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NAME
md − Multiple Device driver aka Linux Software RAID

SYNOPSIS
/dev/mdn

/dev/md/n

/dev/md/name

DESCRIPTION
The md driver provides virtual devices that are created from one or more independent underlying devices.

This array of devices often contains redundancy and the devices are often disk drives, hence the acronym

RAID which stands for a Redundant Array of Independent Disks.

md supports RAID levels 1 (mirroring), 4 (striped array with parity device), 5 (striped array with distrib-

uted parity information), 6 (striped array with distributed dual redundancy information), and 10 (striped and

mirrored). If some number of underlying devices fails while using one of these levels, the array will con-

tinue to function; this number is one for RAID levels 4 and 5, two for RAID level 6, and all but one (N-1)

for RAID level 1, and dependent on configuration for level 10.

md also supports a number of pseudo RAID (non-redundant) configurations including RAID0 (striped ar-

ray), LINEAR (catenated array), MULTIPATH (a set of different interfaces to the same device), and

FA ULTY (a layer over a single device into which errors can be injected).

MD METADAT A

Each device in an array may have some metadata stored in the device. This metadata is sometimes called a

superblock. The metadata records information about the structure and state of the array. This allows the

array to be reliably re-assembled after a shutdown.

From Linux kernel version 2.6.10, md provides support for two different formats of metadata, and other

formats can be added. Prior to this release, only one format is supported.

The common format — known as version 0.90 — has a superblock that is 4K long and is written into a 64K

aligned block that starts at least 64K and less than 128K from the end of the device (i.e. to get the address

of the superblock round the size of the device down to a multiple of 64K and then subtract 64K). The avail-

able size of each device is the amount of space before the super block, so between 64K and 128K is lost

when a device in incorporated into an MD array. This superblock stores multi-byte fields in a processor-de-

pendent manner, so arrays cannot easily be moved between computers with different processors.

The new format — known as version 1 — has a superblock that is normally 1K long, but can be longer. It

is normally stored between 8K and 12K from the end of the device, on a 4K boundary, though variations

can be stored at the start of the device (version 1.1) or 4K from the start of the device (version 1.2). This

metadata format stores multibyte data in a processor-independent format and supports up to hundreds of

component devices (version 0.90 only supports 28).

The metadata contains, among other things:

LEVEL

The manner in which the devices are arranged into the array (LINEAR, RAID0, RAID1, RAID4,

RAID5, RAID10, MULTIPATH).

UUID a 128 bit Universally Unique Identifier that identifies the array that contains this device.

When a version 0.90 array is being reshaped (e.g. adding extra devices to a RAID5), the version number is

temporarily set to 0.91. This ensures that if the reshape process is stopped in the middle (e.g. by a system

crash) and the machine boots into an older kernel that does not support reshaping, then the array will not be

assembled (which would cause data corruption) but will be left untouched until a kernel that can complete

the reshape processes is used.
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ARRAYS WITHOUT METADAT A

While it is usually best to create arrays with superblocks so that they can be assembled reliably, there are

some circumstances when an array without superblocks is preferred. These include:

LEGACY ARRAYS

Early versions of the md driver only supported LINEAR and RAID0 configurations and did not

use a superblock (which is less critical with these configurations). While such arrays should be re-

built with superblocks if possible, md continues to support them.

FA ULTY

Being a largely transparent layer over a different device, the FAULTY personality doesn’t gain

anything from having a superblock.

MULTIPATH

It is often possible to detect devices which are different paths to the same storage directly rather

than having a distinctive superblock written to the device and searched for on all paths. In this

case, a MULTIPATH array with no superblock makes sense.

RAID1 In some configurations it might be desired to create a RAID1 configuration that does not use a su-

perblock, and to maintain the state of the array elsewhere. While not encouraged for general use,

it does have special-purpose uses and is supported.

ARRAYS WITH EXTERNAL METADAT A

From release 2.6.28, the md driver supports arrays with externally managed metadata. That is, the meta-

data is not managed by the kernel but rather by a user-space program which is external to the kernel. This

allows support for a variety of metadata formats without cluttering the kernel with lots of details.

md is able to communicate with the user-space program through various sysfs attributes so that it can make

appropriate changes to the metadata − for example to mark a device as faulty. When necessary, md will

wait for the program to acknowledge the event by writing to a sysfs attribute. The manual page for md-

mon(8) contains more detail about this interaction.

CONTAINERS

Many metadata formats use a single block of metadata to describe a number of different arrays which all

use the same set of devices. In this case it is helpful for the kernel to know about the full set of devices as a

whole. This set is known to md as a container. A container is an md array with externally managed meta-

data and with device offset and size so that it just covers the metadata part of the devices. The remainder of

each device is available to be incorporated into various arrays.

LINEAR

A LINEAR array simply catenates the available space on each drive to form one large virtual drive.

One advantage of this arrangement over the more common RAID0 arrangement is that the array may be re-

configured at a later time with an extra drive, so the array is made bigger without disturbing the data that is

on the array. This can even be done on a live array.

If a chunksize is given with a LINEAR array, the usable space on each device is rounded down to a multiple

of this chunksize.

RAID0

A RAID0 array (which has zero redundancy) is also known as a striped array. A RAID0 array is configured

at creation with a Chunk Size which must be a power of two (prior to Linux 2.6.31), and at least 4

kibibytes.

The RAID0 driver assigns the first chunk of the array to the first device, the second chunk to the second de-

vice, and so on until all drives hav e been assigned one chunk. This collection of chunks forms a stripe.
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Further chunks are gathered into stripes in the same way, and are assigned to the remaining space in the

drives.

If devices in the array are not all the same size, then once the smallest device has been exhausted, the

RAID0 driver starts collecting chunks into smaller stripes that only span the drives which still have remain-

ing space.

A bug was introduced in linux 3.14 which changed the layout of blocks in a RAID0 beyond the region that

is striped over all devices. This bug does not affect an array with all devices the same size, but can affect

other RAID0 arrays.

Linux 5.4 (and some stable kernels to which the change was backported) will not normally assemble such

an array as it cannot know which layout to use. There is a module parameter "raid0.default_layout" which

can be set to "1" to force the kernel to use the pre-3.14 layout or to "2" to force it to use the 3.14-and-later

layout. when creating a new RAID0 array, mdadm will record the chosen layout in the metadata in a way

that allows newer kernels to assemble the array without needing a module parameter.

To assemble an old array on a new kernel without using the module parameter, use either the --update=lay-

out-original option or the --update=layout-alternate option.

RAID1

A RAID1 array is also known as a mirrored set (though mirrors tend to provide reflected images, which

RAID1 does not) or a plex.

Once initialised, each device in a RAID1 array contains exactly the same data. Changes are written to all

devices in parallel. Data is read from any one device. The driver attempts to distribute read requests across

all devices to maximise performance.

All devices in a RAID1 array should be the same size. If they are not, then only the amount of space avail-

able on the smallest device is used (any extra space on other devices is wasted).

Note that the read balancing done by the driver does not make the RAID1 performance profile be the same

as for RAID0; a single stream of sequential input will not be accelerated (e.g. a single dd), but multiple se-

quential streams or a random workload will use more than one spindle. In theory, having an N-disk RAID1

will allow N sequential threads to read from all disks.

Individual devices in a RAID1 can be marked as "write-mostly". These drives are excluded from the nor-

mal read balancing and will only be read from when there is no other option. This can be useful for devices

connected over a slow link.

RAID4

A RAID4 array is like a RAID0 array with an extra device for storing parity. This device is the last of the

active devices in the array. Unlike RAID0, RAID4 also requires that all stripes span all drives, so extra

space on devices that are larger than the smallest is wasted.

When any block in a RAID4 array is modified, the parity block for that stripe (i.e. the block in the parity

device at the same device offset as the stripe) is also modified so that the parity block always contains the

"parity" for the whole stripe. I.e. its content is equivalent to the result of performing an exclusive-or opera-

tion between all the data blocks in the stripe.

This allows the array to continue to function if one device fails. The data that was on that device can be

calculated as needed from the parity block and the other data blocks.
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RAID5

RAID5 is very similar to RAID4. The difference is that the parity blocks for each stripe, instead of being

on a single device, are distributed across all devices. This allows more parallelism when writing, as two

different block updates will quite possibly affect parity blocks on different devices so there is less con-

tention.

This also allows more parallelism when reading, as read requests are distributed over all the devices in the

array instead of all but one.

RAID6

RAID6 is similar to RAID5, but can handle the loss of any two devices without data loss. Accordingly, it

requires N+2 drives to store N drives worth of data.

The performance for RAID6 is slightly lower but comparable to RAID5 in normal mode and single disk

failure mode. It is very slow in dual disk failure mode, however.

RAID10

RAID10 provides a combination of RAID1 and RAID0, and is sometimes known as RAID1+0. Every dat-

ablock is duplicated some number of times, and the resulting collection of datablocks are distributed over

multiple drives.

When configuring a RAID10 array, it is necessary to specify the number of replicas of each data block that

are required (this will usually be 2) and whether their layout should be "near", "far" or "offset" (with "off-

set" being available since Linux 2.6.18).

About the RAID10 Layout Examples:

The examples below visualise the chunk distribution on the underlying devices for the respective layout.

For simplicity it is assumed that the size of the chunks equals the size of the blocks of the underlying de-

vices as well as those of the RAID10 device exported by the kernel (for example /dev/md/name).

Therefore the chunks / chunk numbers map directly to the blocks /block addresses of the exported RAID10

device.

Decimal numbers (0, 1, 2, ...) are the chunks of the RAID10 and due to the above assumption also the

blocks and block addresses of the exported RAID10 device.

Repeated numbers mean copies of a chunk / block (obviously on different underlying devices).

Hexadecimal numbers (0x00, 0x01, 0x02, ...) are the block addresses of the underlying devices.

"near" Layout

When "near" replicas are chosen, the multiple copies of a given chunk are laid out consecutively

("as close to each other as possible") across the stripes of the array.

With an even number of devices, they will likely (unless some misalignment is present) lay at the

very same offset on the different devices.

This is as the "classic" RAID1+0; that is two groups of mirrored devices (in the example below the

groups Device #1 / #2 and Device #3 / #4 are each a RAID1) both in turn forming a striped

RAID0.
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Example with 2 copies per chunk and an even number (4) of devices:

Device #1 Device #2 Device #3 Device #4

0x00 0 0 1 1

0x01 2 2 3 3

... ... ... ... ...

: :  :  :  :

... ... ... ... ...

0x80 254 254 255 255

\---------v---------/ \---------v---------/

RAID1 RAID1

\---------------------v---------------------/

RAID0

Example with 2 copies per chunk and an odd number (5) of devices:

Dev #1 Dev #2 Dev #3 Dev #4 Dev #5

0x00 0 0 1 1 2

0x01 2 3 3 4 4

... ... ... ... ... ...

: :  :  :  :  :

... ... ... ... ... ...

0x80 317 318 318 319 319

"far" Layout

When "far" replicas are chosen, the multiple copies of a given chunk are laid out quite distant ("as

far as reasonably possible") from each other.

First a complete sequence of all data blocks (that is all the data one sees on the exported RAID10

block device) is striped over the devices. Then another (though "shifted") complete sequence of all

data blocks; and so on (in the case of more than 2 copies per chunk).

The "shift" needed to prevent placing copies of the same chunks on the same devices is actually a

cyclic permutation with offset 1 of each of the stripes within a complete sequence of chunks.

The offset 1 is relative to the previous complete sequence of chunks, so in case of more than

2 copies per chunk one gets the following offsets:

1. complete sequence of chunks: offset = 0

2. complete sequence of chunks: offset = 1

3. complete sequence of chunks: offset = 2

:

n. complete sequence of chunks: offset = n-1

Example with 2 copies per chunk and an even number (4) of devices:

Device #1 Device #2 Device #3 Device #4

0x00 0 1 2 3 \

0x01 4 5 6 7 > [#]

... ... ... ... ... :

: :  :  :  : :

... ... ... ... ... :

0x40 252 253 254 255 /

0x41 3 0 1 2 \

0x42 7 4 5 6 > [#]˜
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... ... ... ... ... :

: :  :  :  : :

... ... ... ... ... :

0x80 255 252 253 254 /

Example with 2 copies per chunk and an odd number (5) of devices:

Dev #1 Dev #2 Dev #3 Dev #4 Dev #5

0x00 0 1 2 3 4 \

0x01 5 6 7 8 9 > [#]

... ... ... ... ... ... :

: :  :  :  :  : :

... ... ... ... ... ... :

0x40 315 316 317 318 319 /

0x41 4 0 1 2 3 \

0x42 9 5 6 7 8 > [#]˜

... ... ... ... ... ... :

: :  :  :  :  : :

... ... ... ... ... ... :

0x80 319 315 316 317 318 /

With [#] being the complete sequence of chunks and [#]˜ the cyclic permutation with offset 1

thereof (in the case of more than 2 copies per chunk there would be ([#]˜)˜, (([#]˜)˜)˜, ...).

The advantage of this layout is that MD can easily spread sequential reads over the devices, mak-

ing them similar to RAID0 in terms of speed.

The cost is more seeking for writes, making them substantially slower.

"offset" Layout

When "offset" replicas are chosen, all the copies of a given chunk are striped consecutively ("off-

set by the stripe length after each other") over the devices.

Explained in detail, <number of devices> consecutive chunks are striped over the devices, immedi-

ately followed by a "shifted" copy of these chunks (and by further such "shifted" copies in the case

of more than 2 copies per chunk).

This pattern repeats for all further consecutive chunks of the exported RAID10 device (in other

words: all further data blocks).

The "shift" needed to prevent placing copies of the same chunks on the same devices is actually a

cyclic permutation with offset 1 of each of the striped copies of <number of devices> consecutive

chunks.

The offset 1 is relative to the previous striped copy of <number of devices> consecutive chunks, so

in case of more than 2 copies per chunk one gets the following offsets:

1. <number of devices> consecutive chunks: offset = 0

2. <number of devices> consecutive chunks: offset = 1

3. <number of devices> consecutive chunks: offset = 2

:

n. <number of devices> consecutive chunks: offset = n-1

6



MD(4) Kernel Interfaces Manual MD(4)

Example with 2 copies per chunk and an even number (4) of devices:

Device #1 Device #2 Device #3 Device #4

0x00 0 1 2 3 ) AA

0x01 3 0 1 2 ) AA˜

0x02 4 5 6 7 ) AB

0x03 7 4 5 6 ) AB˜

... ... ... ... ... ) ...

: :  :  :  : :

... ... ... ... ... ) ...

0x79 251 252 253 254 ) EX

0x80 254 251 252 253 ) EX˜

Example with 2 copies per chunk and an odd number (5) of devices:

Dev #1 Dev #2 Dev #3 Dev #4 Dev #5

0x00 0 1 2 3 4 ) AA

0x01 4 0 1 2 3 ) AA˜

0x02 5 6 7 8 9 ) AB

0x03 9 5 6 7 8 ) AB˜

... ... ... ... ... ... ) ...

: :  :  :  :  : :

... ... ... ... ... ... ) ...

0x79 314 315 316 317 318 ) EX

0x80 318 314 315 316 317 ) EX˜

With AA, AB, ..., AZ, BA, ... being the sets of <number of devices> consecutive chunks and

AA˜, AB˜, ..., AZ˜, BA˜, ... the cyclic permutations with offset 1 thereof (in the case of more than

2 copies per chunk there would be (AA˜)˜, ... as well as ((AA˜)˜)˜, ... and so on).

This should give similar read characteristics to "far" if a suitably large chunk size is used, but

without as much seeking for writes.

It should be noted that the number of devices in a RAID10 array need not be a multiple of the number of

replica of each data block; however, there must be at least as many devices as replicas.

If, for example, an array is created with 5 devices and 2 replicas, then space equivalent to 2.5 of the devices

will be available, and every block will be stored on two different devices.

Finally, it is possible to have an array with both "near" and "far" copies. If an array is configured with 2

near copies and 2 far copies, then there will be a total of 4 copies of each block, each on a different drive.

This is an artifact of the implementation and is unlikely to be of real value.

MULTIPATH

MULTIPATH is not really a RAID at all as there is only one real device in a MULTIPATH md array. How-

ev er there are multiple access points (paths) to this device, and one of these paths might fail, so there are

some similarities.

A MULTIPATH array is composed of a number of logically different devices, often fibre channel interfaces,

that all refer the the same real device. If one of these interfaces fails (e.g. due to cable problems), the MUL-

TIPATH driver will attempt to redirect requests to another interface.

The MULTIPATH drive is not receiving any ongoing development and should be considered a legacy

driver. The device-mapper based multipath drivers should be preferred for new installations.
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FA ULTY

The FAULTY md module is provided for testing purposes. A FAULTY array has exactly one component

device and is normally assembled without a superblock, so the md array created provides direct access to

all of the data in the component device.

The FAULTY module may be requested to simulate faults to allow testing of other md levels or of filesys-

tems. Faults can be chosen to trigger on read requests or write requests, and can be transient (a subsequent

read/write at the address will probably succeed) or persistent (subsequent read/write of the same address

will fail). Further, read faults can be "fixable" meaning that they persist until a write request at the same ad-

dress.

Fault types can be requested with a period. In this case, the fault will recur repeatedly after the given num-

ber of requests of the relevant type. For example if persistent read faults have a period of 100, then every

100th read request would generate a fault, and the faulty sector would be recorded so that subsequent reads

on that sector would also fail.

There is a limit to the number of faulty sectors that are remembered. Faults generated after this limit is ex-

hausted are treated as transient.

The list of faulty sectors can be flushed, and the active list of failure modes can be cleared.

UNCLEAN SHUTDOWN

When changes are made to a RAID1, RAID4, RAID5, RAID6, or RAID10 array there is a possibility of in-

consistency for short periods of time as each update requires at least two block to be written to different de-

vices, and these writes probably won’t happen at exactly the same time. Thus if a system with one of these

arrays is shutdown in the middle of a write operation (e.g. due to power failure), the array may not be con-

sistent.

To handle this situation, the md driver marks an array as "dirty" before writing any data to it, and marks it

as "clean" when the array is being disabled, e.g. at shutdown. If the md driver finds an array to be dirty at

startup, it proceeds to correct any possibly inconsistency. For RAID1, this involves copying the contents of

the first drive onto all other drives. For RAID4, RAID5 and RAID6 this involves recalculating the parity

for each stripe and making sure that the parity block has the correct data. For RAID10 it involves copying

one of the replicas of each block onto all the others. This process, known as "resynchronising" or "resync"

is performed in the background. The array can still be used, though possibly with reduced performance.

If a RAID4, RAID5 or RAID6 array is degraded (missing at least one drive, two for RAID6) when it is

restarted after an unclean shutdown, it cannot recalculate parity, and so it is possible that data might be un-

detectably corrupted. The 2.4 md driver does not alert the operator to this condition. The 2.6 md driver

will fail to start an array in this condition without manual intervention, though this behaviour can be over-

ridden by a kernel parameter.

RECOVERY

If the md driver detects a write error on a device in a RAID1, RAID4, RAID5, RAID6, or RAID10 array, it

immediately disables that device (marking it as faulty) and continues operation on the remaining devices.

If there are spare drives, the driver will start recreating on one of the spare drives the data which was on that

failed drive, either by copying a working drive in a RAID1 configuration, or by doing calculations with the

parity block on RAID4, RAID5 or RAID6, or by finding and copying originals for RAID10.

In kernels prior to about 2.6.15, a read error would cause the same effect as a write error. In later kernels, a

read-error will instead cause md to attempt a recovery by overwriting the bad block. i.e. it will find the cor-

rect data from elsewhere, write it over the block that failed, and then try to read it back again. If either the

write or the re-read fail, md will treat the error the same way that a write error is treated, and will fail the

whole device.
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While this recovery process is happening, the md driver will monitor accesses to the array and will slow

down the rate of recovery if other activity is happening, so that normal access to the array will not be un-

duly affected. When no other activity is happening, the recovery process proceeds at full speed. The actual

speed targets for the two different situations can be controlled by the speed_limit_min and

speed_limit_max control files mentioned below.

SCRUBBING AND MISMATCHES

As storage devices can develop bad blocks at any time it is valuable to regularly read all blocks on all de-

vices in an array so as to catch such bad blocks early. This process is called scrubbing.

md arrays can be scrubbed by writing either check or repair to the file md/sync_action in the sysfs directory

for the device.

Requesting a scrub will cause md to read every block on every device in the array, and check that the data

is consistent. For RAID1 and RAID10, this means checking that the copies are identical. For RAID4,

RAID5, RAID6 this means checking that the parity block is (or blocks are) correct.

If a read error is detected during this process, the normal read-error handling causes correct data to be

found from other devices and to be written back to the faulty device. In many case this will effectively fix

the bad block.

If all blocks read successfully but are found to not be consistent, then this is regarded as a mismatch.

If check was used, then no action is taken to handle the mismatch, it is simply recorded. If repair was used,

then a mismatch will be repaired in the same way that resync repairs arrays. For RAID5/RAID6 new parity

blocks are written. For RAID1/RAID10, all but one block are overwritten with the content of that one

block.

A count of mismatches is recorded in the sysfs file md/mismatch_cnt. This is set to zero when a scrub

starts and is incremented whenever a sector is found that is a mismatch. md normally works in units much

larger than a single sector and when it finds a mismatch, it does not determine exactly how many actual sec-

tors were affected but simply adds the number of sectors in the IO unit that was used. So a value of 128

could simply mean that a single 64KB check found an error (128 x 512bytes = 64KB).

If an array is created by mdadm with −−assume−clean then a subsequent check could be expected to find

some mismatches.

On a truly clean RAID5 or RAID6 array, any mismatches should indicate a hardware problem at some level

- software issues should never cause such a mismatch.

However on RAID1 and RAID10 it is possible for software issues to cause a mismatch to be reported. This

does not necessarily mean that the data on the array is corrupted. It could simply be that the system does

not care what is stored on that part of the array - it is unused space.

The most likely cause for an unexpected mismatch on RAID1 or RAID10 occurs if a swap partition or

swap file is stored on the array.

When the swap subsystem wants to write a page of memory out, it flags the page as ’clean’ in the memory

manager and requests the swap device to write it out. It is quite possible that the memory will be changed

while the write-out is happening. In that case the ’clean’ flag will be found to be clear when the write com-

pletes and so the swap subsystem will simply forget that the swapout had been attempted, and will possibly

choose a different page to write out.

If the swap device was on RAID1 (or RAID10), then the data is sent from memory to a device twice (or
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more depending on the number of devices in the array). Thus it is possible that the memory gets changed

between the times it is sent, so different data can be written to the different devices in the array. This will

be detected by check as a mismatch. However it does not reflect any corruption as the block where this

mismatch occurs is being treated by the swap system as being empty, and the data will never be read from

that block.

It is conceivable for a similar situation to occur on non-swap files, though it is less likely.

Thus the mismatch_cnt value can not be interpreted very reliably on RAID1 or RAID10, especially when

the device is used for swap.

BITMAP WRITE-INTENT LOGGING

From Linux 2.6.13, md supports a bitmap based write-intent log. If configured, the bitmap is used to

record which blocks of the array may be out of sync. Before any write request is honoured, md will make

sure that the corresponding bit in the log is set. After a period of time with no writes to an area of the array,

the corresponding bit will be cleared.

This bitmap is used for two optimisations.

Firstly, after an unclean shutdown, the resync process will consult the bitmap and only resync those blocks

that correspond to bits in the bitmap that are set. This can dramatically reduce resync time.

Secondly, when a drive fails and is removed from the array, md stops clearing bits in the intent log. If that

same drive is re-added to the array, md will notice and will only recover the sections of the drive that are

covered by bits in the intent log that are set. This can allow a device to be temporarily removed and rein-

serted without causing an enormous recovery cost.

The intent log can be stored in a file on a separate device, or it can be stored near the superblocks of an ar-

ray which has superblocks.

It is possible to add an intent log to an active array, or remove an intent log if one is present.

In 2.6.13, intent bitmaps are only supported with RAID1. Other levels with redundancy are supported from

2.6.15.

BAD BLOCK LIST

From Linux 3.5 each device in an md array can store a list of known-bad-blocks. This list is 4K in size and

usually positioned at the end of the space between the superblock and the data.

When a block cannot be read and cannot be repaired by writing data recovered from other devices, the ad-

dress of the block is stored in the bad block list. Similarly if an attempt to write a block fails, the address

will be recorded as a bad block. If attempting to record the bad block fails, the whole device will be

marked faulty.

Attempting to read from a known bad block will cause a read error. Attempting to write to a known bad

block will be ignored if any write errors have been reported by the device. If there have been no write er-

rors then the data will be written to the known bad block and if that succeeds, the address will be removed

from the list.

This allows an array to fail more gracefully - a few blocks on different devices can be faulty without taking

the whole array out of action.

The list is particularly useful when recovering to a spare. If a few blocks cannot be read from the other
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devices, the bulk of the recovery can complete and those few bad blocks will be recorded in the bad block

list.

RAID456 WRITE JOURNAL

Due to non-atomicity nature of RAID write operations, interruption of write operations (system crash, etc.)

to RAID456 array can lead to inconsistent parity and data loss (so called RAID-5 write hole).

To plug the write hole, from Linux 4.4 (to be confirmed), md supports write ahead journal for RAID456.

When the array is created, an additional journal device can be added to the array through write-journal op-

tion. The RAID write journal works similar to file system journals. Before writing to the data disks, md

persists data AND parity of the stripe to the journal device. After crashes, md searches the journal device

for incomplete write operations, and replay them to the data disks.

When the journal device fails, the RAID array is forced to run in read-only mode.

WRITE-BEHIND

From Linux 2.6.14, md supports WRITE-BEHIND on RAID1 arrays.

This allows certain devices in the array to be flagged as write-mostly. MD will only read from such devices

if there is no other option.

If a write-intent bitmap is also provided, write requests to write-mostly devices will be treated as write-be-

hind requests and md will not wait for writes to those requests to complete before reporting the write as

complete to the filesystem.

This allows for a RAID1 with WRITE-BEHIND to be used to mirror data over a slow link to a remote com-

puter (providing the link isn’t too slow). The extra latency of the remote link will not slow down normal

operations, but the remote system will still have a reasonably up-to-date copy of all data.

FAILFAST

From Linux 4.10, md supports FAILFAST for RAID1 and RAID10 arrays. This is a flag that can be set on

individual drives, though it is usually set on all drives, or no drives.

When md sends an I/O request to a drive that is marked as FAILFAST, and when the array could survive

the loss of that drive without losing data, md will request that the underlying device does not perform any

retries. This means that a failure will be reported to md promptly, and it can mark the device as faulty and

continue using the other device(s). md cannot control the timeout that the underlying devices use to deter-

mine failure. Any changes desired to that timeout must be set explictly on the underlying device, separately

from using mdadm.

If a FAILFAST request does fail, and if it is still safe to mark the device as faulty without data loss, that will

be done and the array will continue functioning on a reduced number of devices. If it is not possible to

safely mark the device as faulty, md will retry the request without disabling retries in the underlying device.

In any case, md will not attempt to repair read errors on a device marked as FAILFAST by writing out the

correct. It will just mark the device as faulty.

FAILFAST is appropriate for storage arrays that have a low probability of true failure, but will sometimes

introduce unacceptable delays to I/O requests while performing internal maintenance. The value of setting

FAILFAST involves a trade-off. The gain is that the chance of unacceptable delays is substantially reduced.

The cost is that the unlikely event of data-loss on one device is slightly more likely to result in data-loss for

the array.

When a device in an array using FAILFAST is marked as faulty, it will usually become usable again in a
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short while. mdadm makes no attempt to detect that possibility. Some separate mechanism, tuned to the

specific details of the expected failure modes, needs to be created to monitor devices to see when they re-

turn to full functionality, and to then re-add them to the array. In order of this "re-add" functionality to be

effective, an array using FAILFAST should always have a write-intent bitmap.

RESTRIPING

Restriping, also known as Reshaping, is the processes of re-arranging the data stored in each stripe into a

new layout. This might involve changing the number of devices in the array (so the stripes are wider),

changing the chunk size (so stripes are deeper or shallower), or changing the arrangement of data and parity

(possibly changing the RAID level, e.g. 1 to 5 or 5 to 6).

As of Linux 2.6.35, md can reshape a RAID4, RAID5, or RAID6 array to have a different number of de-

vices (more or fewer) and to have a different layout or chunk size. It can also convert between these differ-

ent RAID levels. It can also convert between RAID0 and RAID10, and between RAID0 and RAID4 or

RAID5. Other possibilities may follow in future kernels.

During any stripe process there is a ’critical section’ during which live data is being overwritten on disk.

For the operation of increasing the number of drives in a RAID5, this critical section covers the first few

stripes (the number being the product of the old and new number of devices). After this critical section is

passed, data is only written to areas of the array which no longer hold live data — the live data has already

been located away.

For a reshape which reduces the number of devices, the ’critical section’ is at the end of the reshape

process.

md is not able to ensure data preservation if there is a crash (e.g. power failure) during the critical section.

If md is asked to start an array which failed during a critical section of restriping, it will fail to start the ar-

ray.

To deal with this possibility, a user-space program must

• Disable writes to that section of the array (using the sysfs interface),

• take a copy of the data somewhere (i.e. make a backup),

• allow the process to continue and invalidate the backup and restore write access once the critical sec-

tion is passed, and

• provide for restoring the critical data before restarting the array after a system crash.

mdadm versions from 2.4 do this for growing a RAID5 array.

For operations that do not change the size of the array, like simply increasing chunk size, or converting

RAID5 to RAID6 with one extra device, the entire process is the critical section. In this case, the restripe

will need to progress in stages, as a section is suspended, backed up, restriped, and released.

SYSFS INTERFACE

Each block device appears as a directory in sysfs (which is usually mounted at /sys). For MD devices, this

directory will contain a subdirectory called md which contains various files for providing access to infor-

mation about the array.

This interface is documented more fully in the file Documentation/md.txt which is distributed with the

kernel sources. That file should be consulted for full documentation. The following are just a selection of

attribute files that are available.
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md/sync_speed_min

This value, if set, overrides the system-wide setting in /proc/sys/dev/raid/speed_limit_min for

this array only. Writing the value system to this file will cause the system-wide setting to have ef-

fect.

md/sync_speed_max

This is the partner of md/sync_speed_min and overrides /proc/sys/dev/raid/speed_limit_max

described below.

md/sync_action

This can be used to monitor and control the resync/recovery process of MD. In particular, writing

"check" here will cause the array to read all data block and check that they are consistent (e.g. par-

ity is correct, or all mirror replicas are the same). Any discrepancies found are NOT corrected.

A count of problems found will be stored in md/mismatch_count.

Alternately, "repair" can be written which will cause the same check to be performed, but any er-

rors will be corrected.

Finally, "idle" can be written to stop the check/repair process.

md/stripe_cache_size

This is only available on RAID5 and RAID6. It records the size (in pages per device) of the stripe

cache which is used for synchronising all write operations to the array and all read operations if

the array is degraded. The default is 256. Valid values are 17 to 32768. Increasing this number

can increase performance in some situations, at some cost in system memory. Note, setting this

value too high can result in an "out of memory" condition for the system.

memory_consumed = system_page_size * nr_disks * stripe_cache_size

md/preread_bypass_threshold

This is only available on RAID5 and RAID6. This variable sets the number of times MD will ser-

vice a full-stripe-write before servicing a stripe that requires some "prereading". For fairness this

defaults to 1. Valid values are 0 to stripe_cache_size. Setting this to 0 maximizes sequential-write

throughput at the cost of fairness to threads doing small or random writes.

KERNEL PARAMETERS

The md driver recognised several different kernel parameters.

raid=noautodetect

This will disable the normal detection of md arrays that happens at boot time. If a drive is parti-

tioned with MS-DOS style partitions, then if any of the 4 main partitions has a partition type of

0xFD, then that partition will normally be inspected to see if it is part of an MD array, and if any

full arrays are found, they are started. This kernel parameter disables this behaviour.

raid=partitionable

raid=part

These are available in 2.6 and later kernels only. They indicate that autodetected MD arrays

should be created as partitionable arrays, with a different major device number to the original non-

partitionable md arrays. The device number is listed as mdp in /proc/devices.
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md_mod.start_ro=1

/sys/module/md_mod/parameters/start_ro

This tells md to start all arrays in read-only mode. This is a soft read-only that will automatically

switch to read-write on the first write request. However until that write request, nothing is written

to any device by md, and in particular, no resync or recovery operation is started.

md_mod.start_dirty_degraded=1

/sys/module/md_mod/parameters/start_dirty_degraded

As mentioned above, md will not normally start a RAID4, RAID5, or RAID6 that is both dirty and

degraded as this situation can imply hidden data loss. This can be awkward if the root filesystem

is affected. Using this module parameter allows such arrays to be started at boot time. It should

be understood that there is a real (though small) risk of data corruption in this situation.

md=n,dev,dev,...

md=dn,dev,dev,...

This tells the md driver to assemble /dev/md n from the listed devices. It is only necessary to start

the device holding the root filesystem this way. Other arrays are best started once the system is

booted.

In 2.6 kernels, the d immediately after the = indicates that a partitionable device (e.g.

/dev/md/d0) should be created rather than the original non-partitionable device.

md=n,l,c,i,dev...

This tells the md driver to assemble a legacy RAID0 or LINEAR array without a superblock. n

gives the md device number, l gives the level, 0 for RAID0 or −1 for LINEAR, c gives the chunk

size as a base-2 logarithm offset by twelve, so 0 means 4K, 1 means 8K. i is ignored (legacy sup-

port).

FILES
/proc/mdstat

Contains information about the status of currently running array.

/proc/sys/dev/raid/speed_limit_min

A readable and writable file that reflects the current "goal" rebuild speed for times when non-re-

build activity is current on an array. The speed is in Kibibytes per second, and is a per-device rate,

not a per-array rate (which means that an array with more disks will shuffle more data for a given

speed). The default is 1000.

/proc/sys/dev/raid/speed_limit_max

A readable and writable file that reflects the current "goal" rebuild speed for times when no non-

rebuild activity is current on an array. The default is 200,000.

SEE ALSO
mdadm(8),
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