals_arg, 'S') != NULL)
seals |= F_SEAL_SEAL;

if (fcntl(fd, F_ADD_SEALS, seals) == −1)
errExit("fcntl");

}

/* Keep running, so that the file created by memfd_create()
continues to exist */

pause();

exit(EXIT_SUCCESS);
}

Program source: t_get_seals.c

#define _GNU_SOURCE
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \
} while (0)

int
main(int argc, char *argv[])
{

int fd;
unsigned int seals;

if (argc != 2) {
fprintf(stderr, "%s /proc/PID/fd/FD\n", argv[0]);
exit(EXIT_FAILURE);

}

fd = open(argv[1], O_RDWR);
if (fd == −1)

errExit("open");

Linux 2020-02-09 5



MEMFD_CREATE(2) Linux Programmer’s Manual MEMFD_CREATE(2)

seals = fcntl(fd, F_GET_SEALS);
if (seals == −1)

errExit("fcntl");

printf("Existing seals:");
if (seals & F_SEAL_SEAL)

printf(" SEAL");
if (seals & F_SEAL_GROW)

printf(" GROW");
if (seals & F_SEAL_WRITE)

printf(" WRITE");
if (seals & F_SEAL_FUTURE_WRITE)

printf(" FUTURE_WRITE");
if (seals & F_SEAL_SHRINK)

printf(" SHRINK");
printf("\n");

/* Code to map the file and access the contents of the
resulting mapping omitted */

exit(EXIT_SUCCESS);
}

SEE ALSO
fcntl(2), ftruncate(2), mmap(2), shmget(2), shm_open(3)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2020-02-09 6


